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Pricing and Capital Allocation for Multiline
Insurance Firms

Abstract

We study multiline insurance companies with limited liability and limited
capital, creating the possibility of insurer default. Insurance premiums are deter-
mined by no-arbitrage option pricing methods. The results are developed under
the realistic assumption that the losses created by insurer default are allocated
among policyholders following an ex post, pro rata, sharing rule. In general,
the ratio of default costs to expected claims, and thus the ratios of premiums to
expected claims vary across insurance lines. Moreover, capital and related costs
are allocated across lines in proportion to each line’s share of a digital default
option on the insurer. Our results differ from those derived elsewhere in the
literature.
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1 Background

The optimal allocation of risk in an insurance market was studied in the seminal work

of Borch (1962), who showed that without frictions a Pareto efficient outcome can be

reached. Furthermore, in a friction-free setting, insurers can hold sufficient capital to

guarantee they will pay all claims, since there is no lost opportunity cost to holding

additional capital. Limited liability and limited capital, however, implies that insurers

may fail to make the required payments to policyholders.

When markets are incomplete, in the sense that policyholders face a counterparty

risk that cannot be independently hedged, the existence of limited liability and limited

capital can have a significant impact. This leads to the following questions: For an

insurance company offering insurance in multiple insurance lines under the assumptions

of limited liability and limited capital, what will be the price structure across lines and

how should the firm allocate its capital and associated costs between these lines?

The main contribution of this paper is to introduce a parsimonious model to an-

swer these questions. Our results extend the analyses in earlier papers, e.g., in Phillips,

Cummins, and Allen (1998) and Myers and Read (2001), but our results are quite differ-

ent from theirs. The main source of the difference is that we assume that the insurer’s

available assets are distributed to the policyholders following what we call the ex post

pro rata rule. Under this rule, the available assets are allocated to policyholder claims

based on each claimant’s share of the total claims. This rule has sensible properties

and generally reflects the actual practice, as discussed below.

The risk of default by insurance firms has recently been highlighted by the pre-

carious position of the so-called “monoline” bond and mortgage security insurers as

a result of the subprime mortgage crisis. These insurers are monoline in that insur-

ance laws prohibit them from offering various consumer lines such as homeowner and

auto insurance.1 The insurers are “multiline,” however, in the sense that they provide

coverage against the default risk of a wide range of debt issues, including individual

mortgages, securitizations such as mortgage-backed securities and collateralized debt

obligations, and debt issued by entities such as state and local governments. Given

the potentially high default rates on these debt issues and the limited capital of the

insurers, it is quite possible that these insurers will be unable to pay all of the claims

they face.

A similar issue of insurer default risk arises with investment banks which function as

1In a companion paper in process, we develop the conditions under which the equilibrium structure
of a competitive insurance market may be either monoline or multiline.
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the counterparties on derivative securities for a wide range of underlying instruments,

including foreign exchange, interest rate swaps and options, and credit default swaps.

Our results for pricing and capital allocations can be interpreted as applying to such

security insurers and derivative counterparties, as well as more traditional insurance

firms.

Most of our analysis can be carried out and understood under the simplifying as-

sumption that there is no (excess) cost associated with holding capital within the firm.

This is in the same spirit as Phillips, Cummins, and Allen (1998), but contrary to

Myers and Read (2001). In practice, costs of internal capital appear to be important.

For example, Froot, Scharsfstein, and Stein (1993) emphasize the importance of capital

market imperfections for understanding a variety of corporate risk management deci-

sions: the tax disadvantages to holding capital within a firm is an especially common

and important factor. We therefore generalize our results to the situation when there

are costs associated with holding internal capital.

The paper is organized as follows: In section 2 we give a review of related literature.

In section 3, we introduce the basic framework for our analysis. In section 4, we

analyze the pricing of insurance across lines for a multiline insurance company, and in

section 5 we analyze capital and cost allocation across lines. Finally, section 6 provides

concluding remarks.

2 Literature review

Financial models of insurance pricing and capital allocation were first developed by

applying the principles of the capital asset pricing model (CAPM, see, for example,

Fairley (1979) and Hill (1979)), or a discounted cash flow model (see, for example,

Myers and Cohn (1987)). Both models, however, have significant drawbacks. The

CAPM applications have the basic problem that they fail to incorporate the default

risk faced by policyholders as a result of their insurer’s limited liability. The CAPM is

also not well suited to pricing risks with heavy tails, as would be plausible for various

lines of catastrophic disasters and terrorist attacks. The discounted cash flow models

must apply a risk-adjusted discount rate, but the derivations of this rate incorporate

neither the frictional costs of holding capital nor the default risk for policyholders.

A major advance occurred by applying option valuation methods to the questions of

insurance pricing and capital allocation, starting with the monoline insurance models
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of Doherty and Garven (1986) and Cummins (1988). These papers specify the default

risk faced by policyholders as a put option held by the equity owners of the insurer,

which provides the equity owners the option to default on claims payments due to

policyholders. The value of the option depends on the range of possible outcomes for

policy claims and the amount of capital held by the insurer (which is the strike price of

the option). The premium paid by the policyholders is then determined as the expected

losses on the policy line minus the value of the default option. This means that the

ratio of the premium to expected claims is less than 1, since the claims are not always

paid in full.

The extension of option pricing methods to a multiline insurer was first provided

by Phillips, Cummins, and Allen (1998) (PCA). Their analysis embeds the simplifying

assumption that claims for all the lines are realized at the same date, which has the very

useful implication that insurer default is simultaneously determined for all insurance

lines. If an insurer’s assets equal or exceed the actual policyholder claims, then all

claims are paid in full. Whereas, if the actual claims exceed the available assets, the

insurer defaults, and pro rated payments are made to policyholders following a loss

allocation rule. The specific rule used by PCA is that each policyholder is allocated a

share of the shortfall based on the amount of her initially expected claims relative to

the total of all initially expected claims. Since the shortfall shares are allocated based

on the expected claims as of the initial date, we will refer to this as the ex ante rule.

The PCA ex ante allocation rule implies that the default cost relative to expected

claims is constant across lines, and therefore the premium to expected claims ratio will

be constant across lines. While this result is very powerful, the ex ante rule is a very

special case, with the undesirable feature that the allocation of the shortfall in case of

default is allocated to policyholders on the basis of only the aggregate shortfall and the

ex ante expected claim on each insurance policy. This means, for example, that when

the insurer faces a shortfall in available funds, policyholders with no actual claims would

have to make payments to those policyholders with claims. Moreover, policyholders

with small expected losses would have to make payments to other policyholders with

larger expected losses. Since the ex ante expected losses on all policies are generally

not observable, policyholders have no basis for validating the share of the shortfall

imposed on them.

Mahul and Wright (2004) note that while an ex ante expected loss allocation rule

may lead to optimal risk sharing among policyholders, in practice the required cross-
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payments between policyholders will be difficult to enforce.2 Instead, in our model as

explained below, we apply an ex post pro rata allocation rule in which policyholders

share the default shortfall in proportion to their actual claims. The result is that, when

the insurer defaults, policyholders without claims make no payments, and claimants

always receive some payments from the insurer, in amounts proportional to their actual

claim.

How to allocate capital within a multiline insurer is another important question.

In the PCA model, where insurance is sold in informationally efficient, competitive,

insurance markets and without costs of internal capital, insurance premiums are deter-

mined without the need to allocate capital. In our case, however, the frictional costs of

holding capital make it imperative to allocate capital in order to determine the appro-

priate insurance premiums across lines. Two studies propose solutions to this capital

allocation problem, Merton and Perold (1993) and Myers and Read (2001). In both

cases, the amount of capital to be allocated to an insurance line is determined by an

experiment in which the size of each line is changed and a computation is made of the

required change in capital if the insurers risk of default is to remain unchanged.

The Merton and Perold (MP) experiment, more precisely, entirely removes an in-

surance line from the multiline firm and then computes the appropriate reduction in

the insurers total capital requirements. The resulting reduction in capital is interpreted

as the capital amount to be allocated when that line is part of the multiline firm. This

procedure is then repeated for each line that the insurer covers. The MP method has

the attribute that the sum of the capital allocations across all the lines will be less than

the total capital required of the firm when it offers all the lines. The reason is that the

overall firm receives a benefit of diversification that cannot be allocated to any of the

individual lines.

The Myers and Read (MR) model also uses a marginal method to compute the

capital allocation, but instead of removing each entire line from the total, they change

the coverage amount of each line only by small incremental amounts. MR demon-

strate that the capital allocations determined by their incremental technique satisfy

the adding constraint whereby the sum of the capital allocations exactly equals the to-

2The proper rule for allocating the default shortfall is related to the question of optimal contract
design when insurer default may occur. Mahul and Wright (2004), Schlesinger (2000) and Doherty and
Schlesinger (1990) are key papers in the small literature that discusses optimal insurance contracts for
allocating the shortfall when an insurer defaults. For example, this is one motivation for mutual and
participating insurance contracts, although these contracts then raise other issues such as limiting the
diversification benefits from risk sharing.
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tal amount of capital to be allocated. Our model, as developed below, applies the same

concept for determining capital allocations and takes advantage of the same adding up

condition. Our results differ from MR, however, because the MR computations are

based on the PCA model’s ex ante allocation rule for insurer shortfalls, whereas our

results are developed on the basis of our ex post allocation rule.3

3 A competitive multiline insurance market

We first study the case of only one insured risk class. Consider the following one-period

model of a competitive insurance market. At t = 0, an insurer (i.e., an insurance

company) in a competitive insurance market sells insurance against a risk, L̃ ≥ 0,4 to

an insuree.5 The expected loss of the risk is μL = E[L̃], μL < ∞.

The insurer has limited liability and holds assets A that are available to pay the

realized claims at t = 1. The assets A equal the sum of the premiums paid at the

beginning of the insurance period and the equity capital contributed by the insurer.

At time t = 1, as long as L̃ ≤ A, the insurer satisfies all claims by paying L̃ to the

insurees; however, if L̃ > A, then the insurer pays A and defaults on the shortfall

(L̃ − A). Thus, the payment is

Payment = min(L̃, A) = L̃ − max(L̃ − A, 0) = L̃ − Q̃(A),

where Q̃(A) = max(L̃ − A, 0), i.e., Q̃(A) is the payoff to the option the insurer has to

default.6 We note, in passing, that the rule can also be adjusted to take into account

a deductible, D, by redefining the risk: L̂ = max(L̃ − D, 0). In Arrow (1974), it was

shown that having such a deductible is optimal under some conditions.

The premium paid for the insurance is the price P . For simplicity, throughout the

3Lakdawalla and Zanjani (2006) provides an alternative approach to premium setting and capital
allocation when there is default risk by specifying that the demand for insurance depends in part on
the “quality” of the insurer. Although this approach can provide general conclusions comparable to
the PCA and MR models, it lacks the quantitative precision that is provided by the default option
approach. For our paper, a precise quantitative approach is essential to develop the difference between
the ex ante and ex post rules for allocating default costs across insurance lines.

4Throughout the paper we use the convention that losses take on positive values.
5It is natural to think of each risk as an insurance line.
6When obvious, we suppress the A dependence, e.g., writing Q̃ instead of Q̃(A).
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paper, the risk-free discount rate is assumed to be zero.7 In line with PCA, we also

assume that there is a friction-free complete market for risk, admitting no arbitrage.

The price for L̃ risk in the market is

PL = Price
[
L̃
]

= E∗[L̃] = E[m̃ × L̃],

where Price is a linear pricing function, which can be represented by the risk-neutral

expectations operator E∗[·], or with the state-price kernel, m̃, in the objective proba-

bility measure,8 and we assume that E∗[L̃] < ∞. Similarly, the price of the option to

default is

PQ = Price
[
Q̃(A)

]
= E∗[Q̃(A)] = E[m̃ × L̃].

We assume that there are friction costs when holding capital within an insurer,

including both taxation and liquidity costs. The cost is δ per unit of capital. This

means that to ensure that A is available at t = 1, (1 + δ) × A needs to be contributed

at t = 0.

Since the market is competitive and the cost of holding capital is δA, the price

charged for the insurance is

P = PL − PQ + δA. (1)

In words, the insurance premium equals the price of the covered risk minus the value

of the default option plus the cost of internal capital.

We assume, in line with practice, that premiums are paid upfront, and thus to

ensure that A is available at t = 1, the additional amount of A − PL + PQ needs to be

obtained by the insurer as invested capital. The total market structure is summarized

in Figure 1, which also shows how noarbitrage pricing in the market for risk determines

the price for insurance in the competitive insurance market.

It is natural to ask why insurees, recognizing that insurers impose a cost of holding

capital, would not instead purchase their coverage directly in the market for risk. The

answer is that we assume that insurees do not have direct access to the market for

risk, or that the costs of doing so exceed the costs of internal capital for the insurer.9

7The results are qualitatively similar with a non-zero risk-free rate.
8See, e.g., Duffie (2001) for standard results on existence and uniqueness of pricing functions under

these completeness and noarbitrage assumptions.
9For example, if we think of the market for risk as a reinsurance market, this may be a natural

constraint. A similar assumption, which would lead to identical results, is if the insuree faces costs of
participating in the market for risk that are equal to or higher than the costs faced by the insurer,
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Market for risk
-Noarbitrage 
pricing operator

Insurance market
-Costly capital
-Competitive

Insurer

Insuree

t=0: A-PL+PQ t=1: A-L+Qt=1: A-L+Qt=0: A-PL+PQ

t=0: δA+PL-PQ

t=1:  L-Q

Figure 1: Structure of model. Insurers can invest in a market for risk or in a competitive
insurance market. The cost of internal capital for a period is δ, so to ensure that A is
available at t = 1, (1 + δ)A needs to be reserved at t = 0, as the sum of the premiums paid
by the insurees and the capital invested in the insurer. Noarbitrage and competitive market
conditions imply that the price for insurance is P = δA + PL − PQ, which is contributed by
the insuree at t = 0 in return for which he receives his claim minus the default cost (L̃−Q̃) at
t = 1. The amount A−PL +PQ must therefore be contributed by the insurer’s shareholders.
The discount rate is normalized to zero.
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An assumption of this type is generally necessary, of course, to motivate the use of

financial intermediaries compared to direct capital market access.

The generalization to the case when there are multiple risk classes is straightforward.

Following PCA, we assume that claims on all the multilines are realized at the same

time t = 1. If coverage against N risks is provided by one multiline insurer, the total

payment made to all policyholders with claims, taking into account that the insurer

may default, is

Total Payment = L̃ + max(L̃ − A, 0) = L̃ − Q̃(A), (2)

where Total Payment =
∑

i Paymenti, L̃ =
∑

i L̃i and Q̃(A) = max(L̃ − A, 0). The

total price for the risks is, P
def
=
∑

i Pi, where Pi is the price for insurance against risk

i, is once again on the form (1).

Our analysis so far is thus based on the following assumptions:

1. Market completeness: The market for risk is arbitrage-free and complete, such

that there is a unique linear pricing operator.

2. Limited liability : Insurers have limited liability.

3. Costly capital : There is a cost for insurers to hold capital.

4. Competitive insurance markets : Prices for insurance are set competitively.

5. Access to markets: Insurees do not have direct access to the market for risk.

These assumptions completely determine the pricing of risks, as well as the capital

and cost allocations across all lines, as we shall now show.

4 Pricing across lines

We now turn to our primary question, how premiums are set across insurance lines.

From (1), given A and δ, we know the total premium, P , but not the individual

in which case it will be optimal to buy from the insurer. Finally, if the market is incomplete and the
insurer is risk-neutral, there may be no way to replicate the payoffs in the market for risk, leaving the
insurance market as the sole market available to the insuree.
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premiums, Pi. We first focus on the case when the cost of holding capital is zero,

δ = 0. We define line i’s share of default option value, ri as

ri
def
=

PLi
− Pi

PQ
. (3)

This definition immediately implies that

Pi = PLi
− riPQ, (4)

which motivates the terminology, since riPQ is the difference between the actual pre-

mium and the default-free premium. We note that, when δ > 0, the premium will be

higher than what is expressed in (4), since the insuree will also pay for costly capital.

We discuss the general situation in Section 5.1, in which case the share of default op-

tion value in line i will be denoted by r0
i , whereas ri will still be defined through (3).

Through (4), determining the premium in line i is essentially the same as determining

ri. This relies on the fact that the given amount of assets A determines the value of the

overall default option PQ (recall that the claims on all lines become due at the same

t = 1, with the total claims determining whether the insurer defaults).

Obviously, (1,3) imply that
∑

i ri = 1. We also define line i’s default option value

per unit of liability

zi
def
=

riPQ

PLi

, (5)

and, following Phillips, Cummins, and Allen (1998), the premium-to-liability ratio

Premium-to-liability-ratio
def
=

Pi

PLi

. (6)

From (4,5) it follows that
Pi

PLi

= 1 − zi = 1 − riPQ

PLi

, (7)

We need a rule for how payments to the default option are shared between claim-

holders, to be able to calculate premiums. To define a general such sharing rule, we
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specify N functions Fi : R
N
+ → R+, i = 1, . . . , N , such that

Paymenti = L̃i − Fi(L̃1, . . . , L̃N |A), (8)

where (2) implies that
N∑

i=1

Fi(L̃1, . . . , L̃N |A) = Q̃(A) (9)

in all states of the world. The sharing rule is then completely characterized by F def
=

(F1, . . . , FN). From (4) and (8) it follows that

ri =
Price [Fi]

PQ
. (10)

There are obviously many ways to construct such a payment rule, but a minimal

set of requirements is

Condition 1 Sharing rule requirements:

1. In case of no default: The payment to each insuree is exactly the amount claimed:

Q̃ = 0 ⇒ Fi = 0, for all i = 1, . . . , N .

2. In case of default: The payment to each insuree is bounded above by the claim,

and below by zero: 0 ≤ Fi ≤ L̃i, for all i = 1, . . . , N .

3. No-claim policy: Insurees with no claims do not receive payments: L̃i = 0 ⇒
Fi = 0.

In line with our discussion in previous sections, we focus on the ex post rule for
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allocating the shortfall when the insurer defaults.10 The rule specifies that

Fi =
L̃i × Q̃(A)

L̃
,

so that

Paymenti =
L̃i

L̃
× Total Payment = L̃i − L̃i × Q̃(A)

L̃
, (11)

i.e., in case of default the insurees share the total payments according to their fraction

of total losses. It is easy to check that the ex post sharing rule satisfies the sharing rule

requirements. Moreover, it corresponds well to the rules used in practice.11

In this case, using the pricing operator for (11) it follows that the market price for

insurance in line i is

Pi = PLi
− Price

[
L̃i × Q̃(A)

L̃

]
. (12)

It then follows that line i’s share of default option value, under the ex post sharing rule

is

ri = Price

[
L̃i

L̃
× Q̃(A)

PQ

]
, (13)

and that the default option value per unit of liability is

zi =
riPQ

PLi

=
1

PLi

× Price

[
L̃i

L̃
× Q̃(A)

]
. (14)

Clearly, as indicated by (7,14), under the ex post sharing rule, we would, in general,

expect the premium-to-liability ratio to vary with i.

An alternative expression for the premium-to-liability ratio, using the state price

10We focus on contracts that are present in practice. If more general contracts are possible, it may
for example be optimal to have ex post transfers from claimants who did not suffer any losses to
claimants who did; such contracts, which would effectively turn the insuree into an insurer in some
states of the world, do not seem to exist in common practice. It is beyond the scope of this paper to
analyze why such contracts are rarely seen.

11For example, see National Association of Insurance Commissioners, Insurer Receivership Model
Act, October 2007. An ex-post payout rule is also specified in the contracts offered by the California
Earthquake Authority for circumstances in which the Authority has insufficient resources to pay all
of its claims. See also (Mahul and Wright 2004) for a discussion of alternative payoff rules and the
complications created by rules other than ex-post prorated payments.
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kernel kernel, m̃, is

Pi

PLi

= 1−zi = 1− 1

PLi

×E

[
m̃ × L̃i

L̃
× Q̃(A)

]
= 1−E

[
Q̃(A)

L̃

]
−

cov
[
m̃L̃i,

Q̃(A)

L̃

]
E
[
m̃L̃i

] . (15)

If m̃ is independent of L̃ (and thereby to Q̃(A) and L̃i), then

cov
[
m̃L̃i,

Q̃(A)

L̃

]
E
[
m̃L̃i

] =
cov
[
L̃i,

Q̃(A)

L̃

]
E
[
L̃i

] ,

so for an insurance company with risks that are independent of market risk, premium-

to-liability ratios will be low in lines for which losses are high in the states of the world

when the company defaults.

Implication 1 For an insurer, insuring risk that is unrelated to market risk, define

Φ = cov
[
L̃i,

Q̃(A)

L̃

]

• Insurance lines, with losses that tend to be high in states of the world in which

the insurer defaults (i.e. with high Φ) have low premium-to-liability ratios.

• Insurance lines, with losses that tend to be small in states of the world in which

the insurer defaults (i.e. with low Φ) have high premium-to-liability ratios.

The intuition here is that the premium will be lower on lines where claims are less

likely to be paid in full as the result of insurer default.

It is difficult to draw general conclusions about premium-to-liability ratios in the

general case. An interesting special case of (15) is when the insurer’s risk is essentially

independent of market risk, in the sense that m̃ is almost independent of Q̃(A)

L̃
, even

though there are some lines with risks that are correlated with market risk. An example

of risk essentially independent of market risk arises when the firm insures a large number

of lines, most of which are independent of market risk, but with a few lines with risks

13



that are correlated with market risks, adding up to a negligible part of the total L̃ risk.

For such a company, if line i is one of the few lines with market correlated risk, e.g.,

L̃i = αm̃ + βξ̃ where ξ̃ is independent of m̃, it is the case that

cov
[
m̃L̃i,

Q̃(A)

L̃

]
E
[
m̃L̃i

] =
cov
[
m̃(αm̃ + βξ̃), Q̃(A)

L̃

]
E
[
m̃(αm̃ + βξ̃)

]

≈
βcov

[
ξ̃, Q̃(A)

L̃

]
E
[
αm̃2 + βξ̃

]

=
cov
[
ξ̃, Q̃(A)

L̃

]
α
β
E [m̃2] + E

[
ξ̃
] .

Assuming that cov
[
ξ̃, Q̃(A)

L̃

]
> 0, within this class of risks, given β > 0, risks that are

more correlated with market risk (have higher α) will have higher premium-to-liability

ratios. However, if ξ̃ is uncorrelated with Q̃(A)

L̃
, the premium-to-liability ratio is the

same, regardless of α and β. We summarize this in

Implication 2 For an insurer, with a portfolio of risks, L̃, that is essentially unrelated

to market risk, given a line i, with risk L̃i = αm̃ + βξ̃, where ξ̃ is independent of m̃,

define Θ = cov[ξ̃, Q̃(A)

L̃
]

• If Θ > 0, given β > 0, the premium-to-liability ratio is an increasing function of

α.

• If Θ > 0, given α > 0, the premium-to-liability ratio is a decreasing function of

β.

• If Θ < 0, given β > 0, the premium-to-liability ratio is a decreasing function of

α.
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• If Θ < 0, given α > 0, the premium-to-liability ratio is a increasing function of

β.

• If Θ = 0, then the premium-to-liability ratio is independent of α and β.

Thus, even in the special case when the insurer’s portfolio is essentially unrelated to

market risk and with a very special form of L̃i, premium-to-liability ratios can be

increasing or decreasing in market risk.

These implications are different than the predictions in Phillips, Cummins, and

Allen (1998). According to PCA (Hypothesis 2, page 609), the default premium should

be constant across lines.12

The source of these differences is that PCAs results are based on an ex ante sharing

rule, with default costs allocated based on the expected claims at t = 0, whereas our

results are based on the ex post sharing rule, with default costs allocated based on the

actual claims at t = 1. The ex ante sharing rule is formally defined as

Fi =
PLi

× Q̃(A)

PL

,

which implies the payment rule

Paymenti = L̃i − PLi

PL
× Q̃(A). (16)

By applying the pricing operator to (16), it follows that

ri =
PLi

PL
, (17)

which, via (5,7), implies that

zi =
PQ

PL
, (18)

12PCA assume that δ = 0, an assumption that we will relax in subsequent analysis. Their model
is also more general: It is dynamic and includes an inflation premium, as well as risky processes for
the returns on A over time. Our model could be generalized along such lines, but the the differences
between our model and that of PCA are not related to these factors. For this reason, we have kept
our analysis as simple as possible.
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and
Pi

PLi

= 1 − PQ

PL

. (19)

Thus, under the ex ante sharing rule, the premium-to-liability ratio does not vary with

i. Equation (19) corresponds to equation (18) in PCA, under the assumption that

the discount rate and inflation are 0. In contrast, under our ex-post sharing rule, the

premium-to-liability ratio will generally vary with i.

As we have argued, we believe that, in practice, only ex post sharing rules are

generally used. Moreover, as shown in the example below, the ex ante rule will in

general not satisfy the sharing rule requirements:

4.1 A pricing example

We provide a simple example that emphasizes the difference between the two sharing

rules. Consider two independent risks, L̃1 with 50% chance of being 40 and 50% chance

of being zero, and L̃2, with 50% chance of being 10 and 50% chance of being zero. The

losses in the four states of the world are shown in Table 1.

Further, assume that the total liability is A = 20, and that risk-neutral probabilities

coincide with physical probabilities. Then, the price of L̃1 is PL1 = 20, PL2 = 5, and

PQ = 25% × 20 + 25% × 30 = 12.5. Now, the payout in the four states of the world

can be derived by using (11), and are shown in Table 2.

The sharing rule for the case when both insurees have claims follows from the

fraction of losses being L̃1/(L̃1 + L̃2) = 40/(40+10) = 80%, so 80% of the total capital

of 20, i.e., 16 goes to insuree 1, and the remaining 4 to insuree 2. Thus, the value of

the limited liability insurance against L̃1 is 25%× 20 + 25%× 16 = 9, and the value of

the limited liability insurance against L̃2 is 25% × 10 + 25% × 4 = 3.5.

This in turn implies that the premium-to-liability ratios are

P1

PL1

=
9

20
= 0.45,

P2

PL2

=
3.5

5
= 0.7,

which are not equal. This is a simple example of the general property that premium-to-

liability ratios will generally vary across lines under the ex post sharing rule. Intuitively

it is clear that the premium-to-liability ratio should be lower for the first risk, since it

is more likely to have losses in the states of the world in which the insurer defaults.
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State Probability L̃1 L̃2

1 25% 0 0
2 25% 40 0
3 25% 0 10
4 25% 40 10

Price of risk 20 5

Table 1: Losses for two risks in four equally probable states of the world.

State Ex post rule Ex ante rule
Payment1 Payment2 Payment1 Payment2

1 0 0 0 0
2 20 0 24 -4
3 0 10 0 10
4 16 4 16 4

Price of insurance 9 3.5 10 2.5
Value of default option 11 1.5 10 2.5

Premium-to-liability ratio 0.45 0.7 0.5 0.5

Table 2: Payment in to insurees in different states of the world under ex post and ex
ante sharing rules. Total assets A = 20.

Therefore, the insurer tends to pay back less (relative to claims) to insuree 1, which

leads to a lower premium-to-liability for risk 1. Also, the payments satisfy the sharing

rule requirements (condition 1), as is always the case under the ex post sharing rule.

We now study the same example in a setup similar to PCA, i.e., under the ex ante

sharing rule. The payouts in the four states of the world follow from (16), and that

PL1/(PL1 + PL2) = 80%, and are shown in Table 2. Specifically, the rule indicates

that insuree 2 should pay insuree 1 20% of the option payout of 20, i.e., 4, in the

state of the world in which only insuree 1 realizes losses. This obviously violates both

assumptions 2 and 3 of the sharing rule requirement.

Implication 3 The ex post sharing rule satisfies the sharing rule requirements, whereas

the ex ante sharing rule, in general, does not.

Under the ex ante sharing rule, the premiums are P1 = 20 − 0.8 × 12.5 = 10 and
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P2 = 5 − 0.2 × 12.5 = 2.5, so the premium-to-liability ratios are equal:

P1

PL1

=
10

20
= 0.5,

P2

PL2

=
2.5

5
= 0.5,

in line with PCA’s argument.

5 Capital allocation across lines

We now turn to the question of how capital, A, and costs, δA, should be allocated

between business lines. Our analysis follows the lead of Myers and Read (2001). How-

ever, since they, like PCA, base their analysis on the ex ante sharing rule, and we apply

the ex post sharing rule, our results will be different. For the time being, we continue

to assume that δ = 0, in order to focus on capital allocation. A complete derivation of

the results in this section is given in the appendix.

In general, we wish to allocate the assets A among lines, A =
∑

i Ai =
∑

i viA,

where vi defines the capital allocation rule. As showed in Myers and Read (2001), any

capital allocation rule, vi, (such that
∑N

i=1 vi = 1) implies a “summing up” relationship

in the following sense: We study insurance portfolios

∑
i

qiL̃i,

(with weight, qi reflecting the relative amounts of risk class i) where we have, so far,

assumed that q1 = q2 = . . . = qN = 1, but we now assume that the insurer may

(marginally) change his exposure to risk in line i, e.g., by selling more insurance. At

the same time, we also assume that the insurer marginally increases the capital as

following the capital allocation rule defined by the vi’s. Thus, if the insurer increases

exposure in line i from qi, to qi + Δq, then assets are increased from A to A + vi ×Δq.

Then the payout of the default option for general q’s is

Q̃q = max

(∑
i

qi(−L̃i − viAi), 0

)
, (20)
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which generalizes equation (2).

Now, (20) implies that

∂Q̃q

∂qi
= (L̃i − Ai)Ṽ (A), (21)

where Ṽ (A) is a digital default option: it pays a dollar in the states of the world in

which the insurer defaults. The price of such an instrument is PV = Price[Ṽ (A)]. We

assume that the insurer defaults in at least one state of the world, so PV > 0.

The summing up relationship now states that

∑
i

qi
∂Q̃q

∂qi

≡ Q̃q (22)

in all states of the world, for all q1, . . . , qN > 0, which is seen by summing over i in (21).

The summing up rule therefore suggests that a capital allocation rule is consistent with

a decomposition of the value of the option to default, at the margin.

Applying the pricing operator to both sides of (22), immediately leads to

∑
i

qi

∂PQq

∂qi
= PQq .

However, this in turn implies that the marginal price of one extra unit of exposure to

L̃i risk, at q1 = q2 = · · · = 1, is

Pi = PLi
− ∂PQq

∂qi

. (23)

Now, if qi increases marginally, representing a marginal increase in insurance sold to

new insurees, then any other choice of
∂PQq

∂qi
than

∂PQq

∂qi
= riPQ leads to a redistribution

of value between current and new insurees, as long as the same payout rule is used

for new and current insurees in line i. This intuitive fact is shown formally in the

appendix. Any such redistribution would violate the original no-arbitrage assumption

and, therefore, we conclude that the capital allocation rule must be consistent with the
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following relation:

ri =
∂PQq/∂qi

PQ
. (24)

It is shown in the appendix that there is bijection, {ri} ↔ {vi}, between relative

asset allocations, vi, satisfying
∑

i vi = 1 and allocation of shares of default option

value, ri’s, (also satisfying
∑

i ri = 1), so that given ri’s, the vi’s are uniquely defined

by

vi =
1

A × PV

×
(
Price

[
L̃iṼ (A)

]
− riPQ

)
. (25)

We note that vi also determines the surplus allocation in line i, Si.
13 In our notation,

we have Si
def
= viA−PLi

. Also, the relative surplus allocation is, si
def
= Si/PLi

= A vi

PLi
−1.

So far, our arguments have been made for general sharing rules, F . Under the ex

post sharing rule, the capital allocation rule reduces to

vi =
Price

[
L̃i

L̃
Ṽ (A)

]
PV

. (26)

Further, for the special case in which there is only one state of the world in which the

insurer defaults, the rule is particularly simple: vi = ri, i = 1, . . . , N. We summarize

these results in the following

Implication 4 If an ex post sharing rule is used, then (26) is the only capital alloca-

tion rule that does not lead to redistribution between new and old insurees with marginal

expansions of insurance lines. In the special case in which the insuree defaults in only

one state of the world this capital allocation rule reduces to vi = ri, i = 1, . . . , N .

This capital allocation rule differs from the ones derived in Myers and Read (2001),

who suggest that the marginal contribution to default value, di — in our notation

defined as di
def
=

∂P Q

∂P Li
, i.e., the increase in default option value for a one dollar increase

in liability — should be chosen such that di is the same across lines (see page 554).

13The term surplus allocation and surplus requirement is interchangeably used for Si in Myers and
Read (2001).
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However, via (24), and the relationship
∂PQ

∂PLi
=

∂PQ/∂qi

PLi
, we have

di = PQ × ri

PLi

, (27)

which, under the ex post sharing rule, in general varies with i. Under the ex ante sharing

rule, since ri = PLi
/PL we get di = PQ/PL, so the equal allocation rule proposed in

Myers and Read (2001) is consistent with the ex ante sharing rule. We summarize the

differences between the ex post and ex ante sharing rules in Table 3.

5.1 Pricing and cost allocation when δ > 0

It is straightforward to generalize our analysis to the case when δ > 0. In line with

our previous allocation discussion, and following Myers and Read (2001), capital costs

should be allocated according to a marginal cost pricing rule. The marginal increase

in capital is viAdqi, so the marginal cost is δviAdqi, and under marginal cost pricing,

viδA is allocated to line i. Therefore, in the case of costly capital, δ > 0, the pricing

formula becomes:

Pi = PLi
− r0

i PQ + viδA, (28)

where

r0
i

def
=

Price [Fi]

PQ

,

is the share of the default option value, previously denoted by ri.

This form of r0
i is in line with (10) but different from ri defined in (4), since, when

δ > 0 the share of the default option value is no longer simply (PLi
−Pi)/PQ. The form

of r0
i is obviously the same as in (13) and (17) under the ex post and ex ante sharing

rule, respectively.

The formula for r0
i provides the ri’s we would get if δ = 0. Through (4) and (28) it

follows that ri = r0
i − viδA

PQ
when δ > 0. Thus, when δ > 0 two factors cause premium-

to-liability ratios to vary across lines: (1) the ex-post sharing rule and (2) the capital

cost factor δ.

We summarize our results in

Implication 5 For all δ ≥ 0, if an ex post sharing rule is used, then capital Ai = viA
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should be allocated to line i, where vi is defined in (26). Moreover, capital costs, δA,

should be allocated so that viδA is allocated to line i. Finally, the price for insurance

in line i is given by (28), where r0
i = Price

[
L̃i

L̃
× Q̃(A)

PQ

]
.

We next show in an example how the capital allocation rule applies under the ex

post sharing rule.

5.2 A capital allocation example

We show in a simple example that, under the ex post sharing rule, the only capital

allocation rule that is consistent with no redistribution is Ai = viA. In our example,

default only occurs in one state of the world, so vi = ri. We assume that δ = 0.

We assume that there are two risks, L̃1 and L̃2, and three states of the world. The

state prices are πj , j = 1, 2, 3. The losses and state prices in the different states of

the world are shown in Table 4 below. The default-free prices for insurance are thus,

PL1 = 0.25 × 10 + 0.25 × 50 = 15, and PL2 = 0.25 × 10 + 0.25 × 30 = 10. We assume

that the total assets A = 40. In this case, when the ex post sharing rule is used, the

payout in different states of the world are summarized in Table 5.

Default thus only occurs in state 3, in which only 40 of the total losses of 80 is paid

out, which in turn implies that the value of the default option is PQ = 0.25× 40 = 10.

Since the expected value of losses is PL = PL1 + PL2 = 15 + 10 = 25, the total surplus

is S = A − PL = 40 − 25 = 15.

We first wish to understand how the total assets, A = 40, should be allocated

between the two lines. We wish to find v1 and v2, such that A = A1 + A2, and

A1 = v1A, A2 = v2A. It follows from our previous arguments that v1 = r1 and v2 = r2,

which via (13) implies that v1 = 0.625, v2 = 0.375, A1 = 25 and A2 = 15.

The surplus allocation between the two lines is then, S1 = A1−PL1 = 25−15 = 10,

S2 = A2−PL2 = 15−10 = 5. Finally, it is easy to check that the price of the cash-flows

in Table 5 is P1 = 8.75 and P2 = 6.25.

The allocation implied by v1 and v2 is important in that it provides a rule for how

assets need to change if more insurance in one line is sold. For example, assume that

the insurer increases his exposure to risk 2 by Δq = 10%. In this case, the allocation
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State, j State price, πj L̃1 L̃2

1 0.5 0 0
2 0.25 10 10
3 0.25 50 30

Price of risk 15 10

Table 4: Example with two risks and ex post sharing rule. State prices and losses.

State, j Payment1 Payment2
1 0 0
2 10 10
3 25 15

Price of insurance 8.75 6.25
Value of default option 6.25 3.75

Asset allocation 25 15
Surplus allocation 10 5

Table 5: Payments under ex post sharing rule. Assets, A = 40.

rule implies that the total assets need to increase by

v2 × Δq × A = 0.375 × 10% × 40 = 1.5.

The total assets then become A = 41.5, and A1 = 25, A2 = 15 + 1.5 = 16.5 and the

expected loss of risk 2 is PL2 = 1.1 × 10 = 11. The new surplus allocation is therefore

S1 = 25 − 15 = 10, S2 = 16.5 − 11 = 5.5.

Why is this the right capital allocation rule when the ex post sharing rule is used?

Because it does not change the price or risk-structure of the payout to old insurees,

and it prices the new risk correctly. In short, there are no value transfers between

insurers when the new insurance is sold. With the new risk insured, the total losses

are as shown in Table 6 and the payments are as shown in Table 7.

The calculations of the payments are identical to the previous ones, using the ex

post sharing rule. For example, for Payment2 when j = 3, we have 16.5 = 33/(50 +

33)×41.5. We see in Table 7 that, in all states of the world, the payments to risk 1 are
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State, j State price, πj L̃1 L̃2

1 0.5 0 0
2 0.25 10 11
3 0.25 50 33

Table 6: Losses when risk 2’s exposure has increased by 10%.

State, j Payment1 Payment2
1 0 0
2 10 11
3 25 16.5

Table 7: Payments when risk 2’s exposure has increased by 10%, and A = 41.5.

identical, and that the payments to risk 2 have increased by exactly 10%. Thus, the

price per unit risk is the same as before, and 1.5 is the “correct” amount to increase

assets with under the ex post sharing rule.

It is easy to check that this is the only choice of v1 (and thereby of v2 = 1 − v1)

that has this property under the ex post sharing rule. Specifically, any other choice of

vi’s will lead to a price change for the already insured risks. Therefore, value would be

transfered between new and old insurees when the company scales up one insurance

line. For example, the rule proposed in Myers and Read (2001) leads to redistribution

under the ex post sharing rule (although it does not lead to redistribution under the

ex ante rule, which is assumed in their paper). Their proposed allocation is such that

the option value of default (PQ = 10) is shared such that r1 = PL1/PL = 15/25 = 0.6,

r2 = PL2/PL = 10/25 = 0.4, which by the relationship

riPQ = Price
[
(L̃i − Ai)Ṽ (A)

]
,

(see equation (41)) leads to A1 = 26 and A2 = 14, and thereby to v1 = 0.65, v2 = 0.35.

Therefore, if insurance 2 is scaled up by 10%, total assets should increase by

v2 × Δq × A = 0.35 × 10% × 40 = 1.4,
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so capital is now A = 41.4. The option value of default increases with r2 ×Δq ×PQ =

0.4 × 10% × 10 = 0.4 to PQ = 10.4.

The payments in different states of the world will be as in Table 8, using identical

calculations as in Table 7, but with A = 41.4. However, this implies that the insurance

State, j Payment1 Payment2
1 0 0
2 10 11
3 24.94 16.46

Table 8: Payments when risk 2’s exposure has increased by 10%, and A = 41.4.

against L̃1 has become less worth by the new investments in line 2, as has the value of

insurance against L̃2 risk for the original insurees. There has thus been a value transfer

from the old insurees to the new ones.14 The choice of sharing rule thus determines

the ri’s and thereby the vi’s uniquely.

6 Concluding remarks

This paper developed a model of the insurance market under the assumptions of limited

liability, perfect competition and costly capital. We focus on the determination of

insurance premiums, as well as capital and cost allocations across the insurance lines.

The premium setting and capital allocations are based on the no-arbitrage, option-

based, technique, first developed in the papers by Phillips, Cummins, and Allen (1998)

and Myers and Read (2001). These papers, however, apply an ex ante rule for allo-

cating the shortfall in claim paying capacity when the insurer defaults, which has the

undesirable features that (i) it is based on the unobservable initially expected loss and

that (ii) it may require that policyholders with small expected claims make payments

to the policyholders facing large expected claims.

Instead, this paper develops the solution when the shortfall created by an insurer

default is shared among the claimants under an ex post, pro rata, rule based on the

actual realized claims. As summarized in Table 1, the implications of such a rule —

14If the original insurees knew that such a transfer might take place, they would not pay the
premium in the first place, since the correct price for the insurance that included transfer risk would
be different.
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which is common in practice — are quite different compared with what is implied by

an ex ante sharing rule. Specifically, premium-to-liability ratios will vary across line in

a nontrivial way, and capital will be allocated according to the lines’ share of a digital

default option on company default.
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Appendix

Capital and cost allocation

To study the capital and cost allocation questions, we look at general portfolios of risks, L̃q =
∑

i qiL̃i,
with capital allocation Aq =

∑
i qiAi. For the time being, we focus on the case in which δ = 0.

Moreover, to avoid degenerate solutions, we restrict our attention to cases in which A > 0, and there
is a positive probability for default, i.e., we assume that L̃q > Aq in at least one state of the world.

So far, we have studied the special case when q1 = q2 = · · · = qN = 1. In the general case the q’s
can take on other values. We assume, however, that qi > 0 for all i, so that the number of lines do
not change.

The division of Aq into
∑

i qiAi is interpreted as there being a rule that for every unit of L̃i risk,

Ai units of capital are obtained. We also define vi
def= Ai

Aq
.

The general total payment rule is

Total Paymentq = L̃q − max(L̃q − Aq, 0) = L̃q − Q̃q, (29)

where

Q̃q
def= max(L̃q − Aq, 0) = max

(∑
i

qi(L̃i − Ai), 0

)
. (30)

This formula generalizes (2). If we apply the pricing operator to both the r.h.s. and l.h.s. of (29), we
get

Pq = PLq − PQq , (31)

with the obvious definition of Pq, PLq and PQq . The special case of P , PL and PQ in the main text
arises when q1 = q2 = · · · = qN = 1. Obviously, for specific values of the qi’s, the payment rule does
not depend on the specific Ai’s, but only on the total capital, Aq. The Ai’s, however, are needed for
us to understand how the total capital will change when qi changes.

We are especially interested in how a marginal change in q around q1 = q2 = · · · = qN = 1 will
change the value of the insurance contracts. From (30), we have

∂Q̃q

∂qi
= (L̃i − Ai)I{L̃q−Aq>0}. (32)

Here, I is the indicator function on the set X , IX(x) = 1 if x ∈ X and IX(x) = 0 otherwise. Equation
(32) shows how the payout of the option to default changes if the exposure to L̃i risk is increased by
dqi and the capital at the same time is increased to by Aidqi.

Clearly,

∑
i

qi
∂Q̃q

∂qi
=
∑

i

qi(L̃i − Ai)I{L̃q−Aq>0} = max

(∑
i

qi(L̃i − Ai), 0

)
= Q̃q,
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and by applying the pricing operator to both the l.h.s. and r.h.s., we get

∑
i

qi

∂PQq

∂qi
= PQq ,

which, at q1 = q2 = · · · = qN = 1 reduces to

∑
i

∂PQ

∂qi
= PQ, (33)

Equation (33) is the “summing up” rule of Myers and Read (2001). It states that, given a capital
allocation rule — defined by v1, . . . , vN , such that

∑
i vi = 1 — the sum of the marginal changes in

the value of the option to default, by marginal changes of line size in each line, equals the option
value. The rule therefore suggests that a capital allocation rule is consistent with a decomposition of
the value of the option to default, at the margin.

The summing up rule is valid regardless of choice of vi’s (and thereby Ai’s), and it does not depend
on which sharing rule F is used. Given that the insurer, when marginally scaling up size of line i,
wishes to keep the same payout for the new and old insurees in line i, the vi’s are uniquely defined.
We call this the same-sharing assumption. The general form of (8) when the q’s vary is

Paymenti = qiL̃i − Fi(q1L̃1, . . . , qN L̃N |A, q1, . . . , qN ), (34)

and the generalization of (9) is

∑
i

Fi(q1L̃1, . . . , qN L̃N |A, q1, . . . , qN ) = Q̃(A), (35)

for all q’s, in all states of the world.
We first show that the same sharing assumption implies a unique form for vi. Assume that, at

q1 = q2 = · · · = qN , insurees have paid
PLi − riPQ (36)

for their insurances. Now, from (31), if dqi of new insurance is sold in line i, to new insurees, these
insurees will pay

∂Pq

∂qi
dqi =

∂PLq

∂qi
dqi −

∂PQq

∂qi
dqi = dqi ×

(
PLi −

∂PQq

∂qi

)
. (37)

Now, given that the new and old insurees in line i have the same rule, it is clear that the old insurees
will collect:

L̃i −
Fi

(
L̃1, . . . , L̃i(1 + dqi), . . . , L̃N |A(1 + vidqi), q1, . . . , qi + dqi, . . . , qN

)
1 + dqi

, (38)

29



whereas new insurees will collect

dqi ×
⎛
⎝L̃i −

Fi

(
L̃1, . . . , L̃i(1 + dqi), . . . , L̃N |A(1 + vidqi), q1, . . . , qi + dqi, . . . , qN

)
1 + dqi

⎞
⎠ . (39)

Since the new insurees through (38,39) get the same compensation, per unit of risk insured, noarbitrage
implies that they pay the same, which, via (36,37), is only the case if the vi’s are chosen so that
riPQ = ∂PQq

∂qi
, i.e.,

ri =
∂PQq /∂qi

PQ
. (40)

If (40) is not satisfied, there must be a redistribution of wealth between new and old insurees. For
example, if riPQ >

∂PQq

∂qi
, then there is a redistribution from old to new insurees. We make a no-

redistribution assumption, and our result can be formulated as

Implication 6 Under the same-sharing and no-redistribution assumptions, the vi’s in the capital
allocation rule must be defined such that (40) holds.

Implication 6 provides the precise formulation of the first part Implication 4 in the main text. Going
forward, we assume that the same-sharing and no-redistribution assumptions hold.

We use (32) to rewrite (40) as

riPQ = Price
[
(L̃i − viA)Ṽ (A)

]
. (41)

Here, Ṽ (A) def= I{L̃−A>0}, can be interpreted to be a credit default contract, which pays one dollar if
the insurer defaults. The price of such a contract is PV , and since we assume that the insurer defaults
in some states of the world, PV > 0.

Given an ri, there is a unique vi, such that (41) is satisfied. This follows from the derivative of
the r.h.s. of (41) with respect to vi being equal to −A × PV , which is constant and strictly less than
zero. Thus, there is a bijection between ri’s and vi’s. Moreover,

PQ =
∑

i

riPQ = Price

(∑
i

(L̃i − viA)Ṽ (A)

)

= Price

((
L̃ −

(∑
i

vi

)
A

)
Ṽ (A)

)

= PQ +

(
1 −

∑
i

vi

)
× A × PV ,

and since PV > 0, this implies that
∑

i ri = 1 if and only if
∑

i vi = 1, so there is also a bijection
between the {r}i’s and {v}i’s in this restricted subspace. The vi’s, in turn, immediately provides us
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with
Ai = viA.

From (41), it follows that, in general,

vi =
1

A × PV
×
[
Price

(
L̃iṼ (A)

)
− riPQ

]
. (42)

For general sharing rules, F , there may be externalities across lines if the size of line is scaled up,
since the risk structure of the whole company changes when the mix of risks change. However, it is
always possible for lines to compensate each other, such that the price is fair, as long as vi is chosen
according to (42). We show this as follows: The change in payment in line i for an increase in scale
of line i at q1 = . . . = qN = 1, is:

∂ Paymenti
∂qi

= L̃i − ∂Fi(L̃1, . . . , qiL̃i, . . . , L̃N |A(1 + (qi − 1)vi), 1, . . . , qi, . . . , 1)
∂qi

.

Moreover, the change in line j of such a change in line i is

∂ Paymentj
∂qi

= −∂Fj(L̃1, . . . , qiL̃i, . . . , L̃N |A(1 + (qi − 1)vi), 1, . . . , qi, . . . , 1)
∂qi

.

Thus, the total change in payment, via (35) is

∑
j

∂ Paymentj
∂qi

= L̃i −
∑

j

∂Fj(L̃1, . . . , qiL̃i, . . . , L̃N |A(1 + (qi − 1)vi), 1, . . . , qi, . . . , 1)
∂qi

= L̃i − ∂Q̃q(A(1 + (qi − 1)vi))
∂qi

,

and the price of this change in total payment is then, from (32,42),

PLi −
∂PQq

∂qi
= PLi − Price

[
(L̃i − viA)Ṽ (A)

]
= PLi − Price

[
L̃iṼ (A)

]
+ viA × Price

[
Ṽ (A)

]
= PLi − Price

[
L̃iṼ (A)

]
+

1
APV

×
(
Price

[
L̃iṼ (A)

]
− riPQ

)
× APV

= PLi − riPQ.

This is exactly the price paid by the new insuree for the insurance. The net contribution of the insuree
is thus exactly what is needed for a transfer to take place such that all insurees are fairly compensated
for any change in risk that occurs when line i is scaled up. This is the transfer rule implied by F . We
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note that the transfer can be incorporated into the definition F , so that no transfer is needed when
the up-scaling occurs.

The rule proposed in Myers and Read (2001) is to choose the vi’s, such that the marginal contri-
bution to default value of line i, di, is the same for all i (see Myers and Read (2001), pages 554 and
559). In our notation

di
def=

1
PLi

∂PQ

∂qi
= PQ

ri

PLi

,

Since
∑

i ri = 1, the only way of getting the di = dj for all i and j is to have ri = PLi

PL
. This choice of

ri’s is consistent with the ex ante sharing rule. From (42), this implies that under the ex ante sharing
rule,

vi =
1

A × PV
×
(

Price
[
L̃iṼ (A)

]
− PLi × PQ

PL

)
.

On the contrary, under the ex post sharing rule, it follows from (13), that

vi =
Price

[
L̃i

L̃
Ṽ (A)

]
PV

.

The formula for vi, thus, has the same form as the formula for ri, but with Ṽ (A) replacing Q̃(A). It
is also easy to check that the transfer rule between lines in case of up-scaling in line i, under the ex
post sharing rule is that line j, 1 ≤ j ≤ N , receives a transfer of

A

⎛
⎝Price

[
L̃i

L̃
Ṽ (A)

]
× Price

[
L̃j

L̃
Ṽ (A)

]
PV

− Price

[
L̃iL̃j

L̃2
Ṽ (A)

]⎞⎠ dqi, (43)

when risk in line i increases with dqi.
For the special case in which default occurs in only one state of the world and the ex post sharing

rule is used, ri = vi for all i. This follows from the following argument: If we assume that the
realization of L̃i is L̃i = L∗

i in the state in which the insurer defaults and define L∗ =
∑

i L∗
i , we have

vi =
Price

[
L̃i

L̃
Ṽ (A)

]
PV

=
L∗

i

L∗ × PV

PV
=

L∗
i

L∗

=
L∗

i

L∗ × PQ

PQ
=

L∗
i

L∗ × PV (L∗ − A)
PQ

=
Price

[
L̃i

L̃
Q̃(A)

]
PQ

= ri,

so vi is indeed equal to ri in this case. This show the second part of Implication 4 in the main text is
valid.
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Also, in the special case of default in only one state of the world, (43), is 0 for all i, and thus no
transfers between lines are needed when the scale increases in one line. This is, e.g., the case in the
example in the main text.

In our terminology, the surplus-to-liability ratio of line i, si, — defined in Myers and Read (2001)
— satisfies Ai = (1 + si)PLi , so

si
def=

Ai

PLi

− 1.

The total surplus is S = A − PL, and the surplus allocated to line i is

Si = siPLi .

We stress that the interpretation of the relationship between the {vi}’s and the {ri}’s is that the
{vi}’s tell us how much the insurer must increase assets, if there is a marginal increase of insurance
in one line. If the insurer currently sells insurance L̃i, and then increases risk exposure in line i to
L̃i(1 + Δq), assets will change from A to A(1 + viΔq). With such a change, the value of the option
to default increases (to a first order approximation) by PQri × Δq, if the insurer wishes to keep the
same price and premium-to-liability ratio in new insurance within line i. Any other choice will lead
to a redistribution between old and new insurees and will therefore be inconsistent with noarbitrage,
as shown in the redistribution example in the main text.

For the case when δ > 0, our whole analysis goes through, with the difference that the insurees
now have to pay an additional amount, δA in total, for insurance. At the margin, if the insurer scales
up insurance in line i, the extra amount viδA has to be contributed by the new insurees. As argued
in Myers and Read (2001), and supported by our previous analysis, it is therefore natural to allocate
the costs viδA to line i. This rule then leads to the competitive price

PLi − riPQ + viδA,

for insurance in line i. The price has a marginal cost pricing interpretation: C = PL −PQ + δA is the
total cost of producing the “goods” (insurances), and

∂C

∂qi
= PLi − riPQ + viδA,

is the marginal cost of producing more “goods” in line i, which under marginal cost pricing equals
the price charged for line i insurance.
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