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Abstract
We investigated how verbal communication with a robot dif-
fers from talking to a human in terms of brain activity by
analysing an open-source fMRI dataset. We focused on mod-
eling conversational dynamics rather than conversation as a
whole, by analysing fine-grained events, in particular turn ini-
tiation. The results indicate that turn initiation in a conversa-
tion with a human involves higher activation in auditory and
visual cortex than turn initiation with a robot. Conversely,
listening to the robot showed higher engagement of auditory
cortex than listening to a human. We suggest that verbal and
non-verbal turn-taking cues provided by the human agent en-
gage more cognitive processing for picking up the turn. On the
other hand, listening to a robot agent requires more processing
than listening to a human. Both findings suggest that the accu-
rate simulation of appropriate turn-taking cues and behaviors
will help robots to establish more natural conversation dynam-
ics and that the use of brain imaging can provide valuable ob-
jective measurements for assessing user states in human-robot
interaction.
Keywords: Cognitive Neuroscience; Robotics; Intelligent
agents; Language and thought; Pragmatics; fMRI

Introduction
Social robotics is a quickly developing field for creating em-
bodied intelligent agents able to communicate with the user.
Compared to typically disembodied smart voice assistants
such as Siri or Alexa, embodied robots are expected to play
more complex social roles to be used in education, health-
care, elderly care, etc., where they can engage the user for
a longer time (Leite, Martinho, & Paiva, 2013). When per-
ceiving the user or producing a response, they should do it in
a human-like manner, exploiting multimodal behavioral cues
such as gaze and head movements, facial expressions, ges-
tures, prosody, etc. (Duric et al., 2002). As humans, we
automatically use these cues in communication. They help
us understand not only each other’s literal verbal message
but also the underlying intention, affect, level of engagement
and other pragmatic features (Streeck, Goodwin, & LeBaron,
2011).

Empirical studies on human-robot interaction (HRI) often
evaluate the robot’s performance by using subjective user re-
ports (e.g. (De Graaf & Allouch, 2013; Corrigan et al., 2015;
Hall et al., 2014)). This method has certain limitations: im-
portantly, it does not allow for studying the dynamics of the

interaction, since the reports are usually done post-hoc, when
participants evaluate their experience as a whole. Many HRI
studies use behavioral data for evaluating user state. Com-
municative behavioral cues are associated with some inner
cognitive processes (e.g. attention, enjoyment, etc.): count of
head nods, patterns of eye movements, change in body ori-
entation, among others. (e.g. (Ishihara, Nitta, Nagasawa,
& Okada, 2018; Ma et al., 2019; Ben-Youssef, Varni, Es-
sid, & Clavel, 2019)). Usually, the behavior is annotated by
one or several annotators, or more recently, computer vision
algorithms are used to extract behavioral features, which is
widely used for building models of autonomous user state de-
tection based on behavior (Leo, Medioni, Trivedi, Kanade, &
Farinella, 2017). The limitation of this method is that the
mapping between the behavioral cues and the presumable in-
ner state experienced by the user can be arbitrary and may
depend on the annotator’s judgment. In addition, the per-
sonal inner state is not always expressed in observable be-
havior (Song & Nakayama, 2009), which can be due to many
factors such as individual differences or variations in conver-
sational settings. To account for the limitations of subjective
reports and behavioral annotations there is a need for online
non-interrupting profound evaluation of user experience in
HRI. Applying cognitive neuroscience methods in HRI can
help overcome these limitations and provide a deeper insight
into the perception of the robots by users.

The first studies applying fMRI to communication with
social robots date back to 2008 (Krach et al., 2008; Hegel,
Krach, Kircher, Wrede, & Sagerer, 2008). With the advances
in both social robotics and brain imaging methodology, more
works appear in the recent years (for review see (Cross, Hort-
ensius, & Wykowska, 2019)). The focus of many fMRI stud-
ies in HRI is on social cognition, i.e. whether a social robot
can involve brain mechanisms associated with social cogni-
tion similarly to a human. Various social attributes of human-
robot interaction were investigated using fMRI, such as em-
pathy (Rosenthal-Von Der Pütten et al., 2014; Cross, Rid-
doch, et al., 2019), emotion perception (Chaminade et al.,
2010), mentalizing (Chaminade et al., 2012; Özdem et al.,
2017), action observation (Gazzola, Rizzolatti, Wicker, &
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Keysers, 2007; Miura et al., 2010). It was shown that inter-
acting with or observing social robots can elicit brain activity
similar to humans under certain conditions.

Less work has been done on the differences in verbal
communication with a robot and a human. One factor re-
stricting this research has been high susceptibility of brain
imaging signal to noise caused by movement artifacts during
speaking. A novel within-subject paradigm was presented in
(Rauchbauer et al., 2019), studying free bidirectional conver-
sation of participants with a human and a robot agent. Here,
the robot was used as a control condition for studying social
cognition: unlike the human agent, it provided minimum so-
cial behavioral cues such as facial expressions or head move-
ments, while the speech content was similar. The authors
found that talking to both agents yielded activation in speech
perception and production areas. However, only interaction
with a human agent involved activation in Theory of Mind ar-
eas such as the temporoparietal junction and hypothalamus.
The authors published the open-source multimodal dataset
used in this study (Rauchbauer et al., 2020). The analysis
of this dataset was further deepened in (Spatola & Chami-
nade, 2021). Here, the authors analysed how brain activity
changes over time across several interactions depending on
the agent. The human condition but not the robot condition
involved an increase in activation in posterior cingulate cor-
tex. This area, among other functions, has been linked to so-
cial cognition. The authors assumed that social engagement
is updated along the interaction according to the interlocu-
tor’s feedback. In another study (Hogenhuis & Hortensius,
2021), the authors approached the dataset from another per-
spective, i.e. which elements of the conversation contribute
to the differences in agent perception. While the original
work (Rauchbauer et al., 2019) contrastet the whole 1-minute
conversations, here the authors divided the interactions into
speech production and comprehension episodes. During pro-
duction, only subtle differences in activity were found for dif-
ferent agents. Comprehension showed significantly different
activation profiles depending on the agent. The authors found
differences in activation in the language network as well as
the visual person perception network, but not the theory-of-
mind network. Specifically, listening to a robot contrasted
with listening to a human revealed more activation in the bi-
lateral Heschl’s gyrus, lateral occipital cortex, insular cortex,
and inferior frontal gyrus. Thus, the authors concluded that
the differences in agent comprehension occur at lower per-
ceptual level rather than higher-order cognitive level.

The previous studies demonstrate that focusing on differ-
ent conversational events may reveal additional information
about differences in processing human and robot agents. In
this paper, we aimed to further deepen the analysis by fo-
cusing on the processes involved in turn initiation during the
conversation. We focused on turn initiation as one of the key
components of turn-taking in a dialogue. The turn-taking pro-
cess is crucial for establishing common ground and under-
standing the interlocutor’s intention, which provides a more

engaging interaction. By focusing on turn initiation, we can
investigate how the nature of the agent affects the way users
plan their responses in a conversation. The action of initi-
ating a turn during conversations likely involves numerous
complex operations. Prior to taking the floor, the upcoming
speaker is presumably required to pay attention to implicit
turn-ending cues (e.g., prosodic, syntactic, gestural (Schaffer,
1983; Beňuš, Gravano, & Hirschberg, 2011; Stivers et al.,
2009)), while simultaneously planning their own turn, and
signal the intention to initiate speech in order to generate
smooth turn transitions (Levinson & Torreira, 2015). Coordi-
nating speaker change may thus involve pragmatic processes
over and beyond core language, possibly also implicating ar-
eas related to cognitive control and social cognition.

In this paper, we are going to report an analysis performed
on an openly available fMRI dataset of human-human and
human-robot conversations provided by (Rauchbauer et al.,
2020). The aim of our study was to deepen the analysis of
this dataset by focusing on language processing in the brain
during more fine-grained conversational events, in particular
turn initiation. In this paper, we went for whole-brain analy-
sis given that turn initiation has not been extensively studied
before with fMRI and a large set of outcomes was possible.
Similarly, for comprehension and production, the only study
comparing these events in human-human vs human-robot in-
teraction is (Hogenhuis & Hortensius, 2021). Since we used
the same dataset, defining a set of regions of interest from
this study would be so-called double dipping (Kriegeskorte,
Simmons, Bellgowan, & Baker, 2009), which would result in
invalid statistics.

To our knowledge, the differences in brain activity when
picking up the turn after a human or a robot agent have not
been studied before. We assume that studying turn initiation
may provide insights into the inner user experience during
conversations with a robot compared to a human. We hypoth-
esize that how a human agent and a robot deliver their turn
may result in differences in brain activity during the partici-
pant’s turn initiation.

Method
Dataset
The openly available dataset by (Rauchbauer et al., 2020)
consists of the recordings of 25 native French participants.
Each participant had four sessions of six one-minute conver-
sations, alternating between a human agent and a robot agent.
The robot used in the experiment was a humanoid robotic
head Furhat (Al Moubayed, Beskow, Skantze, & Granström,
2012) whose utterances were pre-written and controlled by an
operator using a Wizard-of-Oz procedure. The participants
were supposed to discuss the images they saw on a screen
with an agent who was outside of the scanning room and
connected via online video stream and bidirectional audio.
In total, 24 minutes of conversation for each participant were
recorded: 12 with a human and 12 with a robot. During the
conversations, the brain activity of the participants and the
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Figure 1: An example of a 60s conversation and the corresponding events in the fMRI model. Each conversation started with a
fixation cross (event ISI) and the presentation of an image (event Image). Light blue boxes correspond to the utterance of the
agent (human or robot), the event Comprehension; light green boxes – utterance of the participant, the event Production; grey
areas – silence of both participant and the agent, the event Silence; red boxes - 600 ms turn initiation time window before the
onset of production, divided into the events Overlapping Turn Initiation (dark red dotted segment) and Non-Overlapping Turn
Initiation (light red segment) in respect to overlap with comprehension.

audio of the conversation were recorded, along with other pa-
rameters which are out of the scope of the current analysis.
For the details about data acquisition, see (Rauchbauer et al.,
2019).

Preprocessing

The preprocessing and the analysis of fMRI data were car-
ried out using SPM121. Out of 25 participants, two were
excluded from the following analysis: one due to excessive
head movement and another due to incomplete data. Pre-
processing included rigid body transformation (realignment)
with 6 parameters (translations and rotations); independent
head movement check in x, y, z (1 participant excluded at this
step); functional images coregistration to one of the anatom-
ical images (T1) and normalization to a standard Montreal
Neurological Institute (MNI) space with affine regularization
and resampling of the voxels to 2x2x2 mm with a 4th degree
B-spline interpolation. The normalization step also included
white and grey matter segmentation and bias correction. Fi-
nally, functional images were spatially smoothed using a 3D
isotropic 5 mm full-with-at-half-maximum Gaussian kernel.
A temporal high-pass filter (cycle cut-off at 128 sec) was uti-
lized to account for various low-frequency effects.

First Level Analysis

We created several first-level models by using the transcrip-
tions of the participant’s and the agent’s speech2. The onsets
and durations of the utterances were extracted from the tran-
scriptions using a Python script. The hemodynamic response
function (HRF) in each model was modeled for the events as
regressors and six motion parameters using a general linear
model. The regressors were convolved with a canonical HRF
using a 2 mm within brain mask.

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2Available at https://www.ortolang.fr/market/corpora/convers/v2

Model 1: Original Events Durations We created a model
with 7 event classes: Fixation Cross at the beginning of the
conversation, Image Presentation, Comprehension, Silence,
Turn Initiation, Production (Fig. 1). These events, apart from
fixation cross and image presentation, were modeled sepa-
rately for each agent. With this model, we first aimed at repli-
cating the results in (Hogenhuis & Hortensius, 2021) in com-
prehension and production. Then, we aimed at investigating
turn initiation. Our model included silence and turn initia-
tions, while the model in (Hogenhuis & Hortensius, 2021)
included only audible speech and laughter segments. We de-
fined turn initiation as a 600 ms time window before the onset
of the participant’s utterance, based on picture naming litera-
ture suggesting 600 ms to be a minimum picture name artic-
ulation latency (Indefrey & Levelt, 2004). While there is evi-
dence that turn planning is also distributed across comprehen-
sion, (Bögels, Casillas, & Levinson, 2018) suggest a trade-off
between comprehension and turn planning. The chosen time
window in our study is unique as it contains processes related
to initiating the turn based on the previous planning, while it
is relatively absent of concurrent comprehension processes.

Model 2: Fixed Events Durations As mentioned above,
Model 1 was used to replicate the results in (Hogenhuis &
Hortensius, 2021) regarding comprehension and production.
The analysis of the conversation transcriptions showed that
on average, the utterances of the human agent (M=2.09s,
SD=1.66s) were longer than the robot agent (M=1.27s,
SD=0.74s), t=22.9, p<0.05. This difference in event dura-
tion could explain the previous results since this difference
was not accounted for in the previous study. We thus created
another first-level model with a fixed duration for comprehen-
sion and production events for both agents of 600 ms. This
model was used to further investigate a potential caveat re-
garding the results in (Hogenhuis & Hortensius, 2021). We
used this model only to compare its results with the results of
the original model for comprehension and production.
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(a) Comp r > Comp h
(Original Model)

(b) Comp r > Comp h
(Fixed Duration Model)

(c) TI h > TI r
(Original Model)

(d) TI h n/o > TI r n/o
(No overlap TI Model)

Figure 2: Increased activations during comprehension of the robot compared to the human (a,b) and turn initiation with the
human compared to the robot (c,d) in different first-level models. In (c), turn initiation with a robot compared to baseline is
shown in dark grey. Only significant clusters are shown (p FWE-corr < 0.05).

Model 3: Overlapping/Non-Overlapping Turn Initiation
The analysis of the transcriptions showed that the turn initi-
ation window defined in Model 1 was more likely to over-
lap with comprehension for the human agent comparing to
the robot, because the segments of silence were on average
shorter with the human agent. To account for this differ-
ence, we created another first-level model, in which turn ini-
tiation was divided into Overlapping and Non-Overlapping
segments for both agents. Only events longer than 300 ms
were included in the model, which resulted in a procedure
where we classified the dominant type (either the overlap-
ping or non-overlapping segment) of each turn initiation. This
model was used to further investigate and confirm the results
of turn initiations with Model 1, circumventing the issue of
overlaps with comprehension.

Second Level Analysis
For the second level analysis, the cluster-forming threshold
of p-uncorr. was set to .005 (no extent-level threshold, k =
0). Family-wise error (FWE), as implemented in SPM12,
was utilized as multiple comparison correction method (at
the cluster and peak-level). The significant clusters were
projected on mid-thickness surface using Connectome Work-
bench 3. Anatomical labelling was done using the ROI MNI
V7 anatomical parcellation database in AAL3 toolbox in
SPM12 (Rolls, Huang, Lin, Feng, & Joliot, 2020), with re-
gion inclusion margin set as minimum 10% label.

Results
Model 1: Original Events Durations
In an attempt to replicate the results of (Hogenhuis & Hort-
ensius, 2021), we compared comprehension and production
events of the original model depending on the agent. Directly
contrasting production segments did not reveal significant dif-
ferences depending on the agent. No significant activation
was found higher in comprehension of the human compared
to the robot. Comprehension of the robot elicited higher acti-
vation than comprehension of the human agent in bilateral

3https://www.humanconnectome.org/software/connectome-
workbench

Heschl’s gyrus, bilateral superior temporal gyrus, bilateral
middle temporal gyrus, and bilateral inferior frontal gyrus,
among other areas (Figure 2a). See all significant clusters in
Table 1.

In order to analyse turn initiation, we first contrasted it with
the baseline (fixation cross) to see which regions in general
are involved during turn initiation. During turn initiation,
widely distributed activity was found for both agents. Di-
rectly contrasting turn initiation segments between a robot
and a human conversation did not reveal any higher activa-
tion for the robot. The reverse contrast, turn initiation with
a human compared to the robot, showed higher activation in
bilateral temporal superior gyrus, bilateral Heschl’s gyrus, bi-
lateral calcarine sulcus, bilateral cuneus, left superior occipi-
tal gyrus, left lingual gyrus, left Rolandic operculum (Figure
2c, Table 1).

Model 2: Fixed Events Durations
Given that comprehension and production events differed in
durations in the original model, we repeated the same com-
prehension and production contrasts in the fixed durations
model. Similarly to the original model, in the fixed 600
ms window model no significant differences were found nei-
ther for production events, nor for comprehending the hu-
man agent compared to the robot agent. Comprehension of
the robot agent, however, showed higher activation in bilat-
eral Heschl’s gyrus, bilateral superior temporal gyrus, among
other areas (Figure 2b, Table 1).

Model 3: Overlapping/Non-overlapping Turn
Initiation
In the original model, turn initiation segments were more
likely to overlap with comprehension in the human-human
conversation. To account for this potential caveat, in Model
3 we contrasted overlapping and non-overlapping turn initia-
tion segments separately depending on the agent. During the
overlapping period of turn initiation, no clusters were found
more active neither for the human nor for the robot agent. For
the non-overlapping segments of turn initiation, a significant
increase in activation was found only for the human agent. In
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particular, compared to the robot agent, there was higher acti-
vation in the left temporal superior gyrus, left Heschl’s gyrus,
left lingual gyrus, as well as right calcarine sulcus and right
cuneus (Figure 2d, Table 1).

Discussion
We investigated the differences in brain activity during turn
initiation in a free conversation with a human and a robot
agent. We used an open source fMRI dataset (Rauchbauer
et al., 2020), which was previously analysed at a whole-
conversation level and at the level of speaking and listening
events. We aimed at further deepening the analysis of this
dataset by further defining conversational events: in our mod-
els, we included production, comprehension, silence and turn
initiation. We created several first-level models that account
for the differences between the human and the robot condition
in the dataset, such as the length of the agents’ utterances and
transitional gaps duration.

The results of our models showed that the involvement of
the auditory cortex in human vs robot conversation differed
radically during comprehension compared to turn initiation.
As the participants were listening to what the agent was say-
ing, auditory areas were increasingly involved when listening
to the robot compared to the human. On contrary, when par-
ticipants were preparing to speak, more activation was found
for the human vs the robot condition in the auditory and vi-
sual cortex. These results indicate different involvement of
low-level perceptual processes (for auditory and visual input)
depending on the agent. More relative processing is needed
for auditory comprehension of the robot, whereas more rela-
tive processing is required for taking in the human agent, both
audibly and visually, specifically during the critical moment
when the participant is initiating a turn. Importantly, we did
not find significant differences in areas associated with high-
level processes such as Theory of Mind. Thus, we assume
that the differences in the processing of the agent were caused
by the perceptual features of the agents’ behavior rather than
processing of their perceived intrinsic nature. It should be
kept in mind that in this dataset, the two agents had behav-
ioral differences. The robot was used as a control condition
to study social interaction and was lacking facial expressions,
prosodic cues and its utterances were pre-written and pro-
duced using a Wizard-of-Oz procedure that created larger un-
natural gaps between turns. Therefore, the processing of the
robot’s utterance could, as we have sketched, involve more
extensive neural activity, given that the participants could not
rely on natural behavioral cues that indicate turn-taking. On
contrary, during turn initiation, even during silence of both
the participant and the agent, more processing was required
for the human agent. We assume that the process of turn
initiation involves monitoring the interlocutor’s behavior and
speech in order to plan the production of one’s own utterance,
which was less expressed in the robot.

By analysing comprehension and production, we aimed at
replicating the results of the previous study (Hogenhuis &

Hortensius, 2021). Silence and turn-initiations were included
in our models alongside with the speech events. Unlike in
(Hogenhuis & Hortensius, 2021), we did not find a signifi-
cant increase in activation for comprehending a human over a
robot. For comprehension of the robot versus human, we pri-
marily replicate the results showing increased activity in bi-
lateral Heschl’s gyrus. Our analysis, however, revealed other
involved areas not found in (Hogenhuis & Hortensius, 2021).
Given that the utterances of the human and robot agent dif-
fered in average duration, we deepened our analysis using a
fixed durations model, which showed similar results: the only
significant difference was found in comprehension of robot
versus human agent. Here, the activation was again found
in bilateral Heschl’s gyrus. Thus, even after redefining the
conversational events and considering the utterance duration
differences, we partially replicated the results of the previ-
ous study. Hence, we find increased activation in bilateral
Heschl’s gyrus to be the most robust finding comparing com-
prehension between robot and human.

Our result can be associated with the novelty effect of lis-
tening to the robot. Given that the gaps for taking over the
turn after the participant were longer for the robot, which
slows down the natural conversational dynamics, higher ac-
tivation in auditory processing of the robot can be associated
with the difference in expectancy of the agent’s response.
More analysis is needed on how the activity in the auditory
cortex depending on the agent changes during comprehen-
sion over the course of interaction, similarly to the analysis in
(Spatola & Chaminade, 2021) which focused on changes in
social cognition over time.

The neural correlates of turn initiation in human-robot in-
teraction have not been studied before. The focus of the cur-
rent study was on the differences during these events between
the human and robot agent. We saw that in general, turn ini-
tiation, no matter the agent, involves a distributed activity
including areas of auditory, visual, somatosensory and pre-
frontal cortex. Our results suggest that turn initiation with a
human agent, presumably, requires more visual and auditory
processing. Interestingly, after taking into account a potential
caveat - the overlap with comprehension - we found signifi-
cant differences only in the non-overlapping segments of turn
initiation. Thus, this difference arises mainly when then the
agent has already finished the turn. This can indicate that be-
fore producing their own turn, the participants kept process-
ing the human agent’s previous utterance and current non-
verbal behavior.

Similarly to (Hogenhuis & Hortensius, 2021), our models
did not show strongly significant differences during produc-
tion depending on the agent. Based on that finding, we as-
sume that aligning one’s turn with the agent’s turn was more
affected by the agent’s behavior than the process of deliver-
ing the utterance. However, it is interesting to investigate how
the conversational setting, e.g. the topic of discussion, might
affect this result. For instance, the task of the current dataset
required discussing an image without the need to come up
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Anatomical region MNI Local maxima Cluster Voxel

x y z Size p-FWE t value p-FWE

1) comp r >comp h (Orginal Model)
Rheschl/RSTG/RROL/RINS/RMTG/RTPsup/RIFGop 50 -22 8 7199 <.001 7.98 .001
Lheschl/LSTG/LROL/LTPsup/LSMG -58 -20 8 5390 <.001 7.84 .002
LIFGop/LIFGorb/LIFGtr/LINS -48 16 12 1034 .024 n.s
RMFG/LMFG 4 42 42 1063 .021 n.s
RIFGop 50 6 40 1065 .021 n.s

2) comp r >comp h (Fixed Duration Model)
Rheschl/RSTG/RTPsup/RINS/RINFop/RMTG 46 -30 10 4019 <.001 10.37 <.001
Lheschl/LSTG/LINFop/LMTG/LTPsup/LSMG -40 -32 10 4171 <.001 8.84 <.001

3) TI h >TI r (Original Model)
Rheschl/RSTG 42 -28 14 912 .036 6.06 .045
Lheschl/LSTG/LIFGop -36 -34 18 1589 .003 n.s
RCUN/LCAL/RCAL/LCUN/LSOG/LLING -10 -80 24 2241 <.001 n.s

4) TI h n/o >TI r n/o (No overlap TI model)
Lheschl/LSTG/LLING/RCAL/RCUN -34 -62 6 3352 <.001 n.s.

Table 1: Significant activations in selected contrasts (the other contrasts rendered not significant). For each cluster, MNI
coordinates of the cluster’s local maxima are given together with cluster size. Abbreviations (L/R prefixes for left and right
hemisphere, n.s - not significant): heschl - Heschl’s gyrus, STG - superior temporal gyrus, ROL - rolandic operculum, INS
- insula, TPsup - superior temporal pole, INFop/orb/tr - inferior frontal gyrus pars opercolaris/orbitalis/triangularis, SMG -
supramarginal gyrus, MFG - middle frontal gyrus, MTG - middle temporal gyrus, CUN - cuneus, CAL - calcarine sulcus, SOG
- superior occipital gyrus, LING - lingual gyrus.

with a common decision with the agent or requiring a feed-
back from the agent. Therefore, during production the partic-
ipants might have not been paying significant attention to the
agent’s reaction.

The results of this study showed that verbal interaction
with a robot via audio-video connection can significantly dif-
fer from interaction with a human in terms of brain activity.
We saw that taking into account conversational dynamics, the
differences depending on the agent arise on perceptual rather
than high-level cognitive levels. In the current data, the ver-
bal and non-verbal behavior of the human and robot agents
had significant differences, which may explain the obtained
results. Our results suggest that while talking to the human
agent, the participants were more involved in picking up the
turn. Increased attention and natural fluid turn-taking are as-
sociated with higher conversational engagement (Yu, 2015),
which in turn results in a more positive interaction experi-
ence. We assume that studying turn initiation can become a
window to studying the users’ inner experience during inter-
action with social robots. Thus, we assume that the design
of social robots’ turn-taking mechanism can benefit from em-
phasizing turn-ending behavioral and prosodic cues, which
facilitates picking up the turn by the user.

In future research, we aim at implementing more naturalis-
tic verbal and non-verbal cues in social robots with appropri-
ate fluidity in turn-taking to investigate how it affects users’
experience. To provide quick feedback to the user’s utterance
and mitigate the delays caused by manual operation of the
robot’s utterance, we are going to explore other methods of

operating the robot, such as real-time teleoperation through
virtual reality. In addition, we aim at exploiting other meth-
ods of brain data collection such as EEG. In the current study,
we focused on fMRI since this method allows to spatially map
the neural correlates of conversational dynamics, both on cor-
tical and subcortical level. The results obtained in this study
can help also researchers focus EEG studies on the identified
regions of interest.

Conclusion
This paper examplifies that brain imaging can be a valuable
method for studying human-robot interaction. We partially
replicated the results of a previous study for comprehension
episodes and contributed with additional findings regarding
turn initiation that further help understand underlying differ-
ences between human-human and human-robot interactions.
We found that listening to the robot required more relative
activity than listening to the human; but importantly, prepar-
ing to speak after a human involved more activity than after
a robot. We found significant differences on low-level per-
ceptual rather than higher cognitive levels. We assume that
these differences are explained by the robot’s lack of nat-
ural turn-taking dynamics and non-verbal behaviors associ-
ated with higher conversational engagement. Improving these
characteristics in a robot might close the gap in how our brain
processes interactions with either robots or humans.
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