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Abstract
Recent studies suggest that errors facilitate learning in certain
conditions. Despite this, reinforcement paradigms dominate
learning methods, subscribing to the narrative that errorless
learning is the foundation of an ideal learning environment. If
we continue to view learning from this restrictive perspective,
we may fail to capture and apply the benefits of errors. In this
paper, we investigate two potential mechanisms of post-error
learning. Participants (N = 61) learned word pairs in either a
study or error trial before taking a final test. Supporting past
error learning literature, errors before a study opportunity led
to better performance on a final test. Differences in reaction
times between conditions support the theory that errors
increase learning by acting as a mediator, or secondary cue, to
the correct answer on subsequent tests.
Keywords: learning from errors; memory; retrieval;
elaboration; mediation; computational models; ACT-R

Introduction
Many people believe that ideal learning is errorless. Errors
are often viewed as detrimental to learning with the
expectation that they will interfere with the future retrieval
of correct information (Ceraso, 1967). These concepts stem
from studying more procedural behavior where learning is a
constant reinforcement process; thus, errorless learning
minimizes opportunities to reinforce errors. This
understanding has biased how we optimize learning,
backing a paradigm in which learners re-study concepts
before even being given a chance to commit a memory
error. However, modern-day experimental findings suggest
that errors do not pollute the learning process.

Posing a question before revealing the answer, also
known as retrieval practice, appears to enable stronger
learning. Different experimental manipulations all seem to
share a common thread: although the difficulty of retrieval
practice impairs performance in the very first few trials, it
ultimately results in better final test performance. This has
been shown in multiple choice versus short-answer
questions (Greving & Richter, 2018), problems based on a
single lesson or spaced across multiple (Rohrer & Taylor,
2007), and retrieval schedules (wide spacing of retrieval
attempts vs. short spacing; Roediger & Karpicke, 2010).
This widespread finding suggests that errors made early in
the learning process from retrieval difficulty can result in
better learning.

Additionally, reinforcement paradigms would predict that
errors made with higher confidence would reduce learning.

Such phenomena would be consistent with interference
theories of memory, positing that incorrect items with more
substantial traces are likely to produce more interference
when attempting to retrieve a correct item (Anderson &
Reder, 1999). However, experimental results show that
errors committed with high confidence are more likely to be
successfully corrected (Butterfield & Metcalfe, 2001). This
suggests that more processing between the onset of a
question and the presentation of the answer (i.e., a retrieval
attempt) leads to better answer processing, regardless of
whether the attempt was successful (Kornell & Vaughn,
2016). Such findings may demonstrate that the behaviorist
approach does not translate well to learning by
memorization compared to more procedural learning.
Achieving successful memorization requires the ability to
retrieve information; errors may enhance this type of
learning by promoting stronger encoding and thus, more
successful recall. Thus, we may be able to enhance the most
common form of learning for humans by critically
examining how and when errors are beneficial to
memorization and subsequent retrieval.

Researchers have introduced new paradigms to study
post-error learning, or improvements in recall of subsequent
fact presentations after an incorrect answer or memory
errors, such as the pretesting paradigm. In this paradigm,
participants generate an answer before studying it; with no
previous exposure to the correct answer, participants are
highly likely to generate an incorrect response (Mera,
Rodriguez, & Marin-Garcia, 2021). Although this paradigm
encourages errors, pretesting for information is still more
beneficial than simply studying it. In a paired-associate task,
retrieving a free associate of the cue word before learning
the correct targets produces better results on a final test than
studying the cue and target alone (Kornell, Hays, & Bjork,
2009). Many studies have confirmed this finding, extending
the benefits of pretesting to real-world materials (trivia
questions; Kornell, 2014), educational materials (math
problems; Kapur & Bielaczyc, 2012), and older adults (Cyr
& Anderson, 2015).

Although this phenomenon, known as post-error learning,
is now well-documented, an investigation into its underlying
mechanisms is sparse. Two prominent theories have arisen
out of this research; the elaborative hypothesis and the
mediator hypothesis. To go beyond speculation, both must
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be examined empirically to successfully leverage post-error
learning.

The Elaborative Hypothesis
The elaborative theory of post-error learning posits that
unsuccessful retrieval attempts allow for a richer encoding
of the correct answer. Also known as the Search Set theory,
retrieval attempts (regardless of success) activate a variety
of semantically related candidates. The search set contains
many candidates, one of which is the correct answer, thus
setting up a network among the cue and target words (Mera
et al., 2021). In the pretesting paradigm and other semantic
cue-target pairings, an error could help form a more
meaningful relationship between the cue and target. For
example, one may generate the word “swims” as a free
associate in response to the cue word “whale” when the
target word is actually “tail.” Instead of simply encoding the
pair “whale” and “tail,” the individual may use the error to
create a more robust network between the two words,
perhaps thinking of a whale using its tail for swimming. The
underlying idea is that prompted retrieval of the target word
following the presentation of a cue word evokes several
semantically related items. Merging these concepts forms an
elaborative memory trace at the time of encoding, which is
more likely to be retrieved later at subsequent cue
presentations (Huelser & Metcalfe, 2012; Karpicke, 2017).
One important finding supporting this theory is that weakly
associated word pairs produce stronger retrieval learning
than strong associates (Carpenter, 2009). Participants are
more likely to retrieve the target word in response to a cue
word if they are strongly related. In contrast, weakly related
word pairs prompt participants to generate many related
words to recall the target. Elaboration enhances future
retrieval by assuming individuals encode additional
semantically related items alongside the cue and target
words. 

A primary strength of this theory is its congruence with
spreading activation theories of memory. In a spreading
activation model, semantic relations link words together in
the mental lexicon. The presentation of a cue word activates
its corresponding node in the lexical web, with activation
spreading to all the nodes connected or semantically related
to it. Related words will be activated based on the strength
of their association with the cue word (Collins & Loftus,
1975). Thus, the retrieval of a specific memory is not only a
function of the frequency and recency of its presentation, or
base-level activation, but its degree of relation to the current
context or spreading activation (Anderson, 1983). Within
the framework of this theory, it is clear how elaborative
encoding could interact with an already established semantic
lexical network. However, debate remains surrounding the
actual mechanisms of such encoding and their effects on
retrieval.

A standard critique regarding the elaborative hypothesis is
its incompatibility with retrieval-induced forgetting, in
which retrieval involves the suppression of non-target items,
not the activation of several related items. Additionally, one

can argue that the generation of related items may produce
interference or cue overload with subsequent retrieval
attempts. However, recent findings suggest that encoding
processes may be more dynamic in a way that favors
elaborative learning– reactivating older memories while
encoding new ones significantly reduces memory
interference at retrieval. fMRI data has revealed that this
reactivation facilitates the integration of overlapping
memories during encoding, thus reducing the interference of
otherwise competing memories at retrieval (Chanales et al.,
2019). Integration of memories during encoding could
reduce interference of memories during retrieval in various
contexts, including semantic learning. 

The Mediator Hypothesis
The mediator hypothesis proposes that post-error learning
occurs because the error acts as a secondary cue to retrieve
the correct answer. In a paired-associate task, generating a
non-target word related to the cue could mediate between
the cue and target words (Huelser & Metcalfe, 2012; Mera
et al., 2021). Instead of solely using a cue during retrieval,
one can retrieve the error from the cue and the target from
the error. Referring to the previous example, at subsequent
presentations of the word “whale,” one may recall their
previous error, “swims,” and from it, the correct target word,
“tail.” 

This theory finds its strength in an episodic context
account of memory retrieval. The episodic context account
explains that people encode information about learning
events and the episodic and temporal context in which they
occur (Howard & Kahana, 2002). This episodic context may
be restored during retrieval to facilitate correct recall
(Lehman & Malmberg, 2013). In retrieval-based learning,
retrieval increases recall because individuals think back to
and then reinstate their prior learning contexts (Karpicke,
2017). Interestingly, retrieval practice in a list discrimination
task led free-recall test performance to follow the temporal
order of words more closely than the semantic relatedness of
words (Whiffen & Karpicke, 2017). Such findings
demonstrate that retrieval practice has clear implications for
search strategies during future recall, specifically in a
manner conducive to the temporal and episodic context of
the learning event. 

Prototype Models of Post-Error Learning
Both hypotheses point to distinct mechanisms of post-error
learning. Examining these mechanisms could establish one
as superior to the other or support their coexistence since,
theoretically, they are not mutually exclusive. One way to
do this is with the use of formal computational frameworks.
Here, we use Anderson and Schooler’s (1991) model, which
is now a part of the Adaptive Control of Thought–Rational
(ACT-R) cognitive architecture. In this model, memories in
declarative memory are represented as chunks in a semantic
network. Each chunk i has a corresponding base-level
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activation based on the recency and frequency of its𝐵
𝑖

presentation as seen in Eq. (1):
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where n is the number of presentations of chunk i; tj is the
time since the jth presentation of i; d is the decay parameter
reflecting how quickly chunks are forgotten. In addition to
this base-level activation, the probability of retrieving i is
also a function of spreading activation and noise.
Altogether, chunks matching a retrieval request compete for
successful retrieval following the formula, seen in Eq. (2)
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where the sum of k sums spreading activation across all
buffers set to provide it; the sum of j refers to the potential
sources of activation that spread to chunks in buffer k; W of
kj is the weight or amount of activation spread from source j
to chunk i; S of ji is the strength of association from source j
to chunk i. Lastly, reflects activation that makes theε
retrieval process non-deterministic. ACT-R accurately
models forgetting and errors to predict real-world response
times and accuracies using these formulas. In this way,
ACT-R can comprehensively model a paired-associate task,
producing results that closely fit human behavioral data
(Anderson, 1981; Anderson & Reder, 1999; Pavlik &
Anderson, 2005). Modifying components within ACT-R can
produce models that test both hypothesized mechanisms of
post-error learning.

Spreading activation in ACT-R can be used to properly
model elaborative encoding via error commission in a
paired-associate task. ACT-R’s declarative memory module
is formatted in such a way that includes the semantic
relationships between chunks. Within declarative memory,
single words link to various associates in a lexical semantic
network. When an error is committed, and feedback is
provided, chunks linking the cue and target words could be
merged with chunks containing the cue and error words to
form one elaborative chunk. In the previous paired-associate
example, whale-tail would be merged with whale-swims to
create a chunk: whale-tail-whale-swims. This chunk could
represent the previously discussed meaningful links between
cue and target words (i.e., the whale swims with its tail) or
simply whale-tail, not whale-swims. Subsequent
presentations of the cue spread more activation to this
elaborative chunk; multiple references of the cue word
within the chunk increase their strength of association
(Figure 1). Overall, this elaborative encoding of the error
alongside the cue and target increases its activation,
specifically through spreading activation.

Figure 1: Using spreading activation to model elaborative
error learning.

In addition to the declarative module, ACT-R uses a
procedural module to articulate cognitive steps (Anderson et
al., 2004). The mediator hypothesis relies on remembering
the error itself, suggesting that a cognitive process occurs
when remembering and recalling an error. Thus, a
production rule that checks for an error can model a
mediator explanation of post-error learning (Figure 2). If a
previous error commission is detected or remembered, an
additional production can fire to retrieve the error and use it
as a secondary cue.

Figure 2: Using an additional production rule to model
mediator error learning.

Theoretical Predictions Derived from the Models
It is possible to derive ordinal predictions from these
models. Both models predict that error items would be
retrieved better than normal study items. In the case of the
elaborative model, this is due to the additional spreading
activation and, in the case of the mediator model, to the
existence of two retrieval routes. Thus, both models predict
that error items would be associated with greater response
accuracy.
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The two models, however, make opposite predictions
about the relative response times associated with study and
error items, respectively. In ACT-R, response times depend
on a number of factors, including non-retrieval times spent
on perceptual and motor processes, indicated as TER , and the
retrieval time associated with an item i, indicated as R(i).
Thus, in general, the response time for the i-th item is:

RT = TER + R(i) (3)

In turn, R(i) depends on the activation A(i) of item i,
which is the sum of its base-level and spreading activation.
Specifically, retrieval times are related to activation by the
equation (Anderson et al., 2004):

R(i) = k e-A(i) = k / eA(i) (4)

Where k is another individual-specific parameter that
scales the retrieval latency.

Both models assume that all study items have been
encoded in the same session and practiced the same number
of times, so they have comparable activations. The two
models make different predictions for the times to retrieve
an error item e.

In the elaborative model, the additional information
encoded in the error item provides additional spreading
activation, which sums up the global activation of the error
item A(e). We will indicate this additional activation as S(e)
so that A(e) = A(i) + S(e). So, the retrieval time for an error
item R(e) is:

R(e) = k e-[A(i)+S(e)]

= k / e[A(i)+S(e) (5)
= [k / eA(i)] / eS(e)

= R(i) / eS(e)

Note that, because S(e) > 0, eS(e) > 1, and thus R(e) < R(i).
According to the mediator hypothesis, error items do not

differ in terms of activation but in terms of retrieval
attempts. That is, on a fraction f of trials involving error
items, participants would first retrieve an incorrect target,
then they would detect the error, and finally retrieve the
correct item. Both the correct and incorrect items would
have comparable activation levels and thus take
approximately the same retrieval time as a study item, R(i).
Thus, if we indicate the fraction of trials f in which an error
is retrieved, we obtain

R(e) = (1-f)R(i) + f[R(i) + R(i)] = (1+f)R(i) (6)

Because 0 < f < 1, response time will be longer for error
items, with the specific amount depending on f.

Thus, although both models leave much room for
individual differences across participants (due to differences
in the TER, S(e), k, and f parameters), the models make
clearly opposite predictions about the relative time to
respond to study and error items.

Experimental Predictions
Based on the previous theoretical analysis, we can make the
following predictions. Firstly, we expect to confirm the
results of previous pretesting research (Huelser & Metcalfe,
2012; Kornell et al., 2009). That is, participants should
perform better on error generation items compared to study
items on the final test of our first experiment.

Additionally, we expect to find a difference in response
times on the final test between conditions. However, we are
unsure about the directionality of this difference. Longer
reaction times in the error condition suggest the majority of
participants are learning from errors in a mediator method.
Shorter reaction times in the error condition suggest the
majority of participants are learning from errors in an
elaborative method. Unclear results may reflect a
combination of the two methods. People may learn from
errors by combining both mechanisms or there could be
individual differences in how people learn from errors (i.e.,
mediator learners vs elaborative learners).

Materials and Methods
Participants
University of Washington undergraduate students (N = 61)
were recruited on a rolling basis over the course of a quarter
for the pretesting task and provided with course credit for
their participation.

Pretesting Task
To replicate Huelser and Metcalfe (2012), 60 weakly related
word pairs were selected from Nelson, McEvoy, and
Schreiber’s (1998) norms. This experiment had three
phases: learning, distractor, and final test. In the learning
phase, the task randomly interleaved study trials and test
trials. In study trials, the cue word (e.g., “whale”) and its
corresponding target (“tail”) were presented simultaneously
on the screen for 10 seconds. On test trials, only the cue
word was presented on the screen (e.g., “whale”).
Participants were asked to respond by typing what they
thought the target word was in a textbox (e.g., “swims”).
They were given 5 seconds to respond before they were
shown the cue word and correct target word simultaneously
for 5 seconds. After learning all pairs once, participants
played a visuospatial game for 5 minutes as a distractor to
prevent rehearsal of word pairs. Finally, participants took a
self-paced final test containing all 60 word pairs.

Measures
The primary measure of post-error learning is accuracy.
Analysis for the pretesting task uses only results from the
final test. Accuracy is calculated as the number of items to
which the participant responded correctly over the total
items and will be split by condition (error or study) for
analysis. Higher cued-recall accuracy reflects better learning
in this paradigm.

The second measure of interest is response time.
Response times were calculated as the time it takes
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participants to respond (first key press) to each test item
since the onset of the presentation.

Results

Replicating the Pretesting Effect
On average, participants had higher final cued-recall
accuracy on error items (M = 0.70 +/- 0.16) than study items
(M = 0.60 +/- 0.18), as seen in Figure 3. To analyze
accuracy values, linear mixed models were used to account
for variability and individual differences. Specifically, we
fitted a mixed model to all of the experimental trials,
including the particular trial condition (Study vs. Error) as a
fixed effect and the participant-level intercept as a random
effect; the latter accounts for individual differences in
response accuracies. Because accuracy is a binary variable,
the model used a binomial distribution to capture the
predicted variable. The model uncovered a large main
effect of condition (β = -0.47, SE = 0.08, t = -6.13, p <
0.0001). The complete results of the model are shown in
Table 1. These findings confirm the results of previous
studies (Huelser & Metcalfe, 2012; Kornell et al., 2009).

Figure 3: Differences in average final cued-recall accuracy
split by condition. Gray dots and lines represent data for
individual participants; colored dots and error bars represent
means +/- SE for the Error (blue) and Study (red)
conditions

Table 1: Results of the Mixed-Level Model for Accuracy

Statistical Test β estimate SE t p

(Intercept) 0.925*** 0.107 8.651 5e-18

Condition - 0.468*** 0.076 - 6.130 8e-10

*p < 0.05 **p < 0.01 *** p < 0.001

Reaction Times
To remove extreme values from our data, we used a
maximum cutoff point of 15000ms and a minimum cutoff

point of 200ms. Only correct trials were included in the
analysis.

On average, participants had longer response times on
error items (M = 4104 +/- 779ms) than study items (M =
3920 +/- 936ms), as seen in Figure 4. The difference
between condition response times was compared with a
linear mixed model. As in the previous case, the model
includes each trial condition (Study vs. Error) as a fixed
effect and the participant-level intercept as a random effect;
the latter accounts for individual differences in response
latencies. Unlike the previous case, the model used a
Gaussian distribution to model the dependent variable.
Additional random factors, such as random slopes to
account for different effects for each participant, did not
improve the fit of the model.

Figure 4: Differences in final cued-recall response times
split by condition. Gray dots and lines represent data for
individual participants; colored dots and error bars represent
means +/ SE for the Error (blue) and Study (red) conditions

The model confirmed a large and significant main effect
of condition (β = -255.99, SE = 89.18, t = -2.87, p < 0.005).
The complete results of the model are shown in Table 2.

To examine the possibility that different individuals might
use different strategies, a second linear mixed model was
created, which included the participant-level slope as a
random effect. This model allows for different individuals to
have either shorter or longer RTs in the error conditions,
thus allowing the possibility that some individuals might use
an elaborative strategy. This second model replicated the
results of the first, finding a significant main effect of the
condition (β = -255.99, SE = 89.18, t = -2.87, p < 0.005).
An ANOVA test confirmed that the second model does not
provide a greater fit than the first (χ(3) = 0.38, p > 0.94);
furthermore, all the fitted slopes in the ensuing model were
negative, suggesting that the apparent upward slopes in
Figure 4 are due to outlier responses, rather than systematic
use of the elaborative model.
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Table 2: Results of the Mixed-Level Model for Response
Times.

Statistical Test estimate SE t p

(Intercept) 4109.70*** 103.06 39.877 2e-16

Condition -261.40** 88.79 - 2.944 0.003

*p < 0.05 **p < 0.01 *** p < 0.001

Discussion
In this paper, we examined if errors facilitate learning,
including an investigation to probe potential underlying
mechanisms. The pretesting paradigm reflects the benefit of
a retrieval process where participants guess an answer in
response to a cue before studying the correct cue-answer
pair. This paradigm is commonly used in error learning
research. As such, its success in improving learning
compared to just studying is well documented (Huelser &
Metcalfe, 2012; Kornell et al., 2009). However, research
into the underlying cognitive processes facilitating this
phenomenon remains speculative. Without understanding
how post-error learning works, applications remain
restrictive. Revealing underlying mechanisms may allow us
to discriminate when errors are beneficial. In this way,
current learning and memory models could increase their
efficacy by harnessing the power of errors. Our study aims
to provide a baseline to research post-error learning
mechanisms with the use of cognitive models.

Importantly, we were able to replicate the pretesting
results of existing literature; final cued-recall accuracy was
higher in the error-generation condition than in the
study-only condition. This not only helps to confirm the
benefit of retrieval attempts before study opportunities but
advocates for further research into the mechanisms of this
process.

Different reaction time hypotheses arose from our two
post-error learning models based on the ACT-R architecture.
First, an elaborative model predicts that error learning
results in quicker response times on subsequent tests. This is
because elaboration works through spreading activation,
adding activation to the correct answer which speeds up
retrieval and response times. Alternatively, a mediator
model predicts that error learning results in slower response
times on subsequent tests. Mediation uses an extra step to
retrieve an error as a secondary cue to get the correct
answer. Although this procedure increases accuracy, it also
costs extra time, resulting in longer response times. Results
from the current study demonstrate that average response
times are longer on error items than on study items. This
supports the mediator hypothesis of post-error learning.
However, it is important to note that at the individual
participant level, there are cases in which average reaction
times on study items are longer than on error items. This
could mean that error learning mechanisms differ on an
individual level. Future research should attempt to
distinguish between mechanisms by focusing on individual

differences. Additionally, the ability to learn from errors
itself may be highly individualized. Focusing on individual
differences to look at (1) who is learning from errors, and
(2) how they are doing it can better specify post-error
learning and its applications to learning environments.

The most notable limitation of this study is the
generalizability of the error-learning paradigm. Errors as we
think of them in the real world are often committed after a
study opportunity. Looking not only at retrieval errors, but
encoding errors, in error learning would broaden the
applications to more settings. Overall, it’s important to
extend error learning research to paradigms that involve
real-world errors. Another limitation of this paradigm is it
does not look at memory over longer periods of time.
Testing memory over days, weeks, and months, may reveal
stronger benefits of errors. Deeper encoding processes
resulting from error commission may lead to facts that are
more resistant to decay and forgetting. Alternative
paradigms must be designed and used to further establish
post-error learning beyond retrieval practice. An example of
such paradigm is the adaptive fact-learning system
developed by Sense and van Rijn (2022; Sense et al., 2016),
in which new paired associations are presented at a pace that
is individualized to each participant to optimize retention.
Importantly, their paradigm internally makes use of ACT to
model each individual’s memory, and yields highly reliable
estimates of each individual and each item’s decay rate
(Sense et al., 2016). A modification of this paradigm that
includes an error-generating phase provides important
information as to whether, for example, error items are
forgotten at lower speeds, rather than (or in addition to)
having additional retrieval routes.

Models are unique in their ability to reconceptualize
behavioral results. By decoding human behavior, models
begin to reveal cognition by stabilizing the messiness of
data. As such, the proposed cognitive models in this paper
can help identify mechanisms of post-error learning. These
models could distinguish different learners from one another
and propose ways to manipulate post-error learning by
targeting the relevant cognitive processes. Moreover, these
findings could extend to fields outside of cognitive
psychology, advocating for the benefit of making mistakes
in various educational settings and assisting in developing
AI and machine learning advancements that update
comprehensive feedback histories with each new learning
experience.
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