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The Relationship Between Teaming Behaviours and Joint Capacity of Hybrid
Human-Machine Teams

Laiton Hedley 1, Murray S. Bennett1,2, Jonathon Love1, Joseph W. Houpt2, Scott D. Brown1, and Ami Eidels1

School of Psychological Science, University of Newcastle, Australia
Callaghan, NSW 2308 AUS1

School of Psychology, University of Texas at San Antonio 2

Abstract

Collaboration in shared environments requires human agents
to coordinate their behaviour according to the machines’ ac-
tions. In this study, we compared the performance and be-
haviour of Human-Machine (HM) and Human-Human (HH)
teams. While HH teaming behaviour is sensitive to Collabo-
rative contexts, little is known about HM teaming behaviour.
Furthermore, teaming behaviour may impact the team’s Joint
Capacity – the team’s ability to handle teamwork processes
and task demands. To assess teaming behaviour at every mo-
ment of a trial we used three distinct spatiotemporal measures
(Momentary Distance, Highly Correlated Segments, and Run-
ning Correlation). To assess the team’s joint performance,
we adopted the Capacity Coefficient (Townsend & Nozawa,
1995). For both HH and HM teams, behavioural measures pre-
dicted Joint Capacity. HH teams demonstrated greater perfor-
mance and less synchronous behaviour than HM teams. The
reduced synchrony of HH teams likely improved their perfor-
mance as they could complement each other’s behaviour rather
than duplicate inefficiencies.
Keywords: Human-Machine Teams; Human-Human Teams;
Group performance; Collaboration; Competition; Workload
Capacity; Dynamic Behavioural Measures.

Introduction
The rise in technology has led Artificial Intelligence (AI) or
Machine Learning agents to work alongside human co-actors
in shared environments that require coordinated behaviour
amongst the human and artificial agent (or rather the hybrid
co-actors; Innocente & Grasso, 2018) . For successful task
performance, the human operators must adjust their actions
according to the behaviour of their AI counterparts (Sebanz,
Bekkering, & Knoblich, 2006). In our study, we focus on
implicit coordination (when team members anticipate and in-
tegrate co-actor actions in order to adjust their own behaviour
without the explicit ability to communicate) (Rico, Sánchez-
Manzanares, Gil, & Gibson, 2008). The additional teamwork
processes of coordination may detriment the human opera-
tor’s cognitive resources, which could otherwise be used to
perform the main task (Funke, Knott, Salas, Pavlas, & Strang,
2012; Young, Brookhuis, Wickens, & Hancock, 2015). Un-
derstanding this requires objective measures that can capture
the underlying behavioural patterns that impact the perfor-
mance of teams.

In our study, participants performed a two-player arcade-
style game, “Team Spirit”. Each player moved a paddle hor-
izontally to maximise ball deflections (Figure 1). Human

1Corresponding author: please address any enquiries to
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participants either performed alongside another human (HH
team) or a machine partner (HM team). Using this task,
we compared the behavioural strategies adopted by HH and
HM teams. We also investigated the relationship of these
behaviours with the team’s ability to efficiently deal with
the strain of teamwork processes and main task demands
(which we call Joint Capacity). To assess behavioural pat-
terns, we utilised state-of-the-art dynamic behavioural mea-
sures that are both spatially and temporally sensitive. We also
assessed teams’ performance efficiency by estimating the Ca-
pacity Coefficient. This is a measure of workload capacity
typically used to asses how one individual processes multiple
signals, which we scaled up to assess the team’s Joint Capac-
ity (Algom, Eidels, Hawkins, Jefferson, & Townsend, 2015;
Townsend & Nozawa, 1995). We also investigate behavioural
patterns known to emerge in HH teams under different social
contexts. Additionally, we highlight the need to establish both
the behavioural patterns adopted by HM teams and empirical
evidence for the relationship between team behaviour on the
team’s Joint Capacity.

P1 Score: 1000
Hits: 3
Miss: 6 

P2 Score: 1500 
Hits: 5
Miss: 4

Timer: 28s

Figure 1. Illustration of the Team Spirit game. Players can
move their paddles left or right to deflect balls. The arrows il-
lustrate ball motion; they do not appear on the player’s screen.
In the Separate condition shown here, the red (blue) player
can hit only red (blue) balls. In the group conditions (not
shown), all balls are purple, and any player can hit any ball.

Teaming Environments, Behavioural Strategies, and
Joint Capacity
Human teams exhibit different behavioural strategies under
collaborative and competitive contexts, as found in visual
search tasks in which participants used shared-gaze technol-
ogy (allowing teammates to see co-actor viewing positions
and behaviours). S. E. Brennan, Chen, Dickinson, Neider,

2492
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



and Zelinsky (2008) found collaborative team members es-
tablished a virtual boundary in the search display. This spatial
division strategy can help team members reduce redundant
search behaviours. In a similar task, Niehorster, Cornelissen,
Holmqvist, and Hooge (2019) found that competitive teams
showed less predictable behavioural patterns and less bias to-
wards a particular region in the search space (as team mem-
bers were likely determining their actions according to co-
actor behaviour), indicating the use of a monitoring strategy.
Increased monitoring has been linked to greater synchroniza-
tion (Richardson, Marsh, Isenhower, Goodman, & Schmidt,
2007) and poorer overall team performance (Yamani, Neider,
Kramer, & McCarley, 2017). Our Team Spirit design shares a
similar feature to these visual search tasks; the ability to view
co-actor behaviour. This ability may lead to similar patterns
of behaviour in other team-based tasks (i.e. Andrade-Lotero
and Goldstone (2021)) and our own Team Spirit design. Our
design also includes manipulations of task workload. An
increase in task difficulty has led to mixed evidence on the
team performance (M. C. Wright & Kaber, 2005; Proaps &
Bliss, 2010) and may lead non-communicating team mem-
bers to compete rather than collaborate (A. A. Brennan &
Enns, 2015).

There are fewer studies focusing on hybrid HM teams in
collaborative vs competitive conditions. In collaborative set-
tings, HM teams are outperformed by HH teams (Demir, Mc-
Neese, & Cooke, 2017; Demir, Cooke, & Amazeen, 2018;
Grimm, Demir, Gorman, & Cooke, 2018; McNeese, Demir,
Cooke, & She, 2021). In a classification task, Steyvers,
Tejeda, Kerrigan, and Smyth (2022) found that HM teams
outperform HH teams when they have complementary rather
than overlapping abilities. In dynamic environments, syn-
chronous coordination patterns across team members may re-
duce performance since agents duplicate inefficiencies rather
than complement each other. To test this, we must choose co-
ordination measures appropriate for these dynamic task envi-
ronments. However, the choice of coordination measures is
dependent on the task environment, task context (such as the
ability to explicitly or implicitly communicate), modalities
(such as motion), and the number of team members (Halgas
et al., 2023; Strang, Funke, Russell, Dukes, & Middendorf,
2014). In this paper, we explore (i) dynamic coordination
measures that can capture spatiotemporal aspects of teaming
behaviour in a shared environment, (ii) the behavioural dif-
ferences adopted within Collaborative vs Competitive teams
and (iii) the behavioural differences between dyadic teams of
HH and HM co-actors.

Previous investigations have speculated consistent and pre-
dictable co-actor behaviour may reduce cognitive resources
required to anticipate and integrate co-actor actions, which
can improve main task performance (S. E. Brennan et al.,
2008). Consistently behaving teammates have been shown
to lead co-actors to adopt complementary behaviours and in
turn, facilitate task performance (Andrade-Lotero & Gold-
stone, 2021). As for HM teams, pairing a machine team-

mate with a human partner has shown mixed effects on the
cognitive resources of the human teammates (Azhar & Sklar,
2017; Chen & Barnes, 2012; J. L. Wright, Chen, & Barnes,
2018). Bansal et al. (2019) have established a team perfor-
mance cost when there is an incompatibility between an AI’s
behaviour and the human co-actor’s expectations of that be-
haviour. The existing literature highlights the possible rela-
tionship between the behavioural strategies of teams (HH and
HM) and their Joint Capacity. In this study, we investigated
the relationship between coordination patterns of teams and
their performance.

Overview of the Experiment
In our Team Spirit arcade-game, we compared team types
(HH vs HM teams), different group instructions (Collabo-
rative, Competitive, and Separate), and workload (number
of balls). We measured performance (each team’s Joint Ca-
pacity) and behavioural patterns (the position of paddles at
each moment) to examine (i) what behavioural strategies are
adopted by HM teams and how these strategies differ from
HH teams? and (ii) whether the team behaviour predicts the
team’s Joint Capacity, and how?

Methods
We report the methods necessary to understand the analyses
of behavioural patterns. For comprehensive methods and per-
formance analyses see Bennett et al. (submitted).

Participants
We recruited 138 participants to the HH condition and 296
to the HM team condition via Prolific and were compensated
£5. After removing participants who performed poorly in the
main task, there were 126 participants left in the HH con-
dition (or 63 dyads, mean age = 34.8, SD = 11.4) and 288
participants in the HM condition (mean age = 41.8, SD =
13.0). This research was approved by the Human Research
and Ethics Committee at the University of Newcastle, Aus-
tralia.

Design
Team type (HH vs HM) was manipulated between subjects.
We used within-subjects designs for Group Instruction (Col-
laborative, Competitive, and Separate) and Workload (Low,
Medium, High, and Very High). Group Instruction was
manipulated via the instructions to participants: Collabora-
tive: “work together to maximise team score”, Competitive:
“outscore the opponent”, and Separate: “score as high as pos-
sible”. In the Separate condition, half the balls were red and
half blue, and participants could interact only with balls that
matched their paddle’s colour (unmatched balls would pass
through the unmatched paddle; Figure 1). In this condition,
participants were each presented with the number of their in-
dividual hits (ball deflections) and misses (failure to deflect a
ball). In the Collaborative and Competitive conditions, all
balls were coloured purple, and participants could interact
with any ball. In the collaborative condition, the players’ hits
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were combined into a shared group score. In the competitive
condition, players tried to obtain a higher individual score.
We manipulated Workload by varying the number of balls
per player to deflect (Low: one ball, Medium: three balls,
High: six balls, and Very High: nine balls). An example of
the Medium condition can be seen in Figure 1. We recorded
the miss rate (for the estimation of Joint Capacity) and the po-
sition of players during each moment of the trial (subjected to
behavioural analyses).

Procedure
Participants accessed the experiment online via Prolific.
Right-handed participants were instructed to move the pad-
dle left and right with the corresponding arrow keys. Left-
handed participants used the z and x keys for left and right
movements, respectively. Excluding practice trials, partici-
pants performed 36 trials overall. Participants performed two
practice trials (without feedback) lasting 25 seconds (s) each
at a low workload level and then one practice trial lasting 45s
at a medium workload level. Participants completed three
experimental blocks, each dedicated to the three Group In-
struction conditions. Blocks were counterbalanced to avoid
practice effects. Each block contained 12 trials (a trial lasted
45s). In a block, the four Workload conditions were presented
three times each (resulting in a total of 12 trials per block; the
order of workload trials was random for each block).

In the HH condition, two human participants were assigned
to play together. In the HM condition, a human player was
assigned to play with a machine agent, either a Reinforce-
ment Learning agent or an Ideal Observer agent (see Bennett
et al. (submitted)). The display in which paddles could move
spanned between 40 pixels (px) and 760px. At the beginning
of each trial, the paddles were positioned at 280px and 560px.
A 45s timer started, and balls commenced an upward, random
trajectory from the bottom of the screen (details in Bennett et
al. (submitted)). Participants then tried to maximize the num-
ber of balls deflected before the trial ended. After each trial,
players took a self-paced break (minimum 5s). During trial
breaks, the score for the previous trial and cumulative block
score was presented alongside Group Instruction reminders.
After all 12 trials for a given block were completed, the par-
ticipants took a minimum 20-second break and were given
instructions for the next block of trials. The overall experi-
ment lasted approximately 40 minutes.

Analyses
Analysis was conducted in JASP version 0.16.2 and MAT-
LAB R2021b. We used several 2x2x4 mixed ANOVAs with
the between-subjects variable of Team Type (HH vs HM)
and within-subjects variables of Group Instruction (Collabo-
rative and Competitive) and Workload (Low, Medium, High,
and Very High). The separate condition was used only as a
benchmark for our measure of Joint Capacity and was not
analysed. We also conducted Linear Regression Analyses to
investigate behaviour as a predictor of Joint Capacity. We
checked the appropriate assumptions for all parametric analy-

ses, Greenhouse-Giesser corrections were applied to account
for violations of homogeneity of variance and Bonferroni cor-
rections were used to account for multiple comparisons.

Joint Capacity We assessed the team’s Joint Capacity us-
ing the capacity coefficient, Cp. This index allows us to
classify the Joint Capacity of the team as either limited, su-
per or unlimited (Algom et al., 2015; Townsend & Nozawa,
1995), relative to a benchmark of and Unlimited Capacity In-
dependent Parallel (UCIP) model. The UCIP Model assumes
that the performance of one co-actor is unaffected by another
(Algom et al., 2015). The prediction of the UCIP model is de-
rived as the product of the two team member’s performance
when performing the task alone (in the Separate condition,
either player A alone or B alone). We compare this product
to the team’s observed performance, AB (separately for the
Collaborative and Competitive conditions).

C(p) = p(A)× p(B)− p(AB)

Where p(A) and p(B) represent the miss rates of Players A
and B, and their product is the UCIP prediction. p(AB) is
the combined miss rate of players A and B under conditions
where they can work together (the Collaborative and Com-
petitive conditions). Cp=0 implies unlimited capacity, where
teamwork processes were neither detrimental nor beneficial
to performance). Cp<0 implies limited capacity, where team-
work processes impacted performance negatively. Cp>0 in-
dicates super capacity, where teamwork processes benefited
the team’s performance relative to the independent-processes
benchmark (see Heathcote et al. (2015) for a detailed expla-
nation of Cp).

Dynamic Behaviour To characterise spatiotemporal as-
pects of behaviour, we calculated Momentary distance be-
tween the two players’ paddle positions, proportion of Highly
Correlated Segments (HCS), and Running Correlation. The
Momentary distance and HCS measures were subjected to
2x2x4 mixed ANOVA. We subjected the Running Correlation
measure to several two-sample KS tests. Momentary Dis-
tance is defined as the absolute difference in the inter-paddle
distance taken as the proportion of screen width during each
and every moment of the game. HCS analysis measures the
proportion of time segments in which the team had highly
correlated or synchronous behaviour (Marcelino et al., 2020).
Higher proportions indicate more synchronous behaviour. To
calculate HCS proportions, we performed a cross-correlation
on the paddle positions of each player, looking forwards and
backwards for a given time window of 1.5s at each moment in
the game. When the absolute correlation was above a thresh-
old of 0.97, this segment was classified as a HCS. This pro-
cess is repeated until all paddle positions within the mov-
ing time window at each moment or time segment of the
trial have been cross-correlated and compared to the thresh-
old. The HCS is just the proportion of segments classified as
highly correlated. The Running Correlation analysis corre-
lated the positions of player at each segment of a trial, look-
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ing forwards and backwards within a time window of 1.5s.
This provided a correlation value for that moment in the trial
and was repeated for each and every moment (excluding sce-
narios when both paddles were stationary), resulting in the
frequency of correlation values for each trial and condition.
We then plot histograms of the running correlation values
to assess frequency. When the correlation frequencies are
skewed positive or negative, the two player’s paddle move-
ments are highly synchronous or asynchronous, respectively
(see Corbetta and Thelen (1996)). To investigate dynamic be-
haviour as a predictor of Joint Capacity we conducted Linear
Regression analyses using HCS proportions and Momentary
Distance as predictors of Cp Scores for both Team Types (HH
and HM) under both the Collaborative and Competitive con-
ditions.

Results
Momentary Distance
Figure 2 depicts the Momentary distance for both Team
types. Overall, Momentary distance for both Team types
is higher in the Collaborative condition than the Compet-
itive. We found overwhelming evidence for the main ef-
fect of Group Instruction (BFinclusion > 1,000) and a signif-
icant main effect for both Team type (F(1,253) = 39.75, p <
0.001, BFinclusion > 1,000) and Workload (F(1.86,471.69) =
533.66, p < 0.001, BFinclusion > 1,000). There were signif-
icant two-way interactions for Team type by Group Instruc-
tion, and Workload (BFinclusion > 1,000, and (F(1.9,471.69) =
8.56, p < 0.001, BFinclusion > 1,000, respectively).

Figure 2. Momentary distance (y-axis) of HM (left) and HH
teams (right) as a function of Workload (Low, Medium, High,
Very High; x-axis). The individual lines represent Collabora-
tive and Competitive conditions (with standard error bars).

HH teams had on average the greater Momentary Dis-
tance over HM teams (t = −6.31, p < 0.001, posterior odds
> 1,000). Within HH teams, Momentary Distance was
greater in the Collaborative condition than the Competitive
(t = 17.79, p < 0.001). HM Team types demonstrated a sim-
ilar effect (t = 8.12, p < 0.001). However, the increase in
Momentary Distance under the Collaborative over the Com-
petitive condition was greater for HH teams than HM teams
(Mean Difference = 0.12 and Mean Difference = 0.03, re-
spectively). On average Momentary Distance increased for

both Team types as Workload levels increased (all p < 0.001),
except for HH teams under the High condition compared to
themselves under the Very High condition (t = -1.79, p = 1).

Highly Correlated Segments
Figure 3 shows the proportion of HCS for each Team type.
The main effects of Team type and Workload were signifi-
cant (both p < 0.001 and BFinclusion > 1,000) and there was
overwhelming evidence for a main effect of Group Instruc-
tion (BFinclusion > 1,000). There were significant two-way
interactions for Team Type with Group Instruction and Work-
load (BFinclusion > 1,000 and F(2.4,606.86) = 28.751, p< 0.001,
BFinclusion > 1,000, respectively).

For HM teams, there was no significant difference between
mean HCS proportions in the Collaborative condition com-
pared to the Competitive (t = 0.52, p = 1). As for the HH
teams, mean HCS proportion was lower in the Collabora-
tive condition than the Competitive condition (t = -6.29, p
< 0.001; see Figure 3). For both HH and HM Team types, as
Workload levels increased the proportion of HCS decreased
(all p < 0.001), except for the High vs Very High conditions
(t = 0.97, p = 1 and t = 2.54, p = 0.315, respectively). When
comparing matched Workload levels across Team types, we
found HH teams had significantly lower HCS proportions
than HM teams for all Workload conditions (all p < 0.05)
but there was no difference found between Team types in
the Low conditions (t = -1.19, p = 1). Overall, HH teams
have on average lower proportions of HCS than HM teams
(t = 4.17, p < 0.001, posterior odds > 1,000).

Figure 3. HCS proportions (y-axis) for HM (left) and HH
teams (right), for Collaborative and Competitive conditions
(individual lines with standard error bars) as a function of
Workload (Low, Medium, High, Very High; x-axis).

Running Correlation
Using a two-sample K-S test we found a significant differ-
ence between the distribution of Correlation Frequencies for
the two Team types (D(63,191) = 0.04 p < 0.001), Correlation
Frequencies appear more positively skewed for HM teams
than HH teams (see Figure 4. When examining only the HH
team, we found a significant difference in their distribution
of Correlation Frequencies under the Collaborative condition
compared to the Competitive condition (D(63,63) = 0.12, p
< 0.001). When comparing the effects of Collaboration vs
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Competition for only HM teams, we also found a significant
difference in correlation distributions between the Group In-
struction conditions (D(192,192) = 0.02, p < 0.001). The HM
teams had a greater frequency of positive correlations in the
Competitive condition than the Collaborative (see Figure 4).
The distribution of correlations was more positively skewed
for HM teams than HH teams in the Collaborative condi-
tion, and this difference was significant (D(63,192) = 0.09, p
< 0.001). Additionally, HM teams also demonstrated more
heavily skewed correlation distributions than HH teams un-
der the effect of Competition (see Figure 4 and this difference
was also significant (D(63,192) = 0.05, p < 0.001).

Figure 4. The Frequency (y-axis) of Running Correlation Val-
ues or r (x-axis) for HM (left) and HH teams (right).

Joint Capacity Cp Scores
For both Team types, Cp Scores were below the UCIP model,
indicating the teams were performing at limited capacity (see
Figure 5). We found significant main effects of Team type and
Workload (F(1,239) = 126.37, p < 0.001, BFinclusion > 1,000
and F(1.94,999.5) = 168.5, p < 0.001, BFinclusion > 1,000, re-
spectively) and overwhelming evidence for the main effect of
Group Instructions (BFinclusion > 1,000). There were signifi-
cant two-way interactions between Team Type and Group In-
struction (BFinclusion > 1,000) and Team Type and Workload
(F(2.86,999.49) = 4.64, p = 0.004, BFinclusion = 154.88).

Figure 5. Cp Scores (y-axis) for HM (left) and HH teams
(right), across the Collaborative and Competitive instructions
(with standard error bars) as a function of Workload (Low,
Medium, High, Very High; x-axis). The UCIP Model is rep-
resented by the dashed line.

Figure 5 shows that the main effect of Team Type on ca-
pacity is driven by the Collaborative advantage in HH teams,

whereas this effect was much smaller for HM. HH teams
had higher Cp Scores in the Collaborative condition than the
Competitive (t = 11.38, p < 0.001; Mean Difference = 0.05).
HM teams also demonstrated greater Cp Scores in the Collab-
orative condition than the Competitive (t = 2.91, p = 0.023)
but this difference was small (Mean Difference = 0.01). As
for differences between Team types, Collaboration and Com-
petition resulted in greater Cp Scores for HH teams under
both conditions (t = -14.17, p < 0.001 and t = -5.76, p <
0.001, respectively).

For both Team types Cp Scores did not change monotoni-
cally with load; rather, they were significantly lower under the
Medium Workload condition compared to all other Workload
conditions (all ps < 0.001). Comparing HH and HM teams,
for all matched Workload comparisons HH teams had greater
Cp Scores than HM teams (all ps < 0.001).

Relationships between Behaviour and Performance

Momentary Distance as a predictor of Cp Scores As Mo-
mentary Distance increased Cp Scores improved (Figure 6).
Momentary Distance in the Collaborative and Competitive
conditions for HH teams was a significant predictor of Cp
Scores (F(1,61) = 28.71, p < 0.001, BFinclusion > 1,000, R2 =

0.31 and F(1,61) = 40.82, p < 0.001, BFinclusion > 1,000, R2 =
0.39 respectively). For HM teams in the Collaborative and
Competitive conditions, Momentary Distance was also a sig-
nificant predictor of Cp Scores (F(1,191) = 123.54, p < 0.001,
BFinclusion > 1,000, R2 = 0.39 and F(1,191) = 113.18, p <

0.001, BFinclusion > 1,000, R2 = 0.37, respectively).

Figure 6. Momentary Distance (x-axis) as a predictor of Cp
Scores (y-axis) for both HM (left) and HH teams (right). The
UCIP model is represented by the dashed line.

HCS proportions as a predictor of Cp Scores As HCS
proportions increased Cp Scores decreased (Figure 7). For
HH teams HCS proportions were a significant predictor of Cp
scores in both the Collaborative (F(1,61) = 5.78, p = 0.019,
BFinclusion = 2.79) and Competitive conditions (F(1,61) =

14.44, p < 0.001, BFinclusion = 77.95), with adjusted R2 =
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0.07 and R2 = 0.18, respectively. For HM teams HCS pro-
portions were a significant predictor of Cp Scores for the Col-
laborative and Competitive conditions (F(1,190) = 6.95, p =
0.009, BFinclusion = 3.87 and F(1,190) = 6.96, p = 0.009,
BFinclusion = 3.89, respectively). Variance in Cp Scores ex-
plained by HCS proportions in both the Collaborative (Ad-
justed R2 = 0.03) and Competitive conditions (Adjusted R2 =
0.03) was even smaller. The regression slope for HH teams
was lower in the Collaborative condition than the Compet-
itive and practically similar across these conditions for HM
teams (Figure 7).

Figure 7. HCS proportions (x-axis) as a predictor of Cp
Scores (y-axis) for both HM (left) and HH teams (right). The
UCIP model is represented by the dashed line.

Discussion
We compared differences in the behaviour of HH and HM
dyads. We used three spatiotemporal measures of behaviour:
HCS proportions, Momentary Distance, and Running Cor-
relation alongside the Capacity Coefficient. The within-
subjects effect of Collaboration vs Competition was much
greater for HH than HM teams in both teaming behaviour and
Joint Capacity. Collaboration led to greater spatial separation
(larger inter-paddle distance) and less synchronous behaviour
compared to the Competitive setting for both Team Types.
This difference was much greater for HH than HM teams.
As workload levels increased, spatial division increased and
synchronous behaviour decreased amongst team members for
both Team types. Overall, HM teams demonstrated more syn-
chronous behaviour and smaller inter-paddle distance than
HH teams. All teams demonstrated limited capacity perfor-
mance on average, meaning there were inefficiencies in their
ability to handle both task demands and teamwork processes.
Collaboration led to greater Joint Capacity for both Team
Types over Competition, but the improvement in Joint Ca-
pacity was greater for HH teams than HM teams.

Our results suggest a relationship between teaming be-
haviour and Capacity. Synchronous behaviour increases the
cost to Joint Capacity. HH teams displayed a reduction in this

cost in the Collaborative condition (compared to the Compet-
itive) while HM teams did not. For both Team types, as inter-
paddle distance increases Joint Capacity improves. Our study
also demonstrated the sensitivity of HH team’s behaviour to
the social context of the teaming environment and the lack of
such sensitivity in hybrid HM teams.

Our results also demonstrate an important difference in the
Joint Capacity of HH and HM teams and established an em-
pirical relationship between teaming behaviour and Joint Ca-
pacity. Human partners can reciprocate and adjust accord-
ing to the co-actors (Sebanz et al., 2006). It is not surpris-
ing teams with two humans demonstrate superior abilities in
handling both task demands and team coordination than hy-
brid HM teams (with only one team member capable of such
abilities). These findings on behavioural strategies of collab-
orative and competitive HH teams are similar to those ob-
served in other tasks (S. E. Brennan et al., 2008; Niehorster
et al., 2019; Andrade-Lotero & Goldstone, 2021). As for the
HM teams, Collaboration was not enough to elicit efficient
behaviour and performance. Our artificial agents were de-
signed to perform at a human level to ensure the benefits ob-
served in Joint Capacity were the result of implicit coordina-
tion. Adopting machine partners with the ability to integrate
teammate behaviour may improve the team’s Joint Capacity,
how this improvement would fare in comparison to HH teams
is still an empirical question. The development of these ma-
chine agents was beyond the scope of the current study. Over-
all, our results demonstrate teams can experience larger ben-
efits by taking into consideration the behaviour of co-actors
(Bansal et al., 2019; Demir et al., 2017; Funke et al., 2012).

An unexpected finding was the non-monotonic relationship
between load and capacity. Future research should consider
non-linear relationships between teaming behaviour and per-
formance. The behaviour analyses used in our study may
also prove useful in analysing the relationships between team
member eye patterns and hand gestures (Caruana, Inkley,
Nalepka, Kaplan, & Richardson, 2021), or in understand-
ing how optimal teaming behavioural patterns develop over
time (Andrade-Lotero & Goldstone, 2021). The HCS analy-
sis cannot determine if the team’s behaviour is asynchronous
or synchronous, as it takes the absolute correlation value, cau-
tion should be taken when interpreting HCS outcomes. For
future linear behavioural analyses, such as HCS and Run-
ning Correlation, it is important to control for the possibility
of spurious correlations. We have piloted Machine-Machine
teams, which be used in the future as a benchmark to compare
against HH and HM correlations (Strang et al., 2014).

In conclusion, our study implemented spatiotemporal mea-
sures to assess teams’ behaviour. These measures predict the
teams’ Joint Capacity and suggest that HH behaviour is less
correlated than that of HM teams. This reduced HH syn-
chrony is associated with better performance, compared with
HM teams, perhaps because it allows human players to com-
plement each other rather than duplicate inefficiencies.
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