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Abstract

Even at small amplitude, internal wavepackets induce a flow somewhat analogous to
the Stokes drift induced by surface waves. The structure of this flow changes qualita-
tively depending upon whether the wavepacket is one-dimensional (horizontally periodic,
vertically localized and spanwise-uniform), two-dimensional (along-wave and vertically
localized, but spanwise-uniform), and three-dimensional (localized in all three spatial
dimensions). Over the vertical span of a one-dimensional wavepacket, a positive flow
is induced that translates with the vertical group velocity of the wavepacket. A two-
dimensional wavepacket induces long internal waves that follow the wavepacket like a
bow wake behind a ship. This was first shown by Bretherton (1969), who also showed
that these waves disappear and a local circulation is induced if the wavepacket is three di-
mensional with comparable extent in all three dimensions. Using a quasi-monochromatic
wavepacket approach, Bretherton’s results are reproduced and extended to show that
long waves as well as a local circulation are induced by three-dimensional wavepackets of
relatively wide spanwise extent.

1 Introduction

Internal gravity waves move vertically through a continuously stratified fluid transporting
momentum and irreversibly accelerating the background flow where they break. Even
before breaking, however, localized internal wavepackets induce transient flows. In part,
this is a consequence of the divergence of the momentum flux, which is zero far from the
wavepacket and largest around its centre. The result is a “divergent-flux induced-flow”
(DF) which scales as the amplitude squared of the waves. If this flow is itself divergent,
then a response flow (RF) develops, driven for example through order amplitude-squared
corrections to the pressure field. Together the sum of the divergent-flux and response
flows give the total wave-induced mean flow.

For two- and three-dimensional wavepackets, the induced flow can extend far from the
wavepacket itself. Thus momentum transport by the wavepacket is not necessarily local-
ized to the wavepacket itself, as in the phenomena of long internal waves induced by two-
dimensional wavepackets (van den Bremer and Sutherland (2014)) and “remote recoil”
due to horizontally recirculating flows around three-dimensional wavepackets (Bühler and
McIntyre (2003)). If moderately large amplitude, the induced flows can Doppler shift the
waves in the wavepacket leading to modulationally stable or unstable evolution, which can
be well-represented by a nonlinear Schrödinger equation for one-dimensional wavepackets
(Akylas and Tabaei (2005); Sutherland (2006)). In particular, hydrostatic anelastic waves
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are modulationally stable and, as a result, overturn many density scale heights above the
overturning level predicted by linear theory (Dosser and Sutherland (2011)).

Even without consideration of weakly nonlinear feedbacks, there remain several outstand-
ing problems regarding the flows induced by internal wavepackets including the influence
of horizontal boundaries upon vertical modes, Coriolis forces and aspect ratio of the am-
plitude envelope. This work will focus upon the influence of the last of these. Specifically,
bridging the gap between two- and three-dimensional wavepackets we will examine flows
induced by three-dimensional wavepackets of wide spanwise extent, as might be induced
by stratified flow over mountain chains, as in the Rocky Mountains.

2 Theory

Here the theory for flows induced by 1D, 2D and 3D wavepackets are reviewed and then ex-
tended to the consideration of spanwise-wide wavepackets. For simplicity, the background
flow is taken to be stationary, the stratification uniform and the Boussinesq approximation
is invoked.

2.1 1D wavepackets

For a one-dimensional (horizontally periodic) wavepacket, the structure of the wave-
induced flow follows directly from the horizontal momentum equation written in flux-form
and averaged over one horizontal wavelength (Sutherland (2010)):

∂t 〈u〉 = −∂z 〈uw〉 , (1)

in which angle-brackets denote averaging in x, and u and w represent the x- and z-velocity
components, respectively. The velocities include both the flow directly attributed to the
waves and also the wave-induced flow. Denoting the non-dimensional amplitude by α,
the velocity of the waves is

u(1) =
1

2
αAu(Z, T )eı(k0x+m0z−ω0t) + c.c. and w(1) =

1

2
αAw(Z, T )eı(k0x+m0z−ω0t) + c.c.,

(2)

in which c.c. denotes the complex conjugate, ~k0 = (k0,m0) is the wavenumber vector,
ω0 is the corresponding frequency, and Au and Aw are the amplitude envelopes of the
quasi-monochromatic wavepacket, which are related through the polarization relations by
Aw = −(k0/m0)Au. The amplitude envelopes themselves vary according to the slow space
and time variables Z and T , respectively. Explicitly, Z = ε(z− cgzt) and T = ε2, in which
cgz is the vertical group velocity and ε = 1/(k0σ) is small assuming the vertical extent of
the wavepacket, σ, is large compared to the wavelength. Weak dispersion dictates that
the time-change of the wavepacket in a frame moving with the group velocity is of order
ε2. The magnitudes of Au and Aw are of order unity with the nondimensional vertical
displacement amplitude of the waves given by α = A0k0.

Equation (1) shows that the divergence of the momentum flux accelerates a flow whose
magnitude goes as α2. We denote this “divergent-flux induced-flow” by α2uDF. Just as
the amplitude envelope translates vertically at the group velocity, uDF is expected to be a
function of the translating co-ordinate Z and slow-time variable T . Keeping leading-order
terms of order α2ε in (1), we find −cgz∂ZuDF = −∂Z(AuA

?
w)/2, in which the star denotes

the complex conjugate. Because uDF is itself non-divergent it accounts entirely for the
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flow that is induced. Hence, using the polarization relations, the total induced flow by a
one-dimensional wavepacket is given by

u(2) = α2uDF =
〈
u(1)w(1)

〉
/cgz =

1

2
α2N2

0 |~k0||A|2, (3)

in which A ≡ A(Z, T ) is the normalized amplitude of the vertical displacement field. The
expression in (3) can also be derived from the pseudomomentum per unit mass, −〈ξζ〉,
in which ξ is the vertical displacement and ζ is the spanwise vorticity associated with the
waves (Scinocca and Shepherd (1992); Bühler (2009); Sutherland (2010)).

2.2 2D wavepackets

We now consider a wavepacket that is localized both in x and z, but has uniform spanwise
extent. The amplitude envelope of the waves now depends upon the two slow spatial
variables X = ε(x − cgxt) and Z = ε(z − cgzt). Considering only the influence of the
advective terms in the horizontal and vertical momentum equations upon the acceleration
gives

−~cg · ∇(uDF) = −∇ · (A~uA?u) and − ~cg · ∇(wDF) = −∇ · (A~uA?w),

in which A~u = (Au, Aw). It follows that

(uDF, wDF) =
1

2
N2

0 |~k0||A|2(1, cgz/cgx). (4)

Unlike the case of one-dimensional wavepackets, (uDF, wDF) is itself a divergent flow field.
Thus the non-advective terms in the momentum equation at order α2 must also come into
play in order to ensure that the total induced flow is non-divergent.

To derive the total induced flow, the fully nonlinear equations of motion are combined
into a single differential equation for the streamfunction, ψ:[

∂tt(∂xx + ∂zz) +N2
0∂xx

]
︸ ︷︷ ︸

≡ L

ψ = ∇ ·
[
∂t
(
ζ ~u
)

+N2
0∂x
(
ξ ~u
)]︸ ︷︷ ︸

≡ ~F

. (5)

Simply substituting the structure of the waves, as in (2) with corresponding expressions
for vorticity and vertical displacement, the slow variations of the nonlinear terms on the
right-hand side of (5) give zero: this is ultimately a consequence of the fact that internal
plane waves are an exact solution of the fully nonlinear equations of motion. The left-hand
side then reveals that the differential equation for the induced flow at leading order in ε is
∂xxψ

(2)
2 = 0, in which the subscript indicates that this term enters at order ε2. Thus it is

expected that the wavepacket should induce disturbances with long horizontal structure
compared to the wavepacket width. Mathematically it means that the x-derivatives on
the left-hand side of (5) are order ε smaller than the z- and t-derivatives.

In order to formulate the induced flow more accurately, it is necessary to consider the order
ε corrections to the the wave structure, which accounts for the fact that the wavepacket is
localized in the horizontal and vertical. Somewhat arbitrarily assuming that the vertical
displacement field of the waves is given exactly by ξ(1) = 1

2
αA(X,Z, T )eıφ + c.c. with

φ ≡ k0x+m0z−ω0t, one finds for example that w(1) = −ıω0Ae
ıφ+[εxcgxAX +εzcgzAZ ]eıφ.

Other values are tabulated explicitly in van den Bremer and Sutherland (2014).

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 3



Substituting these expressions into the right-hand side of (5), extracting the slow varia-
tions and knowing that the forcing results in a horizontally long response, we find that the
leading order differential equation from (5) having non-zero forcing is (van den Bremer
and Sutherland (2014))(

c2gz∂z̃z̃z̃z̃ +N2
0∂x̃x̃

)
ψ(2) =

1

2
α2N0|~k0|c2gz∂z̃z̃z̃|A|2, (6)

in which (x̃, z̃) = ~x−~cgt = (X,Z)/ε and the order-ε approximation ∂t ∼ −cgz∂z̃ has been
made.

The solution is found through Fourier transforms. In particular, using u(2) = −∂z̃ψ(2)

and w(2) = ∂x̃ψ
(2), the Fourier amplitudes of the induced velocity are(
û(2), ŵ(2)

)
= α2

(
c2gzM

4

c2gzM
4 −N2

0K
2
,

c2gzKM
3

c2gzM
4 −N2

0K
2

)
ûDF, (7)

in which ûDF(K,M) = (1/2)N0|~k0||̂A|2 is the 2D Fourier transform of uDF, given by (4),
expressed in terms of the the transform of |A|2. The special case of a 1D wavepacket

corresponds to |̂A|2 being a delta function in K. It is obvious that (7) reduces in this case
to the requirement that the induced vertical velocity is zero and u(2) = uDF, as expected.

The general result (7) can be inverse Fourier transformed and the integral in κ evaluated
so as to ensure outward-propagating waves. In particular, the horizontal velocity field
induced by a Gaussian wavepacket is (van den Bremer and Sutherland (2014))

u(2)(x̃, z̃) =
1

8
cgzN0|~k0|A2

0 σxσz

∫ ∞
0

e−µ
2z̃2/4µ2 sin

(
µz̃ + µ2 cgz|x̃|

N0

)
dµ. (8)

This is plotted in Figure 1. The induced waves are the result of the wavepacket acting as
a localized impulse that translates at the group velocity leaving behind the appearance
of a bow wake. The vertical wavelength of the long waves scales as the vertical extent,
σz of the wavepacket and the frequency is set by the condition that their vertical phase
speed equals the vertical group velocity of the wavepacket.

It is important to emphasize that the induced waves have a horizontal extent orders of
magnitude wider than the wavepacket itself. Thus, for example, a wavepacket generated
by transient flow over a mountain range such as the Rocky Mountains can induce flows
on the other side of the continent.

2.3 3D wavepackets with comparable horizontal extents

If a wavepacket is localized in all three spatial dimensions, then the localized forcing by the
divergent-flux induced flow need not be compensated by long waves. Instead a response
flow can be established that circulates horizontally around the wavepacket without the
need to overcome buoyancy forces. This problem was first considered by Bretherton (1969)
and is rederived here using the approach of quasi-monochromatic wavepackets.

The wavepacket is assumed to have leading-order structure given for the vertical dis-
placement field by ξ(1) = 1

2
αA(X, Y, Z, T )eı(k0x+m0z−ω0t) + c.c.. As in the case of the 2D

wavepacket, the divergence of the momentum flux results in the flow (uDF, 0, wDF) with
uDF and wDF given by (4).
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Figure 1: Horizontal velocity associated with flow induced by a Gaussian wavepacket centred at the
origin with horizontal and vertical extent σx = σz = 20k−1

0 (as indicated by ellipse in this high aspect
ratio figure), and containing waves with m0 = −k0. The maximum vertical displacement amplitude
A0 = 0.01k−1

0 . The dashed lines indicates the predicted slope of the phase lines.

We seek a response flow (uRF, vRF, wRF) such that the total induced flow is purely hori-
zontal. Hence wRF = −wDF. The total horizontal induced flow must be non-divergent.
Hence ∂xuRF + ∂yvRF = −∂xuDF = −1

2
N0|~k0|∂x(|A|2). Also assuming the response flow

is irrotational, we have ∂xvRF − ∂yuRF = 0. The solution is found by Fourier transform-
ing this pair of equations and solving separately for ûRF and v̂RF. Thus, for example,
ûRF = −[K2/(K2 + L2)] ûDF. Adding this to the divergent-flux induced flow gives the
Fourier transform in (K,L,M) space of the total induced flow:(

û(2), v̂(2)
)

= α2

(
L2

K2
H

,
−KL
K2
H

)
ûDF, (9)

in which K2
H = K2 + L2.

Inverse Fourier transforming gives the flows shown, for example, in Figure 2. Unlike the
case of 2D waves, here the induced flow extends horizontally only a few widths about the
wavepacket.

2.4 3D wavepackets with wide lateral extent

Relaxing the condition that the induced flow is strictly horizontal, we derive a general
formula for the wave-induced flow for a three-dimensional wavepacket following the anal-
ogous approach for 2D wavepackets. From the vector equation for vorticity and using
incompressibility, the equations of motion can be recast as a linear operator on the veloc-
ity field being forced by a divergent field. Explicitly, 0 −∂2t ∂z (∂2t +N2

0 )∂y
∂2t ∂z 0 −(∂2t +N2

0 )∂x
−∂2t ∂y ∂2t ∂x 0


︸ ︷︷ ︸

≡ L

~u = ~F (10)

with
~F = ∇ ·

[
− ∂t

(
~u⊗ ~ζ

)
−N2

0

(
∂x
(
~uξ ŷ − ∂y

(
~uξ x̂

)]
+ ∂t

(
~ζ · ∇~u

)
. (11)
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Figure 2: The x-component of velocity, u(2), associated with flow induced by a ‘round’ 3D Gaussian
wavepacket centred at the origin with horizontal and vertical extents σx = σy = σz = 20k−1

0 and
containing waves with m0 = −k0. The maximum vertical displacement amplitude A0 = 0.01k−1

0 .

As in the case of the 2D wavepacket, simple substitution of the expressions for the
wavepacket at order α, neglecting the ε corrections gives zero on the right-hand side.
A non-zero value for ~F is found by including the order ε corrections, as done for the 2D
wavepacket. Fourier transforming both sides of (11), only keeping terms on the left-hand
side at lowest order, gives the following for each component of the induced velocity(

û(2), v̂(2), ŵ(2)
)

= α2

(
c2gzM

4 −N2
0L

2

c2gzM
4 −N2

0K
2
H

,
N2

0KL

c2gzM
4 −N2

0K
2
H

,
−c2gzKM3

c2gzM
4 −N2

0K
2
H

)
ûDF. (12)

This reduces to the formulae for 2D waves (7) by taking the spanwise wavenumber L to be
zero (corresponding to |A|2 being uniform in y). It reduces to the formula for compact 3D
waves in (9) by taking M = 0, which can be interpreted as evaluating the horizontal flow
at each height using the value of uDF at that specific height. Thus we anticipate that a 3D
wavepacket that has wide spanwise extent should induce both a local circulation and long
waves. In particular, scaling analysis of the x-component of the induced velocity reveals
that propagating waves should be substantial if the spanwise extent of the wavepacket is
an order of magnitude larger than its vertical extent.

Figure 3 shows the flow induced by a wavepacket with lateral extent ten times wider than
its vertical and along-wave extent. Being wider, the along-wave extent of the induced flow
is correspondingly larger as is the lateral extent of the forward and recirculating flows.
The magnitude of the flows is correspondingly smaller. But, while the recirculating flow
decreases as the wavepacket width increases, the magnitude of the flow associated with
radiating waves increases. The long waves are evident in the top-right plot of Figure 3 as
flows with alternating sign below the recirculating flow.

Whether by waves or the recirculating flow, it is evident as in the case of 2D wavepack-
ets, that a wide wavepacket induces a flow that is significant at distances ahead and be-
hind the wavepacket that are orders of magnitude larger than the along-wave extent of
the wavepacket itself.
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Figure 3: As in Fig. 2 but showing the flow induced by a wide 3D Gaussian wavepacket with lateral
extent σy = 200k−1

0 ten times larger than the vertical and along-wave extent.

3 Conclusions

We have examined the flows induced by Boussinesq internal wavepackets in uniformly
stratified fluid. The general formula for 3D wavepackets is shown to reduce to formulae
for 1D and 2D wavepackets if their amplitude envelopes are long in the along-wave and
across-wave directions respectively. The recirculating flow predicted by Bretherton (1969)
is reproduced for waves with spanwise extent comparable to the along-wave and vertical
extent. But wide wavepackets also excite radiating waves, as predicted previously for 2D
wavepackets of infinite lateral extent (van den Bremer and Sutherland (2014)).

Ongoing work is examining the influence of anelastic effects and Coriolis forces as well
as flows induced by vertically confined internal modes. As shown for 1D wavepackets
(Dosser and Sutherland (2011); Sutherland (2006)), these flows are expected to impact
the evolution of the wavepacket itself if the waves have moderately large amplitude.

References
Akylas, T. R. and Tabaei, A. (2005). Resonant self-acceleration and instability of nonlinear

internal gravity wavetrains. In Litvak, A., editor, Frontiers of Nonlinear Physics, pages
129–135. Institute of Applied Physics.

Bretherton, F. P. (1969). On the mean motion induced by gravity waves. J. Fluid Mech.,
36(4):785–803.

Bühler, O. (2009). Waves and Mean Flows. Cambridge University Press, Cambridge, UK.

Bühler, O. and McIntyre, M. E. (2003). Remote recoil: A new wave-mean interaction
effect. J. Fluid Mech., 492:207–230.

Dosser, H. V. and Sutherland, B. R. (2011). Anelastic internal wavepacket evolution and
stability. J. Atmos. Sci., 68:2844–2859.

Scinocca, J. F. and Shepherd, T. G. (1992). Nonlinear wave-activity conservation laws
and Hamiltonian structure for the two-dimensional anelastic equations. J. Atmos. Sci.,
49:5–27.

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 7



Sutherland, B. R. (2006). Weakly nonlinear internal wavepackets. J. Fluid Mech., 569:249–
258.

Sutherland, B. R. (2010). Internal Gravity Waves. Cambridge University Press, Cam-
bridge, UK.

van den Bremer, T. S. and Sutherland, B. R. (2014). The mean flow and long waves
induced by two-dimensional internal gravity wavepackets. Phys. Fluids, 26:106601:1–
23. doi:10.1063/1.4899262.

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 8




