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Acoustic voice variation in spontaneous speech

Yoonjeong Leea) and Jody Kreimanb)

Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1794, USA

ABSTRACT:
This study replicates and extends the recent findings of Lee, Keating, and Kreiman [J. Acoust. Soc. Am. 146(3),

1568–1579 (2019)] on acoustic voice variation in read speech, which showed remarkably similar acoustic voice

spaces for groups of female and male talkers and the individual talkers within these groups. Principal component

analysis was applied to acoustic indices of voice quality measured from phone conversations for 99/100 of the same

talkers studied previously. The acoustic voice spaces derived from spontaneous speech are highly similar to those

based on read speech, except that unlike read speech, variability in fundamental frequency accounted for significant

acoustic variability. Implications of these findings for prototype models of speaker recognition and discrimination

are considered. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0011471

(Received 22 February 2022; revised 4 May 2022; accepted 9 May 2022; published online 25 May 2022)

[Editor: Susanne Fuchs] Pages: 3462–3472

I. INTRODUCTION

It is a truism in phonetics that no one ever says the

same thing twice in precisely the same way. An individual’s

voice is shaped in part by the varying emotional, social,

physiological, and linguistic states that person experiences

in various contexts, and substantial acoustic variability

arises within an individual’s voice as a result. This within-

talker variability co-exists with between-talker variability,

and both listeners and machine recognition systems face the

significant challenge of attributing the differences they hear

across utterances to a change in talkers or a change within a

single talker (Afshan et al., 2022; Lavan et al., 2019a; Reich

and Duke, 1979; Saslove and Yarmey, 1980; Wagner and

K€oster, 1999). This suggests that listeners need to learn how

a given voice varies in order to recognize it accurately and

efficiently and must have knowledge of how qualities are

distributed across a population if they are to successfully

discriminate among unknown talkers. It follows that models

of speaker recognition and discrimination, whether by

humans or by machines, must account for the ways in which

this occurs.

Despite the importance of talker variability in formulat-

ing models of voice quality and talker recognition, until

recently little research addressed within-speaker variability

in voice, and it is not known what characteristics distinguish

one voice from another or how (or how much) these charac-

teristics vary across different communicative settings.

Phonetic studies have shown more within-speaker acoustic

variability in spontaneous speech than in laboratory speech

(e.g., DiCanio et al., 2015; see Wagner et al., 2015, for

review), while additional studies suggest that fo is rather

stable within talkers for speech versus non-speech vocaliza-

tions (e.g., Pisanski et al., 2020). However, these studies

typically examine only a small number of acoustic attributes

(for example, fo, duration, or formant frequencies), and to

our knowledge have not considered inter-speaker variability

in different contexts. In an initial examination of vocal vari-

ability more broadly construed, Lee et al. (2019) used multi-

ple tokens of read speech from 100 talkers to examine the

acoustic characteristics that varied both within and across

individuals. Results showed that the acoustic spaces that

characterize vocal variability are remarkably consistent,

both within and across talkers. However, this consistency

may have occurred at least partly due to the constrained

nature of the underlying voice samples used in these analy-

ses (repeated readings of a fixed set of sentences). The pre-

sent study thus attempts to replicate these findings and to

extend them to samples of spontaneous conversation from

the same talkers, to determine whether the nature and extent

of within- and/or between-talker variability depends on

speaking style.

Current models of voice perception and recognition posit

that listeners evaluate individual voices based on the relation-

ship between a given token and an abstract prototypical

voice, a context-dependent “average” reference token resid-

ing at the center of a multidimensional acoustic voice space

(Latinus and Belin, 2011; Lavner et al., 2001; Papcun et al.,
1989; Yovel and Belin, 2013). While this idea is widely

accepted, these models do not specify what characterizes the

prototype(s), how within-speaker variability affects voice

perception and/or recognition, or how prototypes fit within

the structure of the acoustic voice space for individuals and

populations of talkers. As a result, we do not know how voi-

ces are encoded with respect to prototypes, either for individ-

ual speakers or for populations of speakers.

Starting with the set of perceptually valid acoustic mea-

sures of voice quality proposed by Kreiman et al. (2014)
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and Kreiman et al. (2021), Lee et al. (2019) conducted a

series of principal component (PC) analyses to assess which

acoustic parameters within this set indeed form dimensions of

an acoustic space specific to an individual voice, as well as a

global acoustic voice space for the population of talkers.

Among the large array of vocal parameters available for each

individual voice, a few parameters—which together quantified

formant dispersion and the balance between high-frequency

harmonic and inharmonic energy in the voice—consistently

emerged in the first three PCs for all talkers, but most within-

speaker acoustic variability in voice was idiosyncratic. Results

further showed that the measures that varied in the speech of

all individual talkers also characterized voice variation across

talkers, suggesting that individual and population voice spaces

have very similar acoustic structures.

The Lee et al. (2019) analyses used multiple sentence pro-

ductions from 100 English speakers (50 female and 50 male

speakers). Read sentences clearly do not represent the full

range of acoustic variability that occurs within a talker in an

average day’s phonation. In this follow-up study, we examined

how well findings from read speech generalize to spontaneous

speech from the same set of talkers. Because the same parame-

ters characterized acoustic variability for virtually every

speaker in Lee et al. (2019), we hypothesized that these param-

eters would also emerge from parallel analyses of spontaneous

speech for the same speakers, although the precise nature of

the PCs may vary due to the greater acoustic variability usually

observed for spontaneous utterances (Nakamura et al., 2008;

Lieberman et al., 1985; Wagner et al., 2015).

II. METHOD

A. Voice samples

This study used a set of recorded phone conversations

from 99 speakers (49 females, 50 males; self-reported) out of

the 100 originally analyzed in Lee et al. (2019). Voice sam-

ples were drawn from the University of California, Los

Angeles Speaker Variability Database (Keating et al., 2019;

Keating et al., 2021), which offers significant within- and

between-speaker variability. All speakers were native speak-

ers of English, with no known speech or hearing impair-

ments, and were members of the UCLA community at the

time of recording (Age range: F, 18–29; M, 18–26). Speakers

were recorded in a sound-attenuated booth at a sampling rate

of 22 kHz, using a Br€uel & Kjær 1
2
00 microphone (Hottinger

Br€uel & Kjær A/S, Germany) (model 4193) firmly attached

to a baseball cap worn by the speaker. All audio recordings in

the database are accompanied by transcriptions in the form of

Praat TextGrids. The recordings were first force-aligned, and

the force-aligned segmentations were individually checked

and manually corrected to provide precise alignments.

Among the speech tasks available in the database,

recordings of informal telephone calls were used in this

study. Speakers used their own cell phones to call and chat

with a friend or family member for at least two minutes.

Only the speaker’s side of the conversation was recorded

directly from the speaker’s mouth, not via the telephone line.

B. Acoustic measurements and post-processing
steps

Any non-speech items (sighs, laughs, coughs) were

removed prior to acoustic analysis. In order to compare the

acoustic variability of spontaneous speech to that reported

for read speech (Lee et al., 2019), the 26 acoustic variables

previously measured were again obtained from all vowels

and approximants (/l/, /r/, /j/, and /w/) in each recording

(Table I). These variables form a psychoacoustic model of

voice quality (Kreiman et al., 2021), and as a set have been

shown to adequately quantify the quality of virtually all

samples of normal and disordered voice. In addition, to

quantify time-varying changes in voice quality in continu-

ous speech we calculated moving coefficients of variation

(moving CoV ¼ moving r/moving l) (Kreiman et al., 2003),

using a smoothing window of 50 ms. Variables were then

grouped into five categories: (i) fo; (ii) formant frequencies

(F1, F2, F3, F4) and formant dispersion (FD) (Fitch, 1997),

calculated as the average frequency interval between immedi-

ately adjacent pairs of formants; (iii) spectral noise (cepstral

peak prominence, CPP) (Hillenbrand et al., 1994), the root

mean square energy calculated over five pitch pulses (energy)

and the amplitude ratio between subharmonics and harmonics

(SHR) (Sun, 2002); (iv) harmonic source spectral shape

(H1*–H2*, H2*–H4*, H4*–H2kHz*, H2kHz*–H5kHz); and

(v) the coefficients of variation for all measures (CoVs)

(Table I). All variables were measured automatically every

5 ms using VoiceSauce software (Shue et al., 2009).

After removing data frames with spurious parameter

values (e.g., impossible 0 s; data trimming removed less

than 0.01% of the data), values of each acoustic variable

were normalized with respect to the overall minimum and

maximum values from the entire set of voice samples from

males or females, as appropriate, so that all values across

variables and talkers ranged from 0 to 1. Finally, moving

coefficients of variation for all 13 variables were calculated

for each complete conversation and separately for each sen-

tence or full utterance in a conversation. These two different

analysis scopes were initially examined separately because

it was unclear which would be more appropriate for compar-

ing acoustic spaces for spontaneous speech to those for read

sentences (Lee et al., 2019): Full conversations may better

represent a speaker’s detailed acoustic space, while individ-

ual sentences are a better match to the sentence stimuli used

TABLE I. Acoustic variables. Harmonic amplitudes marked with * have

been corrected for the influence of formants (Hanson and Chuang, 1999;

Iseli and Alwan, 2004).

Variable categories Acoustic variables

Pitch fo
Formant frequencies F1, F2, F3, F4, FD

Harmonic source spectral shape H1*–H2*, H2*–H4*, H4*–H2kHz*,

H2kHz*–H5kHz

Inharmonic source/spectral noise CPP, energy, SHR

Variability Coefficients of variation for

all acoustic measures
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in our previous study. Across speakers, these steps resulted

in about 4� 106 data frames (sentences, F: 2116k, M:

2021k; conversations, F: 2131k, M: 2039k).

C. Principal component analysis (PCA)

The procedure for PCA followed that described in full

by Lee et al. (2019). By employing an oblique rotation

(Cattell, 1978; Thurstone, 1947), the 26 variables—moving

averages for 13 variables þ moving coefficients of variation

for the same 13 variables—were simultaneously entered

into PCAs, which reduced the data into a smaller set of PCs

(factorial solutions with eigenvalues greater than 1; Kaiser,

1960), each of which was formed by variables with loadings

(weights) at or exceeding 0.32 (Tabachnick and Fidell,

2013). PCAs were conducted separately for each speaker

(within-speaker analyses), and separate combined speaker

analyses were also run for groups of the 50 male and 49

female speakers.

D. Degrees of acoustic variation in conversational
versus read speech

Finally, to assess the extent to which talker variability

depends on speaking style, we examined the small subsets of

acoustic variables that differentiated the two speaking styles

in the PCA solutions (see Secs. III C and III D). The normal-

ized values of each of these measures were analyzed inde-

pendently for each gender group using linear mixed effects

models. All statistical analyses were made in R (R Core

Team, 2021) using the lme4 package (Bates et al., 2015).

Style (Conversation vs Reading) was entered in the analysis

as a fixed effect and random slopes were fit for speakers in

each group (1þStylejSpeaker). The random effects of speak-

ers significantly improved model fit according to likelihood

ratio tests (Baayen, 2008; p< 0.05 for all). P-values less than

or equal to 0.05 were considered significant.

III. RESULTS

Analyses using sentences excerpted from conversations

versus complete conversations produced highly similar

acoustic spaces. The same variables largely emerged within

the same PCs for each speaker and each speaker group,

albeit with differences in weights for the individual varia-

bles in each PC. For this reason, we report only results for

analyses of complete phone calls in this paper.

A. Within-speaker PCAs: Common dimensions
and speaker-specific patterns

A total of 6–9 PCs emerged in analyses for individual

speakers. For most speakers, seven (48/99 speakers) or eight

(47/99 speakers) PCs were extracted. These components

accounted for 64%–72% (F, mean¼ 68%; M, mean¼ 67%)

of the cumulative acoustic variance. As the higher order PCs

after PC6 accounted for very small amounts of acoustic vari-

ability, only the first six are reported in detail here.

We first counted the number of times each acoustic cat-

egory appeared in a within-speaker solution, cumulated

across speakers in each group (F: 49 speakers, M: 50 speak-

ers). Figure 1 shows the distribution of variables with

respect to weight in the first six components.

The first PC accounted for 20%–24% (mean¼ 21%)

and 20%–29% (mean¼ 25%) of the variance for females

and males, respectively. For both females and males, this

PC represented the combination of variability in source

spectral shape (with heaviest weights on H2kHz*–H5kHz

CoV), in spectral noise (heaviest weight on CPP CoV), and

in fo CoV; (F, 44/49 speakers; M, 34/50 speakers; green, yel-

low, and red bars in the second and fourth columns of Fig.

1, respectively). For a subset of speakers, variability in

lower formant frequencies—F1 and/or F2 CoV—also

emerged in this PC, albeit with low weights (orange bars in

the second and fourth columns of Fig. 1; F, 26/44 speakers;

M, 9/34 speakers). For most of the remaining speakers (F, 4/

49 speakers; M, 14/50 speakers), formant frequency CoV

was the most representative variable in the first component,

with highest weights on formant dispersion CoV and F4

CoV (orange bars in the second and fourth figure panels).

Last, acoustic variability for one female speaker and two

male speakers was mostly related to source spectral shape.

PC2 accounted for an average of 12% and 11% of acoustic

variability, for female and male speakers, respectively (ranges:

F¼ 10%–19%, M¼ 9%–14%). Across speakers, formant fre-

quencies (F, 49/49 speakers; M, 50/50 speakers) emerged most

frequently as the second PC (Fig. 1). However, sub-analyses

revealed a difference in distribution patterns between female

and male speaker groups. For most female speakers, formant

dispersion, F4 and F3 were most important and consistently

appeared together (F, 32/49 speakers). Among these variables,

formant dispersion predominated (weights: FD > F4 > F3). For

12 other female speakers, F2 and H4*–H2kHz* were the most

important variables in the second component and always

emerged together. For the remaining five speakers, the combi-

nation of F1 and H2*–H4* was most important in this PC.

We observed the opposite pattern for male speakers, for

most of whom the combination of F2 and H4*–H2kHz*

emerged as the most important variables for this PC (M, 33/

50 speakers). Formant dispersion and higher formant fre-

quencies explained the most variance for a smaller group of

speakers (M, 16/50 speakers). Finally, one male speaker

showed the combination of F1 and H2*–H4* as the most

heavily weighted variables for this PC.

Across speakers PC3 accounted for an additional 9% of

acoustic variance (range¼ 7%–11%) and weighted mainly

on formant frequencies (49/49 for females, 48/50 for males).

The variables that emerged in this PC mirrored those in the

second PC, but with complementary distributions for the

two speaker groups. For most female speakers, weights

were highest on either a combination of F1 and H2*–H4*

(23/49 speakers) or F2 and H4*–H2kHz* (18/49 speakers),

while for the remaining eight speakers higher formant fre-

quencies and FD emerged as the most important variables

within this PC. The largest group of male speakers (20/50
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speakers) showed higher formant frequencies and FD as the

most important contributors to PC3. The combination of F1

and H2*–H4* weighed most heavily for an additional 14/50

speakers. Seven speakers showed the combination of F2 and

H4*–H2kHz* as the most important variables, and another

seven speakers showed fo as the most important variable.

Last, PC3 for two male speakers weighed primarily on

H1*–H2*, Energy, and CPP.

PCs above the third combined to account for an average

of 21% (female speakers) to 22% (male speakers) of the

acoustic variance in the data, but in contrast to the first three

PCs, this variance was largely idiosyncratic, and no particu-

lar acoustic category predominated (Fig. 1). For PC4–PC6,

the distributions of the variables and their weights over-

lapped highly, for both male and female speakers, reflecting

differences across voices in the amount of variance

explained by each measure. As shown in Fig. 1, most of the

variables are approximately evenly distributed across PCs.

In other words, the component in which each variable

appeared differed across individuals, ranging from PC4 to

the last PC (PC6–PC9) across individuals, and no single

component accounted for substantial variance.

FIG. 1. Distribution of acoustic parameters plotted (stacked histogram) against the rotated component loadings (weight) for the first 6 PCs derived from

measures of continuous speech. Left panel, female speakers. Right panel, male speakers. CoV, coefficient of variation.

J. Acoust. Soc. Am. 151 (5), May 2022 Yoonjeong Lee and Jody Kreiman 3465

https://doi.org/10.1121/10.0011471

https://doi.org/10.1121/10.0011471


In sum, variability (measured by coefficients of varia-

tion) in fo, source spectral shape, and spectral noise (espe-

cially in H2kHz*–H5kHz* and CPP) accounted for the most

acoustic variability within conversational speech from indi-

vidual talkers. Across talkers, the next most frequently

emerging variables were means for formant dispersion and

the combination of F2 and H4*–H2kHz*. Additionally, F1

and H2*–H4* were important for some speakers. The first

three PCs were largely shared across voices and together

accounted for most of the explained variance in the underly-

ing acoustic data (40%–50% total). The remaining PCs dif-

fered widely across voices and cumulatively accounted for

about 21% of the explained variance (17%–30% total).

B. Between-speaker group PCA: Population
voice spaces

A second set of PCAs examined the structure of the

acoustic space for the combined groups of female and male

speakers. Nine PCs were extracted for the female speaker

group, and seven PCs were extracted for the male speaker

group, accounting for 71% of the cumulative variance for

female speakers and 64% for male speakers. Details of the

analyses are included in the Appendix. Patterns of acoustic

variability in these multi-talker spaces largely mirrored the

patterns found within speakers (Figs. 2 and 3). The first

component was composed of variability (measured by

CoVs) in source spectral noise, spectral shape, and fo,

accounting for 22% and 24% of variance across females and

males, respectively. The individual components of this PC

were similarly weighted (except for F1 CoV for the female

group).

The second component accounted for 11% of acoustic

variance in female voices and corresponded to formant fre-

quencies (F4, FD, F3). For male speakers, spectral slope in

the higher frequencies (H4*–H2kHz*, H2kHz*–H5kHz)

and F2 accounted for 11% of variance in the combined

acoustic data. For the third component, an additional 9% of

the variance was accounted for by spectral shape in the

lower frequencies (H2*–H4*) and F1 for female speakers;

formant frequencies (F4, FD, F3) accounted for 9% of the

variance for male speakers.

C. Differences between acoustic voice spaces in
conversation and reading

Table II shows all the variables that emerged in the first

three PCs from the group solutions in conversation and read-

ing. While the earlier PCs were very similarly structured for

the two speaking styles across speakers, some additional

measures of variability emerged only in conversations

(shown in bold in the table). For female speakers, four addi-

tional CoV measures (H1*–H2* CoV, fo CoV, energy CoV,

and F1 CoV) emerged in the first PC for conversational

speech. For male speakers, energy CoV, fo CoV, and F2

CoV measures additionally emerged in PC1 and PC2 in con-

versational speech. Full details of PCAs for reading can be

found in Lee et al. (2019).

D. Speaking style effect on acoustic variability in the
voice

Overall, measured variables varied much more for con-

versational speech than for read sentences. Figure 3 shows the

effects of speaking styles on variables that emerged only in

conversation from the PC analysis above (shown in bold in

Table II). Variable ranges (whiskers) and quartile ranges

(boxes) were wider, and more outliers (circles) were observed.

For female speakers, styles differed significantly for all

variables except for fo (v2[1]¼ 2.94, p¼ 0.086). Energy was

greater in conversation than in reading (median: 0.0074 vs

0.0069, v2[1]¼ 4.49, p< 0.05). F1 and H1*–H2* varied

more in conversation than in reading (for F1, standard devia-

tion (SD): 0.16 vs 0.14, v2[1]¼ 24.4, p< 0.0001; for

H1*–H2*, SD: 0.097 vs 0.063, v2[1]¼ 74.82, p< 0.0001),

as indicated by the wider boxes (in red) in Fig. 4.

For male speakers, F2 was higher for conversational

speech than for reading (median: 0.39 vs 0.34;

v2[1]¼ 90.85, p< 0.0001). While energy and fo did not dif-

fer significantly between the two speaking styles (energy:

v2[1]¼ 0.45, p¼ 0.5; fo: v2[1]¼ 0.25, p¼ 0.62), these mea-

sures varied more in conversations compared to read speech

as shown in outlier distributions in Fig. 4.1

IV. DISCUSSION AND CONCLUSION

This study employed PCA to acoustic measures of

unscripted phone conversations to determine how the acous-

tic voice spaces derived from spontaneous speech compared

to those for sentences read by the same talkers (Lee et al.,
2019). Results from spontaneous speech largely replicated

those from sentence reading. In both cases, the most acous-

tic variance within talkers, regardless of gender, was

accounted for by a set of variability measures. Variability in

higher-frequency harmonic and inharmonic energy, which

often covary (Kreiman and Gerratt, 2012) and are often

associated with the degree of perceived breathiness or

brightness in the voice (Samlan et al., 2013), was consis-

tently associated with the first component, and formant dis-

persion was similarly associated with the second

component. We note that these acoustic variables are associ-

ated with important biological and social traits across many

species, including sex, body size, arousal, and dominance

(Anikin, 2020; Congdon et al., 2019; Fitch, 1997). Their

repeated emergence from our analyses is consistent with an

evolutionary basis for these aspects of vocal variability (see

Lee et al., 2021, or Lee and Kreiman, 2022 for more discus-

sion of the biological versus social origins of systematic

vocal variability).

One notable difference between these results and our

previous findings was the emergence of variability in fo
from analyses of spontaneous speech, but not from read

speech. This finding is not especially surprising, and proba-

bly reflects the fact that sentence reading tends to be highly

stylized, with similar patterns and amounts of variability

across speakers, while in free conversation the amount and

kind of variability present can alter from talker to talker and
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from moment to moment within talkers (Lavan et al.,
2019b; Lieberman et al., 1985; Nakamura et al., 2008). The

varied length of the utterances in telephone conversation

(whether shorter or longer) compared to the fixed length of

the utterances in sentence reading might be another factor

introducing more variance in measured variables. However,

variability in spectral shape and in noise emerged from both

read and spontaneous speech, indicating that although the

nature of variability may differ across speaking styles, it is

variability in general that best distinguishes voices.

Again paralleling results from read speech, the next most

important measures distinguishing talkers were formant

dispersion (the average interval between formant frequencies)

and higher formant frequencies, which are considered rela-

tively independent of vowel quality (Fant, 1960) but are often

associated with speaker identity (e.g., Fitch, 1997; Pisanski

et al., 2014; Ives et al., 2005; Smith et al., 2005). These body-

size related parameters emerged in the second and third PCs,

for female speakers and male speakers, respectively. Variables

related to vowel quality (i.e., lower formant frequencies and

their nearby harmonics) were also important for many speak-

ers as these variables emerged in the first three PCs (predomi-

nantly in PC2 and PC3). Across speaking styles, F2 was

important for many speakers (see Table II). Additionally, the

FIG. 2. Acoustic parameters emerging in nine PCs for the female speaker group. Variables within each PC are ordered from the highest absolute value of

rotated component loadings (weight) to the lowest value. Shaded bars represent CoV variables. (N%), variance explained. CoV, coefficient of variation.
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vowel productions in spontaneous speech varied even more for

the female speakers as indicated by both F1 and F2 emerging

early (in PC3 and PC4) for female speakers. The more varied

vowel productions observed in conversations than in read sen-

tences may arise from the difference in the segmental context

causing varied productions of each vowel category (due to

coarticulation between the vowel and the neighboring

segments). Finally, in both sets of analyses, higher PCs repre-

senting detailed patterns of acoustic variability in the talker-

specific voice spaces were idiosyncratic.

If acoustic voice spaces are in fact characterized by a

few shared dimensions and a mass of idiosyncratic detail,

what are the implications for voice discrimination and rec-

ognition? The fact that acoustic spaces for individual talkers

are both low dimensional and highly similar suggests that

listeners could evaluate voice quality using a “quick and

dirty” algorithm to locate a given voice in the population

space. This first step may make it easy to compare one talk-

er’s voice to another’s, and may reflect listeners’ lifelong

experience with this simple voice space. Indeed, listeners are

excellent at “telling voices apart” (Lavan et al., 2019b).

Logically, the next step in processing voice quality is then to

address the idiosyncratic details that characterize an individ-

ual talker. However, building mental models of individual

FIG. 3. Acoustic parameters emerging in seven PCs for the male speaker group. Variables within each PC are ordered from the highest absolute value of

rotated component loadings (weight) to the lowest value. Shaded bars represent CoV variables. (N%), variance explained. CoV, coefficient of variation.
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voice spaces requires substantial experience with specific

talkers. Lacking wide familiarity with how a person’s voice

varies across changing contexts, it is challenging to recognize

that two voice samples come from the same talker (“telling

voices together”; Johnson et al., 2020; Lavan et al., 2019b).

Consistent with this view, recent evoked potential data

(Plant-H�ebert et al., 2021) showed that responses to familiar

and unfamiliar voices vary with time window as well

as familiarity status, implying a two-step process beginning

with the evaluation of shared features, and moving on to

incorporation of idiosyncratic features as needed for familiar

voices.

The increased variability in conversations for the

same voices leads to the prediction that it may be harder

to tell speakers together and apart from these utterances.

Consistent with this prediction, Afshan et al. (2022)

reported that listeners had greater difficulty in discrimi-

nating a subset of these voices from conversation than

from read sentences, and when utterances were produced

in different styles than when styles were matched.

Moderate speaking style variability especially made the

“telling voices together” task harder than the “telling voi-

ces apart” task. They further reported that the listeners

attended to speaker-specific idiosyncrasies when “telling

speakers together,” and that they “tell speakers apart”

based on their relative positions within a shared acoustic

space. It remains to be explored whether the stylistically

different samples of the same voices are close together in

individual and group voice spaces. Analysis of which spe-

cific voices should be easier to tell together/tell apart for

both kinds of speaking styles based on our acoustic results

is under way.

One possible limitation of this study is the relative

homogeneity of the speakers with respect to age, health,

native language, and speaking style, which may have

contributed to the consistency in voice spaces. Results from

ongoing analyses of recordings from speakers of Seoul

Korean and Hmong (Lee et al., 2021; Lee and Kreiman,

2022) argue against this possibility. The same few PCs

emerged first from these new analyses of different speakers

as well, along with additional PCs that reflected the status of

fo and phonation in the phonology of the language. Ongoing

work with additional languages and speakers (including

those with vocal pathology; Lee and Kreiman, 2021) will

continue to address this issue. Other sources of acoustic var-

iability, including emotion, are represented in our spontane-

ous speech samples by virtue of the topics speakers chose

but were not explicitly manipulated. Given the robustness of

our findings, we again predict that these factors will add

acoustic variability, but that the same PCs will emerge first

from analyses of emotional speech. This hypothesis remains

to be tested.

Taken together, our results have implications for

prototype-based models of voice perception (Kreiman and

Sidtis, 2011; Lavner et al., 2001; cf. Yovel and Belin, 2013;

see Lee et al., 2019 for detailed discussion). In our earlier

paper (Lee et al., 2019) we argued that a common set of var-

iables shared by virtually all talkers, accompanied by unique

deviations from that central pattern, is consistent with what

might be required as input to a recognition system organized

around prototypes, accounting for both between and within

talker acoustic variability. However, authors are often quite

vague with respect to what they mean by “prototype” in this

context. Definitions typically suggest some kind of average

token in a space, but it generally remains unclear whether

that space is perceptual or acoustic or something else, and

what its dimensions might be is typically also unstated (see

Yovel and Belin, 2013). If we define a voice space in terms

of acoustic variables, with dimensions that correspond to the

first three PCs describing voice variability, our data suggest

TABLE II. Acoustic parameters emerging in the first three PCs in different speaking styles (conversation vs reading) for the female speaker group (left two

columns) and for the male speaker group (right two columns). Variables within each PC are ordered from the highest absolute value of rotated component

loadings (weight) to the lowest value. Variables that emerged only in conversation are in bold. Gray cells for PC3 of the female speaker group indicate

parameters that actually emerged in PC4 in different speaking styles. CoV, coefficient of variation.

PC Conversation (female group) Reading (female group) Conversation (male group) Reading (male group)

1 CPP CoV

H2*–H4* CoV

H2kHz*–H5kHz CoV

H1*–H2* CoV

fo CoV

energy CoV

H4*–H2kHz* CoV

F1 CoV

H2kHz*–H5kHz CoV

CPP CoV

H4*–H2kHz* CoV

H2*–H4* CoV

energy CoV

CPP CoV

H1*–H2* CoV

fo CoV

H2*–H4* CoV

H2kHz*–H5kHz CoV

H4*–H2kHz* CoV

H2kHz*–H5kHz CoV

CPP CoV

H1*–H2* CoV

H2*–H4* CoV

H4*–H2kHz* CoV

2 F4

FD

F3

F4

FD

F3

H4*–H2kHz*

F2

H2kHz*–H5kHz

F2 CoV

H4*–H2kHz*

F2

H2kHz*–H5kHz

3 H2*–H4*

F1

H4*–H2kHz*

F2

H2kHz*–H5kHz

F2 CoV

F4

FD

F3

F4

FD

F3
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two ways to map prototypes into these acoustic voice

spaces. One (the more traditional version) would be to

define a specific token as the average of those acoustic

parameters. As an average, this token would sit in the center

of the acoustic space defined by the dimensions that

emerged as PCs in our analyses. However, if the center of

the space is defined by the shared dimensions, and if the

space characterizes all or almost all voices, there may be no

need to hypothesize the existence of a token that sits in that

position–the token is already specified by the space, and is

(hypothetically) part of what listeners know by virtue of

their experience with voices. In other words, if individual

and group voice spaces are similarly structured with respect

to a very small set of acoustic attributes, it is possible that

FIG. 4. (Color online) Effects of speaking style (conversation vs reading) on normalized measured variables for female speaker group (left panel) and male

speaker group (right panel). The entire data range including outliers is shown in (A), and the range excluding outliers is shown in (B). The horizontal line

within each box represents the median value.
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prototypes might not be “average tokens” computed across

complete [sets of] acoustic signals, because “average” is

defined as the center of the shared acoustic space, rather

than by the acoustic mean of many tokens from a single

talker or a population of talkers. In this way, voice

“prototypes” may be artifacts of a shared voice space, and

the separate concept of a prototype may not be needed to

explain listeners’ behavior. More information about what

listeners actually know about voice acoustics is needed to

shed light on the relationship between voice waveforms and

perceptual processes.
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APPENDIX: PCA PATTERN MATRICES FOR (1)
FEMALE AND (2) MALE SPEAKER GROUP ANALYSES

(1) PCA pattern matrix for female speaker group

analysis.

(2) PCA pattern matrix for male speaker group analysis.
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several consecutive chunks of spontaneous speech from the beginning,

the middle, and the end of a conversation that matched the size of the read

speech for comparisons. Across different subsets of data, patterns con-

formed to the main finding.
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