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Connectome-based biophysics models of Alzheimer’s disease 
diagnosis and prognosis

Justin Toroka,*, Chaitali Ananda, Parul Vermaa, Ashish Raja,b,c,*

aDepartment of Radiology, University of California, San Francisco, San Francisco, California

bDepartment of Bioengineering, University of California, Berkeley and University of California, 
San Francisco, Berkeley, California

cDepartment of Radiology, Weill Cornell Medicine, New York, New York

Abstract

With the increasing prevalence of Alzheimer’s disease (AD) among aging populations and the 

limited therapeutic options available to slow or reverse its progression, the need has never been 

greater for improved diagnostic tools for identifying patients in the preclinical and prodomal 

phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and 

microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the 

time course of AD-related pathological changes. However, given the complex etiology of AD, 

which involves not only connectome-based spread of protein pathology but also the interactions of 

many molecular and cellular players over multiple spatiotemporal scales, more robust, complete 

biophysics models are needed to better understand AD pathophysiology and ultimately provide 

accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research 

in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well 

as recent attempts at developing improved connectome-based biophysics models. These efforts 

toward a comprehensive yet parsimonious mathematical description of AD hold great promise for 

improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how 

AD progresses.

Overview

Alzheimer’s disease (AD) is an increasingly prevalent neurodegenerative disorder whose 

pathological hallmarks are abnormal deposits of amyloid-beta (Aβ) and microtubule-

associated protein tau (τ). The buildup of aggregates of these proteins is progressive, 

irreversible, and associated with deficiencies in cognitive function and dementia. Both 

Aβ and τ exhibit characteristic spatiotemporal deposition patterns. The first Aβ plaques 

typically appear in temporobasal and frontomedial areas before spreading throughout the 

remaining neocortical areas and eventually the striatum.1,2 By contrast, τ tangles appear first 

in the locus coeruleus and then spread to the entorhinal cortex, hippocampus, temporal areas, 
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and finally throughout the cortex.1,3 Both in vitro and in vivo evidence demonstrate that τ 
in particular predominantly migrates trans-synaptically, where white matter tracts between 

regions serve as the conduits for the transmission of τ from affected regions to unaffected 

regions.4-7 The staging of Aβ pathology also suggests that it spreads trans-synaptically,8-10 

but passive diffusion in the extracellular space of the brain may also contribute.11,12 

Understanding how the disease process unfolds over time is critical for ultimately finding 

effective treatments for AD, which has remained largely recalcitrant to pharmacological 

interventions despite decades of clinical trials.13

Biophysical modeling of AD can provide a platform for integrating clinical and 

experimental data into a cohesive theoretical framework that also tests hypotheses for which 

direct evidence is difficult to acquire. The key insight for modeling trans-synaptic spread of 

a protein species is that it can be approximated by a graph diffusion model, where discrete 

gray-matter regions are the vertices of a graph and the structural connectivity values for all 

region pairs are its edge weights. More specifically, the Network Diffusion Model (NDM)14 

and subsequent connectome-based spread models15-19 posit that, given an initial distribution 

of pathology in the brain, the regional pathology at future time points is a function of 

the concentration differences and connectivity values between all region pairs. Remarkably, 

despite the complexity of AD at a molecular and cellular level, these simple, macroscopic 

models recapitulate the canonical Braak staging of AD18,19 as well as pathology progression 

in human subjects.17,20 Not only that, but other disorders featuring the trans-synaptic spread 

of pathological protein species, such as Parkinson’s disease (PD)21,22 and amyotrophic 

lateral sclerosis (ALS),23, have also been modeled as a graph diffusion process with 

similarly strong results. Fig 1 summarizes key results from several connectome spread 

models.24 In addition to providing a tool for accurate, subject-specific predictions of where 

pathology will next appear, these models reinforce the validity of trans-synaptic spread as a 

fundamental feature of neurodegenerative disease, which has been controversial because it 

cannot be directly observed in patients.

While connectome-based spread models appear to capture an essential feature of the AD 

disease process, a more complete mathematical description of AD biology is necessary 

to gain further insights and improve the models’ predictive power. From a mathematical 

perspective, current models do not have sufficient complexity to explain how different 

protein species may spread to different sets of regions despite sharing the same point 

of initiation. In the case of τ, there is in vivo evidence that conformers with distinct 

microscopic properties exhibit diverse macroscopic deposition patterns when injected into 

the mouse hippocampus.25 Such a conformer-specific view of tauopathy has important 

implications for understanding not only what makes AD distinct from diseases such 

as frontotemporal lobar dementia (FTLD),26-28 but also the significant subject-to-subject 

heterogeneity among AD patients.29-31

Further, macroscopic connectome models of Aβ and τ spread have historically limited 

themselves to modeling the net effect of these proteins, regardless of their oligomeric 

diversity. In fact, it is well known that oligomers of varying sizes of both Aβ and τ 
remain in kinetic equilibrium, and these aggregation and fragmentation processes strongly 

contribute to their ability to spread throughout the brain.32,33 The modeling of the kinetics 
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of protein aggregation are rather well established.34-38 Recently, a combined model of 

both aggregation and network transmission was proposed, which correctly recapitulated 

τ deposition patterns in AD patients.39 However, because it is currently not possible to 

characterize oligomeric diversity in vivo, it remains an open question how well these 

Smoluchowski-type models capture the complex interactions between oligomeric species 

in human disease. Given that it is smaller, soluble oligomers of Aβ and τ that are neurotoxic, 

not the larger, insoluble aggregates of these species,40-45 the understanding the equilibria 

between oligomers and aggregates is of keen interest.

Additionally, a necessary mathematical assumption endemic to connectome spread models 

is that all gray-matter regions have the same intrinsic properties, differing only in how they 

are connected to other regions. However, befitting their discrete biological functions, brain 

regions have distinct cytoarchitectures and neuronal compositions, some of which may be 

particularly susceptible to pathology.46 In addition to this selective neuronal vulnerability, 

support cells such as astrocytes47,48 and oligodendrocytes49 are known to participate in the 

AD disease process, and the microglia responsible for the neuroinflammatory response at 

sites of Aβ and τ deposition also strongly modulate the ability of these species to migrate 

to neighboring regions.50-52 Incorporating more features of AD biology at the level of the 

mathematical model while minimizing the risk of overfitting, particularly when regions are 

not treated identically, poses a significant challenge for enhancing current connectome-based 

spread approaches.

Here, we will expand upon several important facets of AD pathogenesis requiring further 

exploration from a mathematical modeling perspective:

1. Interactions between Aβ and τ

2. Asymmetric flows on the brain connectome

3. Neuroinflammation

4. Selective cell-type vulnerability

5. The relationship between neuronal activity and pathology

For each, we will provide biological context that justifies the need for model augmentation, 

related recent advances in mathematical modeling, and suggestions for next steps for 

modeling at the whole-brain level. Our aim is to synthesize the wealth of knowledge gained 

in disparate subfields of research towards a unified mathematical framework of AD that 

deepens our insight of the disease process and provides accurate, subject-specific predictions 

that can be used clinically for diagnosis, prognosis, and the tailoring of treatment.

The clinical utility of mathematical models

A wide variety of tools have been applied to the problem of AD diagnosis. The primary 

method of diagnosing AD is through a battery of cognitive tests when the patient starts 

showing signs of dementia, such as the Mini Mental State Exam (MMSE)53 or the Clinical 

Dementia Rating (CDR).54 Although these exams are widely used and easy to administer, 

misdiagnosis of patients showing mild cognitive impairment (MCI) is still common, because 
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their symptoms may not indicate that they will convert to AD.55 Accordingly, recent 

decades have seen significant developments in in vivo imaging techniques for detecting 

brain pathology directly. Aβ-sensitive positron emission tomography (PET) is currently in 

clinical use for the differential diagnosis of AD.56,57 Disruptions in glucose metabolism, 

as measured by 2-[18F]fluoro-2-Deoxy-D-glucose PET (FDG-PET), can also facilitate the 

early detection of AD.57,58 Although currently used only for research purposes, several 

PET radioligands for τ have also been developed, albeit with several off-target issues that 

remain to be solved.59 Structural magnetic resonance imaging (sMRI) is a less-expensive 

and minimally invasive alternative for detecting pathological changes in the brain, using 

techniques such as voxel-based morphometry (VBM) to determine regional gray-matter 

loss.60 Although the nonspecificity of brain atrophy as a biomarker has kept MRI-based 

atrophy detection from being the diagnostic tool of choice, several groups have been 

successful in using it to identify AD-related changes in structural brain features.61,62

To detect network-level changes in AD, diffusion tensor imaging (DTI), a special MRI 

sequence sensitive to the highly anisotropic diffusion of water within white-matter tracts, 

can map the structural connectome of the brain and identify disease-induced loss of white-

matter integrity.63 Functional MRI (fMRI) is a complementary technique that can be used to 

detect AD-related changes in brain activity by the measuring the associated changes in blood 

oxygenation.64 Alternative technologies for investigating functional network dysfunction 

in AD include electroencephelography (EEG) and more recently magnetoencephelography 

(MEG), which detect brain activity with very high temporal resolution but lack the spatial 

resolution of fMRI. While these technologies are not in standard clinical use for AD 

diagnosis, they have been used to demonstrate abnormal oscillatory patterns in AD.65-69

Biophysical models can facilitate our understanding of these rich data in several key 

ways. Firstly, they can validate specific hypotheses about disease mechanisms that are 

difficult to observe directly in the clinic, often by linking disparate sources of data that are 

alone insufficient for explaining the disease process and cannot be combined in a purely 

statistical model. For instance, connectome spread models make concrete the mechanistic 

relationship between the brain connectome, determined by DTI, and brain-wide maps 

of imaging biomarkers measured by PET or sMRI.14,16,18 They can also provide subject-

specific predictions of future pathology not yet observed, which can guide diagnosis and 

prognosis.17,20 As mentioned above, one of the most important challenges in AD diagnosis 

is to find a test that discriminates between patients with MCI who will later go on to 

develop AD and those who will not. Given that AD-specific treatments are unlikely to be 

effective in MCI patients who are not on the AD disease trajectory, a biophysical model 

with sufficient predictive power may be able to identify those patients who will benefit from 

therapies currently in clinical trials, leading to higher success rates.70 The identification of 

MCI-to-AD converters before the disease advances to the AD stage is also essential because 

the AD-associated loss of gray matter is effectively irreversible, so intervening prior to the 

loss of massive numbers of neurons is more likely to provide lasting, meaningful clinical 

benefits.71

The success of mathematical models of connectome-based spread allows exploration of 

another clinically relevant application: the possibility of “going back” in time to infer sites 
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of pathology initiation that would best explain measured patterns of atrophy and pathology 

in a patient. For example, Torok et al. were able to “reverse” the NDM to infer the regional 

origins of pathology, called “seeds,” in individual patients on the AD spectrum.30 These 

patient-specific seeds, inferred by imposing a sparsity condition to constrain pathology to 

only a few regions, successfully reproduced known trends in AD and outperformed the best 

single-locus seed vector placed in the hippocampus. Subsequently, Maia et al. implemented 

a similar approach to infer seeds in PD, finding that PD patients could be grouped into 

two distinct clusters based on their seed patterns that exhibited markedly different ages 

of onset.72 These approaches enforced a single seeding event; however, a related method 

allowing several seeding events up to the observation window also produced plausible prior 

states of pathology.73 Therefore, biophysical models can give a glimpse into preclinical 

disease states that may be particularly useful for diagnosis.

Lastly, the analysis of sufficiently rich biophysical models can reveal which processes 

control disease dynamics, thereby indicating key mechanisms that future treatments should 

be designed to disrupt. While further work with experimental models of AD and the 

continued development of methodological tools for studying AD in the clinic are also 

needed to fully realize all of these goals, we can still advance the state of AD mathematical 

modeling by incorporating more biological detail, as we expand upon in the following 

sections.

Interactions between Aβ and τ define AD pathogenesis

The prevailing view guiding the study of AD pathogenesis is the amyloid cascade 
hypothesis74,75: From a complex interaction of genetic predispositions and environmental 

triggers, aberrant cleavage products of amyloid precursor protein (APP) aggregate to form 

Aβ plaques. At a later time, abnormal deposits of τ known as neurofibrillary tangles (NFTs) 

form, a process which is facilitated in part by Aβ. Once the ability of the brain to clear 

these pathological accumulations is exhausted, misfolded assemblies of τ spread throughout 

the brain along white-matter tracts, eventually leading to neuronal death and irreversible, 

progressive cognitive decline. However, several pieces of evidence complicate the picture 

above. Perhaps most importantly, cognitively normal individuals who are amyloid-positive 

(Aβ+) exhibit at most modest deficits compared to age-matched amyloid-negative (Aβ−) 

individuals.76 Conversely, a percentage of patients clinically diagnosed with AD exhibit τ 
but not Aβ pathology77; moreover, τ misfolding and propagation causes a wide array of 

neurodegenerative disorders, albeit with distinct deposition patterns and clinical features 

from AD.78 Additionally, Aβ plaques and τ tangles poorly colocalize in the brains of AD 

patients at early stages of disease, making it challenging to understand how and when they 

interact to give rise to what is thought to be a canonical staging of neuropathology. There 

is evidence suggesting that Aβ and τ may interact at neuronal synapses and contribute to 

synaptic dysfunction.79,80 Further, Aβ may promote τ misfolding and aggregation through 

a cross-seeding mechanism.81,82 The interactions between Aβ and τ also need not be 

direct. For instance, the presence of amyloid particles in the extracellular space may 

trigger a cellular response that induces or facilitates the misfolding and aggregation of 

τ.83 Nevertheless, studying either Aβ or τ in isolation gives an incomplete picture of AD 
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pathogenesis, and a necessary extension going forward is to jointly model these two types of 

pathological aggregates.

The foundational work in the biophysical modeling of AD pathology at the macroscopic 

level has focused on single-species models: for instance, τ in the case of the ND20,30 

and Fisher-Kolmogorov (FK) models, 17-19,84 and Aβ in the case of the Epidemic Spread 

Model (ESM).16 However, more recent work has turned towards combined Aβ – τ models 

at various spatial scales. Kuznetsov and Kuznetsov, following up on prior work solely 

modeling τ,85 modeled the effect of Aβ concentrations on the production and migration of τ 
in the axons of diseased neurons, where Aβ increased the autocatalysis of τ aggregation.86 

Their microscopic kinetic model was capable of fitting the distribution of axonal τ in 

an in vitro cell culture system.87 Another valuable advance came from Bertsch et al., 

who simulated a multi-species model of Aβ and τ under conditions of purely isotropic 

diffusion.88 In this system, they found that Aβ agglomeration rate controlled much of the 

dynamics of the system. Interestingly, only sufficiently small agglomeration rates were able 

to result in widespread brain malfunction, because the irreversible formation of nontoxic 

Aβ plaques in their model needed to be slow enough for the toxic oligomeric species to 

diffuse. Further, the addition of τ to the model resulted in more severe, widespread disease 

relative to its Aβ-only counterpart, reinforcing the notion that the true dynamics of brain 

malfunctioning only emerge when jointly modeling both Aβ and τ. These microscopic and 

mesoscopic models motivate the development of network-level interaction models that can 

be fit to clinical data.

At the macroscopic level, too, there have been advances towards an integrated Aβ – τ 
mathematical model. Raj and Anand sought to model both protein species together by 

adding an Aβ – τ interaction term that induces τ expansion in brain regions where they 

co-localize, in addition to the connectome-based spread of both species.89 This minimalist 

approach reproduced the key features of the spread of both Aβ and τ in the brain as 

determined by PET imaging of MCI and AD patients. On the maximalist side, Bertsch 

et al., following up on their previous work discussed above,90 proposed a more general 

framework for exploring Aβ and τ dynamics at multiple spatiotemporal scales that includes 

mathematical treatments of: oligomer size dependence, the role of the lymphatic system, 

the secretion and reuptake of toxic species, neuronal dysfunction, and microglial activation 

in response to pathology (see Section Modeling interactions between pathology and the 

immune response below). We refer the reader to their work for the mathematical details of 

their highly detailed proposal.

The approaches above illustrate the central tension in terms of biophysically modeling not 

only Aβ – τ interactions but all extensions to the network model: defining the simplest 

model that sufficiently captures the relevant features AD biology and does not compromise 

on its predictive capacity. On the one hand, the Raj and Anand model reduced the dynamics 

of Aβ and τ to a single term.89 While they demonstrated the predictive value of adding 

this term, questions remain about whether a more complex model incorporating more of 

the direct and indirect interactions of these two species could provide significantly more 

accurate predictions, which will be necessary for diagnosis and prognosis in the clinic. 

On the other, the model of Bertsch et al. requires significant exploration from a parameter 
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sensitivity perspective to be useful as a predictive model.90 More specifically, to reduce 

the risk of overfitting, detailed analysis will be necessary to exclude features that are 

mathematically redundant or add little to the richness of the dynamics of the system. 

Nevertheless, these approaches represent an initial step towards a robust and clinically useful 

description of Aβ and τ interactions.

Directionality of specific conformers parsimoniously explains diverging τ 
deposition patterns

In addition to posing a challenge diagnostically for cases with mixed clinical presentations, 

how the misfolding of τ can give rise to such disorders as AD, FTLD, Pick’s disease, 

and corticobasal degeneration, among others, is an unresolved question. A parsimonious 

explanation is that each of these tauopathies has characteristic conformers of τ, and it is 

the differences in microscopic properties between these conformers that largely controls 

the rate of progression and the spatiotemporal patterns of τ deposition.78 The evidence 

for this conformation-specific hypothesis of tauopathy comes from varied sources. Direct 

examination of the structure of τ aggregates using electron microscopy has revealed 

that τ aggregates from different sources adopt distinct conformations.91,92 Synthetic τ 
fibrils coaxed to misfold and aggregate under various in vitro conditions exhibit different 

molecular properties,93 and the injection of different fibrils into the brains of mice results 

in different patterns of τ deposition.25,94 Clinically, the recent discovery of AD-specific 

phosphoepitopes of τ in the CSF and bloodstream that discriminate between patients with 

AD and patients with primary tauopathies with very high accuracy lends further credibility 

to the notion that τ-aggregate structure is a key factor in human disease.26-28 Microscopic 

properties of τ isolates from the brains of AD patients could also be tied to differences in 

their clinical presentations.29 However, how distinct conformers of τ give rise to different 

clinical phenotypes is poorly understood.

One of the mechanistic underpinnings of τ-conformer-specific deposition patterns may 

be that each species exhibits a different directional spread bias. In other words, τ may 

not migrate in a purely diffusive manner along concentration gradients, as is commonly 

assumed in connectome-based spread models, but instead spreads preferentially in the 

anterograde (ie, with axon polarity) or retrograde (ie, against axon polarity) directions. 

Biophysically, both healthy and pathological τ variants may freely diffuse or be transported 

by molecular motors attached to microtubules, giving rise to asymmetric τ distributions in 

the neuron.95 The hyperphosphorylation of pathological τ disrupts its direct interactions 

with microtubules96,97 and the motor proteins themselves98-100; together, these effects lead 

to aberrant axonal transport and the mis-sorting of τ into the neuronal somatodendritic 

compartment.101,102 While axonal transport and diffusion occur on a much faster timescale 

than the detectable pathological changes during AD,95,103 the establishment of persistent 

directional biases vastly influences how τ ultimately propagates along the brain connectome.

To explore the phenomenon of τ axonal transport in the disease state at a microscopic level, 

Torok et al. developed a two-species, multicompartment model to explore the interactions 

between the pathological axonal transport of τ and the formation and breakdown of 
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insoluble τ aggregates.104 Leveraging insights from in vitro work demonstrating that the 

primary anterograde-directed motor protein, kinesin-1, has increased activity in the presence 

of monomeric hyperphosphorylated τ98-100 and is knocked down by τ aggregates,105 the 

mathematical model poses a simple τ-concentration-dependent feedback mechanism on 

the anterograde velocity of τ transport. The authors interrogated the complex dynamics 

that emerge between the interplay of τ aggregation and axonal transport feedback, finding 

that higher aggregation rates generally led to stronger retrograde biases in τ deposition at 

steady-state. Although further experiments and more detailed modeling work are warranted, 

this work represents one of the first attempts to connect the microscopic properties of τ 
conformers to pathological changes that can be observed at macroscopic timescales.

Directionally biased spread has also been explored at the whole-brain level. Mezias et 

al. explored the role of directionality using τ quantification in fifteen mouse models of 

tauopathy,106 utilizing the Allen Mouse Brain Connectivity Atlas (AMBCA) from the Allen 

Institute for Brain Science (AIBS), which not only provides connection strengths between 

region-pairs but also the directionality of those connections.107 By introducing a bias 

parameter, they were able to demonstrate that τ fibrils formed in the presence of Aβ exhibit 

a more pronounced retrograde bias than Aβ-naive τ, an effect which may be attributed to 

higher τ aggregation rates in the Torok et al. framework discussed above.104 Further, the 

temporal progression of directional bias as modeled by the axonal transport model could 

be parameterized to fit the network directional bias for a variety of mouse models (Fig 2). 

Given that significant in vitro evidence exists that Aβ indeed induces τ aggregation and 

the formation of unique τ conformations, the transport feedback mechanism parsimoniously 

explains divergence in τ deposition patterns in the context of connectome-based spread. 

Directional NDM models have also demonstrated that α-synuclein preferentially migrates in 

the retrograde direction in mouse models of PD,108,109 suggesting that transport-mediated 

directional biases may be a common feature of prion-like neurodegenerative diseases.

Several challenges remain before we can fully integrate directional spread bias into 

connectome-based models of human disease. For one, rather than posing the network 

directional bias parameter phenomenologically, as has been done previously, it should be 

made a function of the axonal transport parameters and aggregation rate. In this way, 

the linkage between microscopic τ properties and macroscopic directional bias is made 

explicit. Axonal transport dysregulation may also be mediated by other interactions that 

have not yet been considered. For instance, a joint Aβ – τ model may be required to 

fully capture these dynamics, since there is evidence that Aβ impacts axonal transport 

in a τ-independent manner,110 dovetailing into the other considerations discussed in 

Section Interactions between Aβ and τ define AD pathogenesis. Another issue is that any 

mathematical description of directionally biased spread requires that the brain connectome 

be a directed, asymmetric graph that distinguishes afferents from efferents. However, DTI, 

the only technique capable of quantifying inter-regional connectivity in vivo, cannot resolve 

brain connectivity at this level and is definitionally undirected. One way to circumvent 

this issue is to infer the proportion of afferents to efferents in the human connectome by 

examining homologous brain structures in the AMBCA107 and the macaque connectivity 

atlas (CoCoMac),111 which were obtained using viral tracing. While the assumption of 

homology will not hold across all connections, limiting the degree to which connection 
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polarity can be completely determined, such a cross-species connectome should be 

sufficient for a preliminary exploration into fitting connectome-based spread models with 

directionality to clinical data. As a first demonstration, retrograde modes of transmission 

along a cross-species connectome were shown to produce the best-fitting connectome-based 

spread model for brain pathology in progressive supranuclear palsy (PSP) patients.112 The 

development of effective imaging techniques for reconstructing single-cell-level resolution 

projections in postmortem human brain tissue, such as FAST113 and SHANEL,114 indicates 

that significant progress is underway in producing a fully directed, high-resolution human 

connectome, which will advance biophysical modeling in humans tremendously. Overall, 

the relaxation of the “diffusive spread” assumption in connectome-based models may 

represent an avenue to greatly increasing their accuracy without dramatically increasing 

their complexity.

Modeling interactions between pathology and the immune response

Discussion in the previous sections has been concerned with the mathematical modeling of 

Aβ and τ without any consideration of region-intrinsic properties. However, the presence 

of these pathological species effects a strong local response from the neuroimmune system, 

which is primarily mediated by microglia, the resident immune cells of the brain. Whether 

this response is protective or harmful appears to be context-dependent. Early in the disease 

process, microglia effectively clear Aβ pathology in mouse models,115,116 but over time, 

their capacity to remove plaques is attenuated.117 Additionally, the neuroinflammatory 

response mounted by microglia in response to Aβ induces neurodegeneration; suppression 

of microglia in 5xFAD mice prevented hippocampal neuronal loss.118 With regards to τ, too, 

the neuroimmune response is complex and multifaceted. Gliosis, the expansion of microglial 

populations as part of the immune response, was found to correlate with AD disease 

severity, both in terms of clinical symptoms and τ burden.119 Activated microglia have also 

been shown to internalize τ aggregates, and were discovered in a postmortem examination 

of the brains of AD patients.120 While microglia have shown some capacity to clear τ 
pathology,121,122 their depletion in mouse models resulted in reduced τ propagation123 and 

neurodegeneration.124 Although the above picture is incomplete, the microglial response is 

tightly coupled to both the emergence and progression of AD pathology.

Of particular importance is the role of disease-associated microglia (DAM), a unique 

subtype of microglia identified from human AD brain samples and 5xFAD mouse 

models. These glia are characterized by a unique gene expression profile with elevated 

expression of certain AD-related genes and lower expression of homeostasis microglial 

genes.125 The DAM response is mediated by the microglial TREM2 receptor, which 

induces a neuroprotective, phagocytic response to Aβ126; indeed, rare loss-of-function 

variants of the TREM2 allele confer an increased risk for AD and other dementias.127-129 

How neuroprotective DAM are in ameliorating Aβ pathology also may be disease-stage-

dependent: in a mouse amyloid model, TREM2 deficiency was associated with decreased 

plaque number and area early in disease but increased plaque size and area late in disease.130 

Interestingly, a mouse tauopathy model expressing human TREM2R47H, a variant associated 

with increase AD risk, exhibited reduced τ pathology and neurodegeneration, suggesting 

that the DAM response is harmful with respect to τ.131 τ pathology itself is also capable 
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inducing an inflammatory microglial response that was associated with synaptic loss.132 

Recently, a PET imaging study in cognitively normal, MCI, and AD subjects revealed 

that microglial activation, which was associated with TREM2 expression, followed Braak 

staging alongside τ pathology, and that microglial activation networks were more strongly 

associated with longitudinal τ progression.133 Pascoal et al. also found that Aβ enhances 

microglia-activation-associated τ spreading, suggesting a role for activated microglia as 

mediators of the deleterious effects of Aβ on τ pathology.133

Given the complex roles of the neuroimmune response in both remediating and potentiating 

AD-related pathological changes, the development of a mathematical model that can account 

for these different effects would yield greater insights into the disease process. Bertsch 

et al. recently proposed to model activated microglial populations as a function of Aβ 
and τ concentrations, with the latter depending in part upon activated-microglia-dependent 

clearance.90 Further, Anand et al. augmented the original NDM approach14 by incorporating 

gene-expression-dependent accumulation and transmissibility parameters.134 The resulting 

modeling platform, called Nexopathy in silico (NexIS) following the paradigm proposed 

by Warren et al.,135 was able to demonstrate that a connectome-based model including of 

baseline TREM2 expression was significantly more predictive of τ pathology progression in 

mouse tauopathy models25 than models including no gene expression information (Fig 3). 

Further, the values of the TREM2-associated accumulation and transmissibility parameters 

suggested that activated microglia are associated with a local reduction in τ accumulation 

rate, in agreement with observations of their ability to internalize and degrade τ,121,122 but 

also with increased transmissibility, supporting a role for activated microglia in potentiating 

τ spreading.123 These results indicate that connectome-based spread models can be used to 

validate experimental observations at a whole-brain level.

Future efforts should strive to directly model the populations of activated microglia in 

AD patients in addition to Aβ and τ pathology. One limitation of the NexIS approach is 

that it relied solely on baseline TREM2 expression data because the changes whole-brain 

distribution of TREM2 expression levels over time in mouse tauopathy models are poorly 

characterized. However, a dynamic model of microglia activation could be constructed 

following the suggestion of Bertsch et al.,90 with an initial configuration given by baseline 

TREM2 expression. Particularly intriguing is the suggestion that there is a temporal staging 

of pathological events in AD with activated microglia as mediators of Aβ-induced τ 
pathology133; here, connectome-based biophysical models of all three populations could 

uncover how they interact at a mechanistic level. Following the NexIS model comparison 

approach, models of varying complexity could be tested against each other to determine the 

key biophysical interactions that are necessary for achieving strong fits to imaging data. In 

this way, connectome-based biophysical models can be used to probe biological hypotheses 

about the roles of microglia in AD pathophysiology, which are still only partly understood.

Reconciling cell-type vulnerability and connectome-based spread

Another factor thought to contribute to the regional specificity of neurodegeneration in AD 

is selective neuronal vulnerability: the neuronal composition of strongly affected regions, 

such as the hippocampus and entorhinal cortex, confers to them a higher innate susceptibility 
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to AD pathology.46 With the advent of technologies such as single-cell RNA sequencing 

(scRNAseq) and single-nucleus RNA sequencing (snRNAseq), it has been established 

that the transcriptomic programming of the brain is altered in AD in a cell-type-specific 

manner.136,137 Recent work identifying subtypes of excitatory neurons that appear to be 

particularly impacted by τ pathology, both in AD138,139 and FTLD,140,141 indicates that 

selective vulnerability may indeed play an important role in the disease process. We note 

here that selective vulnerability is not in opposition to trans-neuronal spread as a disease 

mechanism and may not be entirely separable from it, because many of the vulnerable 

neuronal subtypes have long-range projections. Insofar as they are separable, however, it is 

likely that both cell-autonomous and trans-neuronal mechanisms contribute to the complex 

pathophysiology of AD.

The isolation and transcriptomic characterization of neuronal subtypes that are particularly 

susceptible to AD pathology has been limited to brain subregions that are canonically 

affected early in the disease process, such as layer II of the entorhinal cortex.139 A 

broader investigation of the influence of regional cell-type composition on vulnerability 

to pathology, however, requires the mapping of a comprehensive set of cell types across 

the whole brain. Kim et al. recently quantified the distributions of Pvalb-, Sst-, and Vip-

expressing γ-aminobutyric acidergic (GABAergic) interneurons in the mouse brain,142 

and Li et al. similarly mapped the mouse cholinergic system.143 Developments in in 

situ transcriptomics have facilitated the complete cellular characterization of specific 

regions of the mouse brain,144-146 but these technologies have not yet been scaled up 

to the entire cortex. More recently, a computational technique called Matrix Inversion 

and Subset Selection (MISS)147 produced highly accurate maps of cell types by using 

their transcriptomic signatures, as determined by single-cell RNA sequencing (scRNA-

seq),148-150 to deconvolve the voxelwise gene expression data contained in the Allen Gene 

Expression Atlas (AGEA).151 The breadth of mapped neuronal and non-neuronal cell types 

coupled with their whole-brain spatial coverage makes the MISS-inferred distributions in 

particular highly useful for an investigation into selective vulnerability.

From a biological perspective, there are several ways in which cell types may play a role 

in mediating the pathological spread of Aβ and τ, which directly inform how traditional 

models of connectome-based spread should be modified. A high density of neuronal cell 

types that are especially susceptible to proteinopathy in a given region may effectively 

increase the local accumulation rates of Aβ and τ; conversely, neuroprotective cell types, 

particularly certain support cells, may decrease these accumulation rates by enhancing 

clearance at a regional level. Another possibility is that the presence of certain cell types 

may modulate regional transmission rates. For instance Aβ is known to be cytotoxic 

to oligodendrocytes, the primary support cells responsible for the maintenance of the 

myelin sheath around long-range axons.152,153 Oligodendrocytes have also been observed 

to internalize τ as well as facilitate its seeding and propagation.47 Astrocytes, which 

regulate blood flow and support healthy neuronal function,154,155 can synthesize and secrete 

Aβ, thereby contributing to overall plaque burden.156,157 They can also internalize and 

degrade τ, although when their clearance mechanisms fail, they serve as reservoirs of toxic 

oligomers that can be re-released and propagate to neighboring neurons.158 Therefore, we 

posit that the NexIS framework described above134 (see Section Modeling interactions 
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between pathology and the immune response), when incorporating MISS-inferred cell-type 

densities instead of the regional expression of immune response genes, provides a low-

complexity modeling platform that jointly describes selective cell-type vulnerability and 

network spread. It is worth emphasizing that without pre-established cell-type distributions, 

a joint model would require multiple independent parameters per region in addition to 

the global parameters normally considered in network spread models, which quickly runs 

into issues of overfitting. In addition to providing quantitatively better models of AD, this 

approach enables hypothesis-based model comparison between the original network spread 

model and the joint model including cell types of interest, which can be used to uncover new 

interactions between cell types and pathology spread.

While the NexIS approach has only been applied on regional τ pathology in mouse models, 

there are no mathematical limitations to applying it to tau-PET imaging data from AD 

patients in combination with the Allen Human Brain Atlas (AHBA)159 as discussed above 

(see Section Modeling interactions between pathology and the immune response). However, 

currently there is a data-based limitation to NexIS with selective cell-type vulnerability: 

the MISS pipeline has thus far only inferred cell-type maps in the mouse brain and no 

equivalent maps exist for human brain. While it the lacks the spatial resolution of the AGEA, 

MISS can still leverage the AHBA and publicly available human brain scRNAseq data (ie, 

from the AIBS160) to infer regional distributions of human neuronal and non-neuronal cell 

types, which can then be used within the NexIS framework. Another consideration is the 

impact of neurodegeneration itself; that is, the dynamicity of regional cell-type densities 

over the course of disease. Other models have considered a one-way interaction where 

the presence of Aβ or τ pathology induces atrophy,18,90 but since NexIS posits that local 

cell-type densities influence how pathology accumulates and spreads, neurodegeneration 

over time should also feed back into the evolution of Aβ and τ deposition. This suggests 

that NexIS be augmented to also describe atrophy, which should be straightforward from 

both mathematical-modeling and data-collection perspectives, since the T1-weighted MRI 

images used to assess regional volume loss (see Section The clinical utility of mathematical 

models) are often collected in tandem with PET imaging in large clinical datasets, such as 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI).161 Overall, until recently it has 

not been possible to reconcile the impact of selective neuronal vulnerability in the context of 

connectome-based spread at a whole-brain level, and the MISS and NexIS platforms provide 

a promising avenue for exploring these two hypotheses together.

Functional deficits in AD facilitate the disease process

Evidence indicates that connectome-based spread of Aβ and τ pathology can be facilitated 

by abnormalities in structural or functional connectomes, but the contribution of each is 

the subject of ongoing research.14,162-166 Raj, 202124 argues that while it is possible that 

pathology spread follows functional network dysfunction163 it is also possible that pathology 

is indeed driven by the structural connectome, and the association between pathology 

spread and functional network is a consequence of the strong coupling of functional 

and structural connectomes. 167,168 Even though the role of functional network deficits 

in pathology spread is unclear, cellular-level alterations in excitatory-inhibitory balance 

are also associated with Aβ and τ.169-173 Particularly, basic science studies indicate that 
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Aβ and τ are associated with neuronal hyper- and hypoactivity, respectively.170 There is 

also evidence suggesting that neuronal action potentials stimulate the production of Aβ174 

and the release of endogenous τ,175 implicating a direct role for functional activity and 

the progression of protein-based pathologies. Together, the interactions between structural 

connectivity, functional connectivity, Aβ, and τ have significant roles in the evolution of 

AD-related brain dysfunction.

Recently, these interactions were partly elucidated by a study combining MEG, PET, and 

biophysical modeling.176 In this work, the authors reported altered excitatory and inhibitory 

regional model parameters in AD. In particular, an excitatory model parameter was uniquely 

associated with τ deposition, partially mediating the altered oscillatory activity in the 

α frequency band. By contrast, the inhibitory model parameter was uniquely associated 

with Aβ deposition, partially mediating altered oscillatory activity in the δ-θ frequency 

band. This study opens up new directions of identifying cellular-level mechanisms in 

AD using biophysical modeling and multimodel imaging. More specifically, modeling the 

connectome-based spread of Aβ and τ and their interactions at a network level (see Section 

Interactions between Aβ and τ define AD pathogenesis), coupled with a mathematical 

description of how these species interact with the functional network in AD, could uncover 

novel mechanisms of clinical importance. Further, such a model could be augmented 

by incorporating region-intrinsic properties, such as densities of specific subpopulations 

of excitatory and inhibitory neurons (See Section Reconciling cell-type vulnerability and 

connectome-based spread). While previous modeling approaches have included a treatment 

of neuronal death as a function of Aβ and τ deposition,18,90 this coupling of protein 

pathology and functional abnormalities in AD is relatively unexplored and therefore presents 

a unique opportunity to interrogate their relationship at a whole-brain level.

Concluding thoughts

The directions for connectome-based biophysics models discussed above are by no means 

an exhaustive list, and as further insights are made into AD pathophysiology, mathematical 

models should be augmented to accommodate them. Pursuing each avenue of investigation 

on its own will likely yield at least incremental improvements in the network models’ 

predictive capacity, as has already been demonstrated in several cases.89,106,134 Further, the 

insights gained from more inclusive and robust models have the potential to identify key 

mechanistic interactions with translational impact. Moving forward, the field should move 

towards more complete biophysical descriptions of AD pathophysiology while maintaining 

parsimony where possible, given the risk of overfitting to pathology data that may be lacking 

in temporal resolution, spatial resolution, or both. We anticipate that as mathematical models 

continue to improve, the area of intersection between the diagnosis and prognosis AD in 

patients and biophysics-based modeling of the underlying pathology will only continue to 

grow.
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Fig 1. 
Survey of connectome-based spread models in AD. A: The NDM successfully recapitulated 

the spatiotemporal evolution of atrophy in AD in a patient cohort from ADNI.20 Starting 

from the entorhinal cortex, the model evolves with increasing atrophy following a network 

spread process, reaching a peak correlation at tmax with the ADNI pattern (inset). B, 

Top: PET-based mean regional Aβ deposition probabilities as modeled by the ESM in 

HC, EMCI, LMCI, and AD groups.16 Nodes correspond to 78 regions covering all the 

brain’s gray matter, with node sizes proportional to the associated Aβ burden. Modeled Aβ 
deposition progressively ramifies through brain circuits, starting mainly from the DMN 

regions to the rest of the brain. B, Bottom: Correspondence between the model and 

empirical PET regional Aβ deposition for the different groups. C: Classic Braak staging 

of AD tauopathy (Top) resembles both the continuum-space heterodimer model of tauopathy 

(Middle) and the Laplacian-based, network-spreading heterodimer model (Bottom) seeded 

at the transentorhinal and entorhinal regions.15 Abbreviations: Aβ, amyloid beta; ADNI, 

Alzheimer’s Disease Neuroimaging Initiative; EMCI, early mild cognitive impairment; 

HC, healthy controls; LMCI, late mild cognitive impairment; PET, positron emission 

tomography. (Reproduced from24).
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Fig 2. 
Transport vs. network directional bias in mouse models of tauopathy. The network 

directional biases for a collection of tauopathy models, separated by whether the τ strains 

involved misfolded in the presence of Aβ or not,106 were fit with using an axonal transport 

model including τ-kinesin interactions. The agreement between these two assessments 

of bias indicates that the interplay of axonal transport regulation and τ aggregation 

and fragmentation processes on a microscopic level can explain macroscopic directional 

biases. The mouse tauopathy data come from the following studies: “BoludaCBD”, 

“BoludaDSAD’177; “Hurtado’178; “Clavaguera’4; “KaufDS4”, “KaufDS6”, “KaufDS6110”, 

“KaufDS7”, “KaufDS9”, “KaufDS9110.”25 (Reproduced from104).
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Fig 3. 
Connectome-based model incorporating Trem2 provides a superior fit of mouse tauopathy. 

A: Glass-brain rendering of the τ pathology in DS9-injected mice25 predominantly affects 

the entorhinal cortices (EC) and hippocampus (HIP) at early time points, then spreads 

throughout the neocortex, pallidal (PAL), and striatal (STR) areas. B: Glass-brain rendering 

of the τ pathology modeled using the Network Diffusion Model (NDM).14 C: Glass-brain 

rendering of the τ pathology modeled using the Nexopathy in silico model, which augments 

the NDM model with a term modeling the accumulation of τ pathology intra-regionally 

without incorporating effects from inflammation marker genes (NexIS:global). D: Glass-

brain rendering of the τ pathology modeled using the NexIS model with Trem2-dependent 

modulation of τ accumulation and transmissibility (NexIS:Trem2). E: The per-time-point 

fits of the NDM are moderately strong, with R2 = 0.25 over all time points. F: The 

per-time-point fits of NexIS:global are similar to that of the NDM (E). However, because the 

addition of an accumulation term allows the model to account for the amplification of DS9 τ 
pathology over time (A) – note the difference in the scale of the y-axes between (E) & (F) – 

the overall fit across all time points is much stronger (R2 = 0.44). G: NexIS:Trem2 provides 

the best overall model for DS9 pathology, both in terms of per-time-point and overall fits (R2 

= 0.52). (Reproduced from134).
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