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ABSTRACT

The overbite clam (Potamocorbula amurensis) is a 
major invasive species in the San Francisco Estuary, 
California, and has been implicated in the decline 
of pelagic productivity and native fish species. Little 
is known of its impact on Suisun Marsh, a large 
brackish tidal region of the estuary. We looked at the 
abundance and spatial distribution of clams in the 
marsh, including examining the influence of water 
quality, using long-term (1988–2015) otter trawl 
surveys. Temporal trends indicated that overbite 
clam abundance has been increasing, but adult clams 
were spatially restricted to a single large slough 
(Suisun). Clams were absent from most interior 
channels, limiting their overall effect on the marsh 
aquatic ecosystem. Abiotic variables, particularly 
salinity, proved important predictors of overbite 
clam abundance, although the variables examined 
alone could not explain overbite clam distributions. 
We propose that connectivity, detritus loads, and/
or predation pressure may work in conjunction 

with abiotic variables to cause poor survival rates 
for recruits in interior marsh sites, keeping the 
distribution limited. Overall results are encouraging 
for restoration projects in brackish tidal marshes that 
need to deal with overbite clams. 

KEY WORDS

Bivalve, salinity, otter trawls, GAM models, wetlands, 
restoration

INTRODUCTION

Non-native bivalves have been introduced into 
many estuaries, with significant consequences to 
aquatic communities (Sousa et al. 2009). Many of 
these species are extremely prolific, are adaptable, 
and are highly efficient predators on plankton 
(Alpine and Cloern 1992; Dame 1996; Pace et al. 
1998; Strayer et al. 1999). Non-native bivalves have 
also led to substantial declines in phytoplankton 
biomass, and have reduced zooplankton recruitment 
and abundance in estuaries (Kimmerer et al. 
1994), ultimately altering food webs and reducing 
pelagic fish abundances (Kimmerer 2006; Miehls 
et al. 2009). As a result, prevention and control of 
bivalve invasions has become a priority in estuarine 
management. 

One such system experiencing altered food-web 
dynamics and serious depletions in phytoplankton 
is the San Francisco Estuary (the estuary) (Nichols 
et al. 1990; Greene et al. 2011). This large estuary 
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suffers from immense anthropogenic effects and, as 
a global shipping and receiving port, an increasing 
susceptibility to invasive species (Grosholz 2002; 
Cloern and Jassby 2012). At least three alien bivalves 
have been introduced into the estuary, with the 
overbite clam (Potamocorbula amurensis) being the 
most abundant (Cohen and Carlton 1998). Overbite 
clams were first captured in the estuary in 1986, 
and later in the more inland Suisun Marsh in 1988 
(Carlton et al. 1990). The clams quickly expanded 
throughout the estuary’s brackish waters and became 
a dominant benthic species (Nichols et al. 1990; 
Alpine and Cloern 1992; Peterson and Vayssieres 
2010). With efficient filtering capabilities and high 
densities, overbite clams have been responsible for 
considerable declines in phytoplankton biomass in 
the estuary (Greene et al. 2011). Following their 
introduction, a steep decline was observed in some 
pelagic organisms, including fish. The decline became 
especially evident around 2002 and is commonly 
referred to as the Pelagic Organism Decline (POD) 
(Sommer et al. 2007). 

One reason for the overbite clam’s success in the 
estuary is that reproduction occurs year-round, 
although reproduction is temporally restricted in 
some regions of the estuary (Parchaso 1993; Parchaso 
and Thompson 2002). For example, in Grizzly Bay 
(Figure 1) reproduction occurs in late spring/early 
summer and again in fall (Parchaso and Thompson 
2002). Overbite clams are broadcast spawners, 
reaching sexual maturity at approximately 5-mm 
shell width (2 months after recruitment). They 
generally live 2 to 2.5 years, reaching a maximum 
shell width of 26 mm (Hymanson 1991; Parchaso and 
Thompson 2002; Thompson et al. 2008). Larvae are 
found in the water column from Day 2 up to Day 19 
post-hatch, and have increasing behavioral control of 
their position in the water column starting on Day 7 
(Nicolini and Penry 2000).

Multiple biotic and abiotic factors affect overbite 
clam survival in the estuary (Hymanson 1991). 
Predation is one factor: diving ducks and fish cause 
observable declines in overbite clams in shallow 
waters during winter (Lovvorn et al. 2013). Salinity 
is generally thought to be the primary abiotic factor 
that controls the clam’s large-scale distribution 
and abundance in the estuary. Based on field and 
laboratory observations, salinities of ≥ 5 ppt are 

necessary for persistence of clams in the estuary 
(Werner et al. 2003). Successful spawning and 
fertilization takes place at 5 to 25 ppt (Hymanson 
1991; Nicolini and Penry 2000). However, adults 
persist in a salinity range of 0.1 to 32 ppt (Carlton 
et al. 1990). Miller and Stillman (2013) examined 
metabolic rates in adult clams and did not 
detect changes in metabolism at near-freshwater 
conditions, which supports their having a high 
degree of tolerance for a wide range of salinities. 
Lack of metabolic response to temperature and 
food availability was also noted. Thus, the authors 
concluded salinity and temperature did not influence 
distribution and abundance of adult overbite clams. 

Though the overbite clam has been well-studied 
in bays and mainstem river channels of the 
estuary, little is known of its long-term abundance, 
distribution, or potential ecological effects in Suisun 
Marsh, a large brackish tidal marsh with important 
juvenile fish habitat (Moyle et al. 2012, 2014). Using 
ancillary data from a large-scale 35-year fish study, 
we investigated overbite clams in Suisun Marsh to 
answer three basic questions: 

1.	 What is the abundance trend of overbite clam in 
Suisun Marsh since 1988, the year they were first 
detected? 

2.	 What is the spatial distribution of overbite clams 
in Suisun Marsh? 

3.	 What environmental parameters predict overbite 
clam abundance?

METHODS

Study Area 

Suisun Marsh is a large (~34,000 ha) brackish tidal 
marsh between the Sacramento–San Joaquin Delta 
and San Pablo Bay (Figure 1). Suisun Marsh is 
recognized as being an important low-salinity habitat 
for numerous fishes and invertebrates (Meng et al. 
1994; Meng and Matern 2001; Matern et al. 2002; 
Feyrer et al. 2003). Although Suisun Marsh has 
been invaded by numerous alien species (Matern et 
al. 2002; Schroeter 2008), it still has areas of high 
phytoplankton biomass (Mueller–Solger et al. 2002) 
and a relatively stable brackish fish community of 
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both alien and native fishes (Matern et al. 2002; 
Schroeter 2008; Moyle et al. 2014).

Sample Collection

Overbite clams were collected by otter trawl as part 
of a long-term fish monitoring project in Suisun 
Marsh (Matern et al. 2002). Since overbite clams 
were not detected in Suisun Marsh until 1988, 
data from 1980 to 1987 were excluded from our 
study. Trawling was conducted monthly at 17 
stations situated throughout the marsh using a 
four-seam otter trawl (Figure 1; trawl height = 1.5 m, 
width = 4.3 m, length = 5.3 m; body net mesh 35-mm 
stretch, cod-end mesh 6-mm stretch). The trawl was 
towed during daylight hours at 4 km  hr-1 for 5 or 10 
minutes, depending on slough size (width and depth). 
Small sloughs were sampled for 5 minutes (Spring 
Branch, Peytonia, Goodyear, Cutoff, Boynton), 

and large sloughs (Suisun and Montezuma) were 
sampled for 10 minutes. At the end of each trawl, 
organisms were identified, counted, and released 
at the site of capture. Trawl mesh retained overbite 
clams approximately 20 mm or larger throughout 
the body of the trawl, down to a minimum size of 
approximately 5 mm in the cod-end (i.e., adult-sized 
clams). Standardized sampling protocols and the large 
number of samples collected over 27 years (5,508 
samples) provide a robust measure of the relative 
abundance of adults (> 5 mm). All catch results were 
converted to catch per minute (catch minute-1) to 
standardize catch for both small and large sloughs. 
Water-quality data were recorded at the conclusion 
of each tow. Water transparency was measured 
with a Secchi disc (cm); temperature (°C), specific 
conductance (microSiemens: μS), and salinity (ppt) 
were measured using Yellow Springs Instruments 
(YSI) hand-held meters (models 85 and 95). Dissolved 
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oxygen parameters (DO: mg L-1 and % saturation), 
first sampled in 2000, were also measured with the 
YSI meters. 

Analyses

To evaluate long-term patterns in abundance, we 
conducted a Mann–Kendall test (R software system, 
R Package Kendall; Kendall and Gibbons 1990; 
McCleod 2011). The Mann–Kendall trend test is 
a non-parametric rank-based test effective for 
identifying monotonic data trends when extreme 
values and skewness are present (Helsel and Hirsch 
1992). We standardized catch data to catch minute-1 
and log+1 transformed before analyses to better 
approximate the constant variance required for a 
Mann–Kendall test. 

To assess the spatial distribution and to look for 
distributional shifts over the 27-year study, we 
plotted annual catch by site. Overlaying spatial data 
with abundance provided a visual assessment of their 
relationship.

To determine the functional relationship between 
catch patterns and water-quality metrics, we 
performed generalized additive modeling (GAM; R 
software system, R package MGCV). GAM models 
account for non-linear relationships common in 
ecological data by utilizing smoothing functions to 
determine the relationship between variables (Zuur 
2007). Before including water-quality parameters in 
models, we performed diagnostic checks of data by 
testing whether there were either influential outliers 
or collinearity in the data. We chose a pairwise 
(Spearman) correlation coefficient of (r) > 0.8 as a 
cut-off (Berry and Felman 1985). To account for 
over-dispersion and differences in effort between 
large and small sloughs, we chose to utilize a 
negative binomial distribution with an offset term 
for effort. We tested whether independent variables 
of salinity, temperature, DO, and water transparency 
(Secchi depth) were significant predictors of catch.

RESULTS

A total of 397,965 overbite clams were captured 
in 5,508 sampling events at 17 stations over the 
27 years. The annual average catch increased 
significantly over the 27-year period, according 

to the Kendall’s trend test (tau = 0.741, p < 0.001) 
(Figure 2A). Over 92% of all overbite clams captured 
in Suisun Marsh were taken from two sites (SU3 and 
SU4) in lower Suisun Slough (Figures 1 and 2B). 
Adding catch from the nearby lower Goodyear 
Slough site (GY3) and the upper reaches of Suisun 
Slough (SU1 and SU2) accounted for > 99% of the 
total catch (Figures 1 and 2B). Clams were extremely 
rare in small tidal sloughs, and were less abundant 
in upstream reaches of larger sloughs than in 
downstream reaches (Figure 2C). 
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Figure 2  Otter trawl catch of overbite clam in the 17 Suisun 
Marsh stations sampled over the 27-year period (1988−2015). 
Catch per unit effort (count per minute) is shown for (A) overall 
clam abundance over all sites, (B) for the five most abundant 
sites, and (C) for the remaining 12 non-abundant sites. Note the 
change in order of magnitude for the Y-axis among graphs.
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Since 2001, the highest proportion of clams caught 
was generally in spring and summer, with the lowest 
catch consistently occurring in winter (Figures 3 and 
4). Before 2001, catch was lower and highly variable, 
and no season dominated in any given year, making 
patterns less apparent (data not shown). Considerable 
variability since 2000 also existed in the annual 
catch of clams by site and year because of both the 
large seasonal fluctuations in catch and the species’ 
limited spatial distribution (Figures A1 and A2, 
see Appendix A). Abundance in any given month 
fluctuated from year to year. 

The final regression model retained salinity, 
temperature, and percent-saturation DO as strongly 
significant (p < 0.0001) predictors of clam capture, 
and accounted for 18% of the total deviance 
explained (Figure 5). Because the inclusion of Secchi 
depth (water transparency) was not significant 
(p > 0.5) and only resulted in an additional 1% 
reduction of the null deviance, it was omitted. The 
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overall positive increasing relationship among the 
predicted response for temperature, salinity, and 
oxygen indicated that clams preferred warm, saltier, 
well-oxygenated conditions (Figure 5). However, we 
were unable to assess whether there was an upper 
bound to this preference, because the abundance 
of clams did not decline at higher temperatures or 
salinities. The maximum salinity and temperature 
measured when clams were captured was 16 ppt and 
32.1 °C, respectively. 

Plotting average monthly values over the 27-year 
period of the four environmental variables (16 years 
for DO) versus abundance (Figure 3; Table A1) 
revealed little correlation between extreme values of 
any variable and periods of highest abundance. The 
exception was water temperature, where the highest 
average values appeared to coincide with periods 
of highest catch. Because salinity was the strongest 
driver in the model, we similarly plotted monthly 
salinity averages (over 27 years) of the five sites 
with the bulk of the overbite clams and the 12 other 
sites with their average abundance values (Figure 4; 
Tables A2 and A3). Except for the elevated salinities 
at the three sites with the highest clam abundances 
(SU3, SU4, GU3), no discernable pattern was evident. 
Similar results were obtained when we viewed data 
yearly (Table A4).

DISCUSSION

Overbite clams have progressively increased in 
abundance in Suisun Marsh since their invasion in 
1988, primarily in spring and summer. However, 
during this period they have maintained a limited 
spatial distribution, being found mainly in a single 
large tidal slough: Suisun Slough. The relative lack 
of spatial shifts in distribution (except in SU2) 
during this long-term study indicated that most 
of Suisun Marsh is inhospitable to overbite clams. 
Modeling results indicated that both clam abundance 
and distribution were influenced by salinity, water 
temperature, and DO. Yet, a more fine-scale analysis 
did not reveal any obvious patterns, which suggests 
the importance of interactive effects. In addition, as 
discussed below, to develop a fuller understanding 
of overbite clams in the marsh, there may have been 
effects of other factors that need to be studied. 

Our study supports salinity as a strong driver of 
abundance and distribution of overbite clams, as 
previously documented in other parts of the estuary 
(Werner et al. 2003). The reported minimum salinity 
(5 ppt) in Hymanson (1991) corresponds with the 
optimal range of 5 to 25 ppt for successful spawning 
and fertilization observed under laboratory conditions 
(Nicolini and Penry 2000). This minimum salinity 
matched that of marsh stations that had the highest 
catch of clams from spring through fall (April–

5 10 15 20 25 30

−4
−2

0
2

4

Temperature (°C)

s(
Te

m
p,

 d
f =

 3
.8

2)

0 5 10 15
−2

−1
0

1
2

3
4

Salinity (ppt)
s(

S
al

, d
f =

 1
.0

3)
50 100 150

−1
0

−5
0

5
10

Dissolved Oxygen (%Saturation)

s(
%

S
at

, d
f =

 3
.6

4)

Figure 5  Graphical representation of the smoothed relationship between clam abundance and three environmental variables: temperature, 
salinity, and dissolved oxygen (% saturation) from generalized additive modeling (GAM). The red line at zero represents when clams are 
showing neither a positive nor negative response. The degrees of freedom (df) are given for each model on the Y-axis. Black lines along the 
X-axis denote density of data points.



7

JULY 2017

https://doi.org/10.15447/sfews.2017v15iss2art6

November). In addition, we documented lower annual 
average catch when average annual salinity fell 
below 5 ppt (Figure 3A). However, this finding was 
in contrast to Miller and Stillman (2013) who found 
no bio-energetic cost to adult clams that resided in 
low to moderate salinities (0.2 to 16 ppt). It is likely 
that our catch patterns of adult clams were partly a 
result of low salinities that harmed earlier life-history 
stages, which subsequently reduced recruitment.

In addition to salinity, water temperature and DO 
were also significant predictors of clam abundance 
according to our model. The most obvious pattern 
was the association between the highest average 
water temperatures and highest abundance (in 
sites where clams were found), reflected by clams 
generally being most numerous during summer. 
Temperature has been an important factor in the 
distribution and abundance of other related invasive 
clams (Sousa et al. 2008) and, as for Corbicula 
fluminea, may become more of a factor given 
ongoing climatic changes (Weitere et al. 2009). 
However, the correlation between temperature 
and strong seasonal variations in clam abundance 
may not be direct and must be viewed cautiously 
(Viergutz et al. 2012). DO was likewise positively 
correlated with clam abundance (Figure 5), suggesting 
that factors contributing to low DO values in the 
sediments, such as high detrital loads, may restrict 
clam distribution in the marsh (discussed below). 

Although salinity was strongly correlated with the 
distribution and abundance of overbite clams, the 
lack of consistent pattern suggests other factors 
were also important in conjunction with salinity. 
We propose that the distribution and abundance of 
overbite clams in Suisun Marsh is the result of a 
source–sink dynamic. Grizzly Bay is saturated with 
overbite clams (Greene et al. 2011). Tides likely carry 
pelagic larvae and dispersing early-stage juveniles 
with byssal threads (Beukema and de Vlas 1989) into 
the marsh interior during summer and fall when river 
outflow is reduced and marine water intrudes into 
the marsh. However, conditions from winter through 
late spring in the marsh interior seem to prevent their 
continued survival to the adult stage. Thus, clam 
distribution in Suisun Marsh may reflect a balance 
between colonization from the abundant source 
populations and the sink of seasonally unsuitable 
environmental conditions. We hypothesize that three 

primary factors contribute to the apparent limitations 
to recruitment: connectivity, detrital abundance, and 
predation.

Connectivity

Because Grizzly Bay likely serves as the source for 
clams in Suisun Marsh, clam abundance should be 
highest in sites geographically closest to this bay. 
Also, environmental conditions should be most 
similar between these sites and the bay. Thus, sites 
located closest to Grizzly Bay should be repeatedly 
colonized successfully each year, allowing for 
increased abundance. This would explain why lower 
Goodyear Slough (GY3) has had a higher abundance 
of clams than the upper reaches of Suisun Slough 
(SU1 and SU2). But the further the distance from 
Grizzly Bay, the more conditions become sub-
optimal, and the fewer individuals that are able to be 
transported into more distant and smaller sloughs, 
reducing colonization. 

Detrital Abundance

Another possible factor related to the absence of 
adult clams in small sloughs is the high benthic 
detrital loads commonly found in these sloughs 
(unpublished data). High quantities of coarse detritus, 
which includes leafy debris from tules and other 
marsh vegetation, may interfere with filter-feeding 
of clams. The overbite clam is usually partially 
submerged in bottom sediments and has a short 
siphon (Carlton et al. 1990), making it vulnerable to 
smothering by heavy loads of detritus. Thus, juvenile 
clams would be most vulnerable to this factor, with 
vulnerability presumably decreasing with increasing 
clam size. High coarse detritus loads may also either 
physically dislodge clams as the detritus load shifts 
with changing tides or contribute to anoxia in bottom 
sediments. Low DO levels in both sediments and the 
water column may kill or interfere with reproduction 
by adult clams and could influence survival of larvae 
and juveniles. This is supported by the significance of 
DO in our model.

Predation

Predation may also contribute to observed distribution 
patterns (Lovvorn et al. 2013). Sacramento Splittail 
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(Pogonichthys macrolepidotus) and White Catfish 
(Ameiurus catus) are both predators of overbite clams 
(Feyrer at al. 2003; O’Rear 2012) and abundant in 
Suisun Marsh, particularly within the shallow sloughs 
of the marsh interior where clams are uncommon or 
absent (Meng et al. 1994; Matern et al. 2002). White 
Sturgeon (Acipenser transmontanus), another predator 
of clams (– at al. 2014), inhabits the marsh but 
primarily within larger sloughs where clams are most 
abundant. Thus, it is unlikely that White Sturgeon 
have a large effect on the upstream distribution 
pattern. Similarly, avian predators — including Greater 
and Lesser Scaup (Aythya marila and A. affinis) and 
Surf Scoter (Melanitta perspicillata)—are present in 
the system but, like sturgeon, are mainly abundant in 
the downstream reaches of large sloughs near Grizzly 
Bay (Lovvorn et al. 2013). They are also found in the 
marsh primarily in winter, when clam populations are 
at a minimum. Overall, biotic control of clams in the 
upper and middle reaches of the larger sloughs (i.e., 
upper Suisun Slough, eastern Montezuma Slough) 
seems unlikely, but control by fish predation in the 
smaller sloughs is at least a possibility.

CONCLUSION

To improve performance of restoration projects, 
the discussion above highlights that more research 
is needed to determine the mechanisms that make 
small tidal sloughs unsuitable as habitat for overbite 
clams. Because salinity is such a strong driver of 
abundance and distribution of overbite clams, the 
effect of different freshwater sources on Suisun 
Marsh — such as Delta outflow (MacWilliams et al. 
2015), ephemeral creeks (O’Rear and Moyle 2013), 
wastewater-treatment discharges (Siegel 2014), 
and in-marsh water diversions (Laćan and Resh 
2016) — should be assessed to elucidate more fine-
scale effects of freshwater inflows. Given overbite 
clam’s high filtration rates (Greene et al. 2011), 
their high abundance in lower Suisun Slough could 
reduce the supply of phytoplankton and zooplankton 
transported up the slough from Grizzly Bay to 
smaller, more interior sloughs. This could be explored 
via oxygen or sulfur isotopes as indicators of 
freshwater versus marine origins of production (Leng 
and Lewis 2016) coupled with overbite clam filtration 
rates and hydrodynamic models. An intensive survey 
of overbite clam abundance and distribution in both 

Suisun Marsh and Grizzly Bay, combined with shell 
sizes and reproductive condition, would support or 
refute our source–sink hypothesis.

In conclusion, the consistent absence of overbite 
clams in most of Suisun Marsh — especially in smaller 
sloughs — over the last 2 decades provides strong 
evidence for the unsuitability of such habitats for 
them. This allows many areas to remain productive 
for pelagic fishes such as juvenile Striped Bass 
(Morone saxatilis) and Threadfin Shad (Dorosoma 
petenense), which are routinely captured in the 
shallow sloughs of the marsh interior (Matern et 
al. 2002; Schroeter 2008). Other pelagic fishes 
that may benefit from clam-free areas include 
Delta Smelt (Hypomesus transpacificus), Longfin 
Smelt (Spirinchus thaleichthys), Northern Anchovy 
(Engraulis mordax) (Meng and Matern 2001; Matern 
et al. 2002), and the larvae of many benthic fishes 
such as Prickly Sculpin (Cottus asper). Our findings 
are also significant for tidal marsh restoration, 
an important management activity in the estuary. 
Consistent with Hymanson (1991), our study suggests 
major invasions by overbite clam into newly restored 
tidal marshes would be unlikely in regions that 
experience substantial periods of freshwater inflow. 
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