# UC Berkeley Working Paper Series

# Title

Semiconductor Engineers in a Global Economy

# Permalink

https://escholarship.org/uc/item/6fr9b2p9

# Authors

Brown, Clair Linden, Greg

Publication Date 2007-01-25

# Semiconductor Engineers in a Global Economy

#### Clair Brown and Greg Linden University of California, Berkeley

This paper was prepared for the National Academy of Engineering, *Workshop on the Offshoring of Engineering: Facts, Myths, Unknowns, and Implications*, October 24-25, 2006, Washington, DC. It is based upon research conducted for our forthcoming book, *Change is the Only Constant: How the Chip Industry Reinvents Itself*.

Acknowledgements: Clair Brown is Professor of Economics and Director of the Center for Work, Technology, and Society (IIR) at University of California, Berkeley; Greg Linden is Senior Research Fellow at the Center for Work, Technology, and Society at UC Berkeley. Yongwook Paik provided excellent research assistance. The authors would like to thank the Alfred P. Sloan Foundation, the Institute for Industrial Relations at UC Berkeley, and the Institute for Technology, Enterprise and Competitiveness (ITEC/COE) and Omron Fellowship at Doshisha University for funding. Bob Doering and Bill Spencer provided detailed and helpful comments on the workshop version of this paper. We are also grateful to Ben Campbell, David Ferrell, Michael Flynn, Gartner Dataquest, Ron Hira, Dave Hodges, Rob Leachman, Daya Nadamuni, Elena Obukhova, Devadas Pillai, Semiconductor Industry Association, Chintay Shih, Gary Smith, Strategic Marketing Associates, Yea-Huev Su, Tim Tredwell, and C-K Wang for their valuable contributions, Melissa Appleyard, Hank Chesbrough, Jason Dedrick, Rafig Dossani, Richard Freeman, Deepak Gupta, Bradford Jensen, Ken Kraemer, Frank Levy, Jeff Macher, Dave Mowery, Tom Murtha, Tim Sturgeon, Michael Teitelbaum, and Eiichi Yamaguchi, as well as participants at the NAE Workshop on the Offshoring of Engineering, the 2005 Brookings Trade Forum on Offshoring of White-Collar Work, the Berkeley Innovation Seminar, and the Doshisha ITEC seminar series provided thoughtful discussions that improved the paper. We are especially grateful to Gail Pesyna at the Sloan Foundation for her long-running support of, and input into, our research. The authors are responsible for any errors.

# Semiconductor Engineers in a Global Economy

#### 1. The Changing Nature of Semiconductor Engineering Work

The main forces affecting the nature of engineering work in the semiconductor industry are the evolution and globalization of technology. U.S. semiconductor firms are in many cases leading these changes both at home and abroad. With increased global competition, U.S. chip engineers must continually upgrade their skills, handle mobility among employers, and rely upon their own resources, rather than their employers, to manage their careers.

The new sources of global competition do not seem to be large enough to undermine the positive employment and wage effects of the industry's continued growth for most workers, although older workers and those at the bottom of the job distribution have suffered deteriorating job opportunities. Many overseas companies, such as Taiwan's foundries and India's design services providers, are complementary to U.S. activities and have lowered barriers to entry at a time when the costs of design and manufacturing are skyrocketing. This plays to U.S. engineering strength by keeping the fabless start-up system for bringing innovation to market viable. The cost reductions enabled by Asian suppliers of fabrication and design services also help maintain the fall in price per transistor,

which supports continued expansion of semiconductor markets, both at home and abroad.

The semiconductor (or integrated circuit, IC, or chip) industry involves three distinct stages of production, which have been affected differently by globalization and offshoring:

Design: The design of integrated circuits is carried out primarily by engineers. The offshoring of this activity to low-cost locations has been accelerating since the mid-1990s.

Fabrication: Wafer fabrication uses a large number of process and equipment engineers, who account for approximately 25% of total direct workers at a manufacturing or fabrication facility (called a "fab"). Offshoring and onshoring of IC factories appears to have reached a relatively mature and stable stage.

Assembly and packaging: The final stage of IC manufacturing is the most laborintensive, with engineers making up only 6% of the typical assembly plant's workforce. Assembly offshoring began in the 1960s, and assembly has been almost completely offshored from the United States. We will <u>not</u> be discussing assembly in this paper because of its insignificant implications for U.S. engineers.<sup>1</sup>

The semiconductor industry produces a heterogeneous output ranging from relatively simple discrete diodes and transistors all the way to complex "systems on a chip." Most market statistics reported here and elsewhere reflect "merchant"

<sup>&</sup>lt;sup>1</sup> For an analysis of the globalization of assembly, see Brown and Linden (2006).

semiconductor sales, those sold to unrelated companies. There is a less visible share of the industry devoted to "captive" chip design and manufacture (internal to the company). This model is most prevalent in Japan, but still exists in the U.S., primarily at IBM, where nearly 50% of chip output in 2000 was for captive use.<sup>2</sup> Other systems companies, such as Apple Computer or Cisco, that don't make or sell chips may nevertheless design them for internal use. These chips may or may not be counted in merchant data depending on whether they are manufactured by a branded ASIC company such as LSI Logic (which would be counted) or by a manufacturing services "foundry," such as Taiwan Semiconductor Manufacturing Corporation (which wouldn't, since all foundry sales are excluded to prevent double counting).

The work of engineers who design, manufacture, and market chips has been transformed by the continuous progression of manufacturing technology, which has evolved for more than 30 years along a trajectory known as "Moore's Law," the name given to a prediction made in a 1965 article by Gordon Moore, who a few years later would go on to co-found Intel. Moore predicted that the cost-minimizing number of transistors that could be manufactured on a chip would double every year (later revised to every two years), and the industry has maintained this exponential pace for more than thirty years.<sup>3</sup>

Moore's prediction was based on several elements, such as the ability to control manufacturing defects, but the driving technological force has been a steady reduction in the size of transistors. The number of transistors that leading-edge producers can fabricate in a given area of silicon has doubled roughly every three years, and from 1995 to 2003 the pace accelerated to a doubling every *two* years.<sup>4</sup>

This relentless miniaturization is now reaching the molecular level. The smallest "linewidth" (feature on the chip surface) has shrunk from two microns in 1980 to less than a tenth-micron (100 nanometers) a quarter-century later. If viewed in cross-section, the thickness of horizontal layers of material deposited on the silicon surface is currently about 1.2 nanometers. To give an idea of the scale involved, the width of a human hair is about 100 microns, and the width of a molecule is about 1 nanometer (one-thousandth of a micron).

This progress has involved considerable R&D expense, and the cost of each generation of factories has steadily increased. By 2003 the price tag for a fab of minimum efficient scale had become more than \$3 billion.

The Moore's Law trajectory has led to growing complexity of the industry's most important chip designs. A chip like Intel's Pentium 4, with 42 million transistors fabricated on a 180nm linewidth process, engaged hundreds of design engineers for the full length of the five-year project.<sup>5</sup> Design teams can also be as small as a few engineers, and project duration varies from months to years. Team size depends on the complexity of the project, the speed with which it must be completed, and the resources available.

The increase in functional integration has reached a point where certain chips encompass most of the individual elements that populated the circuit board of earlier

<sup>&</sup>lt;sup>2</sup> IC Insights data reported in Russ Arensman, "Big Blue Silicon," Electronic Business, Nov.2001.

<sup>&</sup>lt;sup>3</sup> The revision occurred in 1975 (John Oates, "Moore's Law is 40," The Register, April 13, 2005.

<sup>&</sup>lt;sup>4</sup> Mark LaPedus, "ITRS chip roadmap returns to three-year cycle," Silicon Strategies, January 21, 2004.

<sup>&</sup>lt;sup>5</sup> "Comms held Pentium 4 team together," EE Times, November 1, 2000. "Linewidth" refers to the size of the features etched on a wafer during the fabrication process. Each semiconductor process generation is named for the smallest feature that can be produced.

systems, giving rise to the name "system on a chip" (SOC). SOC integration offers benefits of speed, power, reliability, size and cost relative to the use of separate chips.

Although the manufacturing cost of an SOC is smaller than that of the separate components it replaces, the fixed costs of a complex design can be significantly higher, in part because system-level integration has drawn chip companies into software. One reason is that system software should be generated in parallel with the system-level chip for reasons of coherence. Chip companies are also offering their customers software development environments and even applications to help differentiate their chips. Software can now account for half the engineering hours involved in a large chip development project.

U.S. chip companies account for about half the industry's revenue in 2005, with Intel alone commanding about 15 percent of the market. The only U.S.-based firms in the 2005 global top ten are Intel and Texas Instruments, but the U.S. has a great many midsize companies that account for about half the places in the top 50. Some of these are "fabless" companies that design and market chips but leave the manufacturing to other companies, primarily the Asian contract manufacturers known as foundries. All new entrants to the chip industry in recent years have adopted the fabless model.

Fabless revenue has grown much faster (compound annual growth rate, CAGR, of 20%) than the semiconductor industry as a whole (CAGR of 7%) over the last ten years. The largest fabless companies, Qualcomm, Broadcom, and Nvidia, had more than \$2 billion each in 2005 revenue.

This paper discusses how the labor market for semiconductor engineers, both domestically and worldwide, has been changing in response to the changes in skill demands. It is based on our ongoing interview-based research on the globalization of the semiconductor industry. Since the early 1990s, the Berkeley Sloan Semiconductor Program has collected data at semiconductor companies globally<sup>6</sup>. As part of the ongoing Semiconductor Program, during the past seven years the authors have interviewed managers and executives at dozens of semiconductor companies (both integrated and fabless) in the US, Japan, Taiwan, India, China, and Europe. In this analysis of industry and labor market trends and dynamics, we also use data from the Bureau of Labor Statistics, the Semiconductor Industry Association, and the Institute of Electrical and Electronic Engineers, as well as other published and proprietary sources (e.g., industry consultants).

We begin by looking in detail at various data sets on employment and earnings of U.S. semiconductor engineers, H-1B workers, and overseas engineers. Then we discuss the forces affecting the U.S. labor market for semiconductor engineers, including technological change, immigration policy, and higher education practices. Next globalization is discussed in terms of offshoring by U.S. companies, the availability and quality of low-cost engineers in Asia, and the development of the semiconductor industry in Taiwan, China, and India. The final section considers the outlook for the U.S. chip industry's workforce.

<sup>&</sup>lt;sup>6</sup> The Competitive Semiconductor Manufacturing program is a multi-disciplinary study of the semiconductor industry established in 1991 by a grant from the Alfred P. Sloan Foundation with additional support from the semiconductor industry. Further details are available at esrc.berkeley.edu/csm/ and iir.berkeley.edu/worktech/.

#### 2. The U.S. Labor Market for Engineers

During the past six years, the many forces affecting the semiconductor industry include the severe recession during 2001, the recovery that stalled in 2004, the large decline in venture funding for start-ups that is only beginning to pick up, changes in the number of H-1B visas, and a drop and then recovery in foreign student applications to U.S. graduate engineering schools since 9-11. It is difficult to disentangle any underlying long-run trend in the offshoring of engineering jobs from these changes in government policies and the swings of the business cycle. This caveat should be borne in mind during the following analysis of the U.S. labor market for semiconductor engineers as well as in the discussion of engineering jobs in selected countries.

Because of the complexity of the situation, we analyze multiple data sources on U.S. semiconductor engineers. The results that are not entirely consistent, which reflects a need for better data collection by government agencies.

To identify trends in the employment and earnings of semiconductor engineers, we use two major national data sets that have different strengths and weaknesses. The Bureau of Labor Statistics' Occupational Employment Statistics data (obtained online at www.bls.gov/oes/home.htm) provide a large sample collected from establishments that report detailed occupation characteristics. However comparison of data across years is not exact, since OES is designed for cross-section comparisons and not for comparisons across time.<sup>7</sup> Also educational characteristics are not given. The American Community Survey (ACS) (http://www.census.gov/acs/www/), which is a relatively new household survey that began in 1996 in order to update the Census between decennial surveys, provides detailed occupation and industry characteristics as well as education, and so it is much better suited for our labor market analysis. However the sample size is not adequate for detailed analysis until 2002 and later years. For this reason, we look at both the OES and ACS data sets in our analysis below. These two data sets yield somewhat different results, and this indicates that one should not draw strong conclusions based upon only one of the data sets.

We also describe semiconductor career paths and firm job ladders over the 1992 to 2002 period by using the very large Census LEHD data set that links employees and employers, in order to look at how workers form their career paths by piecing together the jobs offered by semiconductor firms.

#### 2.1 Employment and Earnings (OES data)

We begin our discussion of semiconductor engineering jobs in the U.S. by looking at employment and annual earnings for selected engineering jobs in 2000 and 2005 from the OES. For the semiconductor industry, we use the North American Industry Classification System (NAICS) "Semiconductor and Other Electronic Component Manufacturing" (NAICS four-digit level 3344), which includes relatively low-value components such as resistors and connectors. The most relevant subcategory, "Semiconductor and related device manufacturing" (NAICS 334413), accounted for 39%

<sup>&</sup>lt;sup>7</sup> The OES survey methodology is designed to create detailed cross-sectional employment and wage estimates for the U.S. by industry. It is less useful for comparisons of two or more points in time because of changes in the occupational, industrial, and geographical classification systems, changes in the way data are collected, changes in the survey reference period, and changes in mean wage estimation methodology, as well as permanent features of the methodology. More details can be found at http://www.bls.gov/oes/oes ques.htm#Ques27.

of employees (and 45% of non-production workers) in the 3344 category in 2003, but occupation-specific data are not available at this level of industry detail.<sup>8</sup>

Nationally in 2005, 2.4 million people were employed in "engineering and architecture" occupations<sup>9</sup>, where their average annual earnings were \$63,920 (see Table 1). Another 2.9 million people were employed in "computer and mathematical" occupations, where their average annual earnings were \$67,100. National employment in engineering and architecture fell 7.5% from 2000 to 2005, and average annual earnings of these workers rose 18.2% (more than the CPI-urban, which rose 13.4%<sup>10</sup>). Computer and mathematical jobs increased slightly (0.7%) from 2000 to 2005, and average annual earnings of these workers rose 15.6%, slightly more than inflation.

The semiconductor industry (NAICS 3344) employed 450,000 workers in 2005, with 21% in engineering and architecture occupations (of which 36% are technicians or drafters) and 6.4% in computer and math occupations (of which 40% are support or administrators). These two occupation groups exclude managers, who are 8.2% of employment. Nationally, some 12% of electronics engineers, 7.3% of electrical engineers, 18% of computer hardware engineers, 5.8% of industrial engineers, and approximately 2% of computer software engineers (applications and systems) are employed in the semiconductor industry. Together these six occupations account for 54% of engineering jobs in the semiconductor industry, or 85% if techs, drafters, and computer support occupations are excluded.

As Table 1 shows, engineering jobs ("architecture and engineering occupations") in the semiconductor industry fell a surprising 28% between 2000 and 2005<sup>11</sup>. However when we look at the major categories for semiconductor engineers, we see that jobs increased for electrical engineers (6%), electronic engineers (11%), and computer hardware engineers (141%), while jobs for industrial engineers fell 12%, which is the only specialty where job growth for semiconductor engineers was lower than for engineers nationally.

As suggested by the earlier discussion of system-level chip design, jobs for software engineers ("computer and mathematical occupations") in the semiconductor industry grew 6% between 2000 and 2005, while they grew less than 1% nationally. The growth was unevenly distributed, however. Semiconductor industry jobs for software applications engineers grew 40% while jobs for software systems engineers fell 14%.

<sup>&</sup>lt;sup>8</sup> U.S. Census Bureau, "Statistics for Industry Groups and Industries: 2003," Annual Survey of Manufactures, April 2005.

<sup>&</sup>lt;sup>9</sup> This is the broad occupational category used for engineers in the OES.

<sup>&</sup>lt;sup>10</sup> http://data.bls.gov/cgi-bin/surveymost?cu

<sup>&</sup>lt;sup>11</sup> Comparison of 2000 and 2005 is not exact because SIC 367 was used in 2000 for the industry code and NAICS 334400 was used in 2005.

|                                                  | 20         | 000        | 200        | 5          |             |             |
|--------------------------------------------------|------------|------------|------------|------------|-------------|-------------|
|                                                  |            | Avg Annual |            | Avg Annual | % Change in | % Change in |
|                                                  | Employment | Earnings   | Employment | Earnings   | Employment  | Earnings    |
| Architecture and engineering occupations (total) | 2,575,620  | \$54,060   | 2,382,480  | \$63,920   | -7.50%      | 18.24%      |
| Arch and eng occ in SC                           | 132,150    | \$52,100   | 95,520     | \$68,720   | -27.72%     | 31.90%      |
| Electrical engineers (total)                     | 162,400    | \$66,320   | 144,920    | \$76,060   | -10.76%     | 14.69%      |
| Electrical eng in SC                             | 10,050     | \$69,560   | 10,620     | \$82,400   | 5.67%       | 18.46%      |
| Electronic engineers (total)                     | 123,690    | \$66,490   | 130,050    | \$79,990   | 5.14%       | 20.30%      |
| Electronic eng in SC                             | 14,170     | \$65,400   | 15,700     | \$82,430   | 10.80%      | 26.04%      |
| Aerospace Engineers (total)                      | 71,550     | \$69,040   | 81,100     | \$85,450   | 13.35%      | 23.77%      |
| Chemical Engineers (total)                       | 31,530     | \$67,160   | 27,550     | \$79,230   | -12.62%     | 17.97%      |
| Civil Engineers (total)                          | 207,080    | \$58,380   | 229,700    | \$69,480   | 10.92%      | 19.01%      |
| Computer Hardware Engineers (total)              | 63,680     | \$70,100   | 78,580     | \$87,170   | 23.40%      | 24.35%      |
| Hardware eng in SC                               | 5,990      | \$70,780   | 14,440     | \$89,870   | 141.07%     | 26.97%      |
| Industrial Engineers (total)                     | 171,810    | \$59,900   | 191,640    | \$68,500   | 11.54%      | 14.36%      |
| Industrial eng in SC                             | 12,580     | \$64,420   | 11,030     | \$74,250   | -12.32%     | 15.26%      |
| Mechanical Engineers (total)                     | 207,300    | \$60,860   | 220,750    | \$70,000   | 6.49%       | 15.02%      |
| Computer and Mathematical Occupations (total)    | 2,932,810  | \$58,050   | 2,952,740  | \$67,100   | 0.68%       | 15.59%      |
| Computer and math occ in SC                      | 27,080     | \$66,660   | 28,770     | \$77800    | 6.24%       | 16.71%      |
| Computer programmers (total)                     | 530,730    | \$60,970   | 389,090    | \$67,400   | -26.69%     | 10.55%      |
| Software eng, applications (total)               | 374,640    | \$70,300   | 455,980    | \$79,540   | 21.71%      | 13.14%      |
| Software eng (apps) in SC                        | 5,890      | \$72,680   | 8,250      | \$86,860   | 40.07%      | 19.51%      |
| Computer software eng, systems (total)           | 264,610    | \$70,890   | 320,720    | \$84,310   | 21.20%      | 18.93%      |
| Software eng (systems) in SC                     | 8,280      | \$76,660   | 7,090      | \$90,820   | -14.37%     | 18.47%      |

# Table 1: Engineer Employment and Earnings, 2000 and 2005

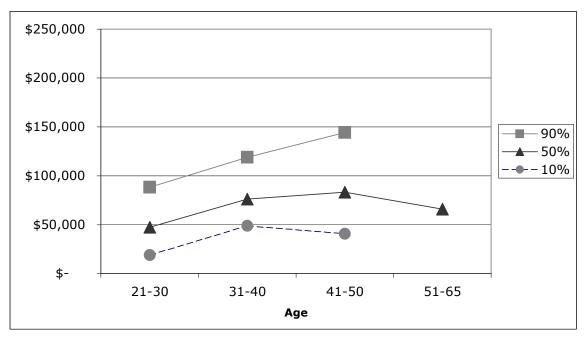
.

On average, engineers ("architecture and engineering" occupations) in the semiconductor industry command a higher salary than their counterparts in other industries. In 2005, semiconductor industry engineers earned 7.5% more than engineers nationally, and software engineers ("computer and mathematical" occupations) in the semiconductor industry earned 16% more than software engineers nationally. For a given specialty, engineers in the semiconductor industry received average annual earnings that were anywhere from 3% higher (for electronic engineers) to 9% higher (for computer software engineers, applications) than engineers in other industries. The main six semiconductor engineering specialties all experienced average real earnings growth (i.e., above the inflation rate of 13.4% for the period), with real growth ranging from 1.9% for industrial engineers to 14% for computer hardware engineers. Note that these comparisons are not adjusted for education or experience, which we consider in the next section using a different data set.

Of course the years between 2000 and 2005 exhibit variations in employment rather than a smooth increase. For example, applications software engineers experienced a dip in employment in 2004 after strong employment growth in 2003, and electrical and electronics engineers experienced a dip in employment in 2003 followed by very strong employment growth in 2004. This is consistent with the jump in the national unemployment rate for electrical and electronics engineers to 6.2% in 2003, as it converged for the first time in 30 years with the general unemployment rate, before falling back in 2004 to a more typical rate of 2.2%.<sup>12</sup>

Overall we can say that the labor market for semiconductor engineers appears to be relatively strong in the five years since the dot-com bust in 2000, when, nationally, earnings have mostly stagnated during the economic recovery, with income gains going mainly to the top decile (and especially the top 1%). Semiconductor engineers have experienced better job and earnings growth than engineers in the same specialty in other industries. Employment fell for industrial engineers and software systems engineers in the semiconductor industry during this period, but grew for the other four specialties. Although earnings growth was relatively high only for computer hardware engineers and electronic engineers in the semiconductor industry, all six specialties of semiconductor engineers have high average annual earnings, which ranged from \$74,250 for industrial engineers to \$90,820 for software systems engineers in 2005.

<sup>&</sup>lt;sup>12</sup> Data were provided by Ron Hira. BLS redefined occupations beginning with the 2000 survey covering 1999, but there is no evidence that the redefinition has contributed to the post-bubble unemployment rise. See also "It's Cold Out There", IEEE Spectrum, July 2003.



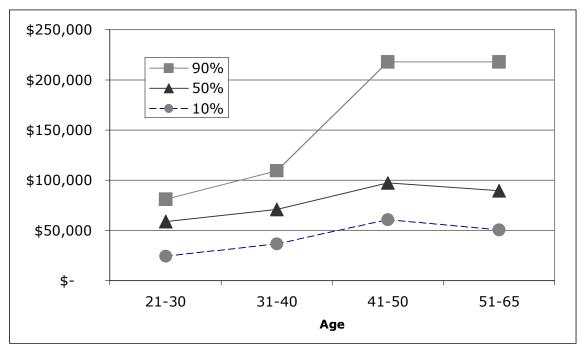



Figure 1: 2000 Age-Earnings Profile, BS Holders





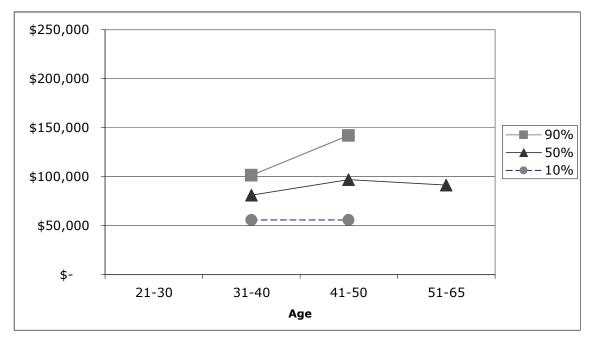
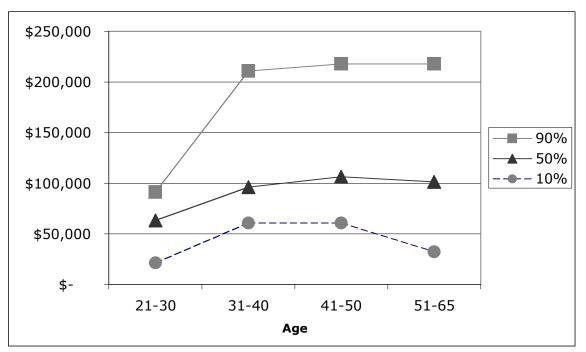




Figure 3: 2000 Age-Earnings Profile, MS and PhD Holders

Figure 4: 2004 Age-Earnings Profile, MS and PhD Holders



|             |             | 2000  |        |        |        | 2002  |        |        |        | 2004    | 2004   |        |        |
|-------------|-------------|-------|--------|--------|--------|-------|--------|--------|--------|---------|--------|--------|--------|
|             |             | 21-30 | 31-40  | 41-50  | 51-65  | 21-30 | 31-40  | 41-50  | 51-65  | 21-30   | 31-40  | 41-50  | 51-65  |
| < Bachelors |             |       |        |        |        |       |        |        |        |         |        |        |        |
| degree      | 10%         |       |        |        |        | 6051  | 29245  | 23194  | 32270  |         | 32421  | 35461  | 34448  |
|             | 50%         |       | 34966  | 60899  | 48973  | 48405 | 57481  | 57481  | 49515  | 40526   | 60790  | 68895  | 70415  |
|             | 90%         |       |        |        |        | 90759 | 80675  | 85717  | 72607  |         | 121579 | 193513 | 97770  |
|             | 90/10 ratio |       |        |        |        | 15.00 | 2.76   | 3.70   | 2.25   |         | 3.75   | 5.46   | 2.84   |
|             | mean        |       | 54606  | 53693  | 70505  | 46649 | 57127  | 56069  | 52402  | 41612   | 68819  | 84736  | 64523  |
| Bachelors   |             |       |        |        |        |       |        |        |        |         |        |        |        |
| degree      | 10%         | 20710 | 53444  | 44536  |        | 30496 | 37061  | 49026  | 32825  | 24316   | 36575  | 60790  | 50658  |
|             | 50%         | 52052 | 83505  | 91299  | 72372  | 58239 | 72005  | 88946  | 70945  | 58763   | 70921  | 97263  | 89665  |
|             | 90%         | 96867 | 130270 | 158104 |        | 95299 | 127066 | 158832 | 158832 | 81053   | 109421 | 217829 | 217829 |
|             | 90/10 ratio | 4.68  | 2.44   | 3.55   |        | 3.12  | 3.43   | 3.24   | 4.84   | 3.33    | 2.99   | 3.58   | 4.30   |
|             | mean        | 58127 | 89949  | 107758 | 109566 | 60867 | 79222  | 104635 | 87555  | 57470   | 76809  | 116220 | 109410 |
| Masters or  |             |       |        |        |        |       |        |        |        |         |        |        |        |
| PhD degree  | 10%         |       | 61238  | 61238  |        | 61945 | 55062  | 63533  | 45002  | 21276   | 60790  | 60790  | 32320  |
|             | 50%         |       | 89073  | 106331 | 100207 | 79417 | 90005  | 105888 | 105888 | 63322.5 | 96250  | 106382 | 101316 |
|             | 90%         |       | 111341 | 155878 |        | 95299 | 137654 | 158832 | 339901 | 91184   | 210737 | 217829 | 217829 |
|             | 90/10 ratio |       | 1.82   | 2.55   |        | 1.54  | 2.50   | 2.50   | 7.55   | 4.29    | 3.47   | 3.58   | 6.74   |
|             | mean        |       | 89360  | 114175 | 121988 | 79769 | 95060  | 120872 | 127819 | 61167   | 112238 | 127075 | 124065 |

# Table 2: Age-Earnings Profile (Inflation Adjusted)\*

.

\* The repetition of earnings in some cells, especially for the 90% group, appears to be a coincidence and not a mistake, since a check of the data indicates many workers with different education and occupation reported the same earnings, which are not top coded.

### 2.2 Age-Earnings Profiles by Education (ACS data)

To look at the earnings structures of U.S. semiconductor engineers by education and experience, we use another data set—American Community Survey (ACS) (http://www.census.gov/acs/www/). Age-earnings profiles by three education groups (<BS, BS, MS/PhD)<sup>13</sup> were calculated using the ACS for the years 2000, 2002, and 2004 for a sample of workers defined as follows:

- age 21-65
- in industry code 339 (Electronic components and products, comparable to NAICS 3344 and 3346)
- in a set of occupation codes (selected electrical and electronic, software, and other engineering occupations and selected managerial occupations).<sup>14</sup>

The age-earnings profiles for the BS (Figure 1 and Figure 2) and MS/PhD groups (Figure 3 and Figure 4) show how the semiconductor engineer annual earnings increase with knowledge and skill, which are proxied by education and experience (age), in two years (2000 and 2004).

These results are also given in Table 2, which shows earnings profiles for the three education groups for 2000, 2002, and 2004 with earnings adjusted for inflation (in 2004 dollars using CPI-urban).<sup>15</sup> One cautionary note: the sample size for 2000 is small, and so the results for 2000 are less reliable than for the later years. Also some of the age-education groups are too small to show full results.<sup>16</sup>

<u>Returns to experience.</u> Median and average real earnings increased with experience (age) for all education groups through the prime ages, and then median (but not necessarily average) earnings declined for older workers (51-65 years). Average earnings did not decline for older workers in any education group in 2000 or for older MS/PhD workers in 2002, and median earnings did not decline for older <BS workers in 2004. The general increase and then decline in median earnings implies that the engineers typically received a return to experience until they are in their fifties and sixties, when earnings then declined for many. At least part of that decline can be explained by looking at weeks

The sample sizes by year and education (not age) are as follows:

|                                                      | 2000 | 2002 | 2004 |
|------------------------------------------------------|------|------|------|
| <bs< td=""><td>44</td><td>129</td><td>127</td></bs<> | 44   | 129  | 127  |
| BS                                                   | 151  | 367  | 363  |
| MS/PhD                                               | 78   | 250  | 271  |

<sup>&</sup>lt;sup>13</sup> <BS includes workers with a high school degree or GED but no BS degree (the proportion of this group that did not have an associate degree was 41% in 2000, 27% in 2002 and 13% in 2004); BS includes college graduates who do not have a higher degree; MS/PhD includes workers with a Masters or PhD degree (the proportion of this group that had only a Masters was 90% in 2000, 81% in 2002 and 82% in 2004). Workers without a high school degree and workers with professional degrees (e.g., MD, DDS, LLB, JD, DVM) are excluded.

<sup>&</sup>lt;sup>14</sup> We used several different samples of occupation codes in order to test for sensitivity of age-earning profiles to the definition of semiconductor engineer occupations. In the results presented here, we included SOC 172070, 172061, 151021, 151030, 151081, 172131, 172110, 172041, 119041, 113021, 111021, 112020, 113051, and 113061. When we restricted the sample to fewer occupation codes, the age-earnings profiles remained mostly stable, with the earnings of the top 10% increasing for older groups with the inclusion of more managerial occupations.

<sup>&</sup>lt;sup>15</sup> Earnings for n% represents the earnings where n% of observations are below this value and (100 - n)% of observations are above this value. Earnings for 50% represents the median.

<sup>&</sup>lt;sup>16</sup> For education-age-year cells (3x4x3=36) with fewer than 10 observations, no results are shown (two cells). For cells with fewer than 20 observations (and at least 10 observations), only mean and median income and full weeks worked are shown (six cells).

worked (Table 3). Workers over age 50 are much more likely than younger groups to work less than a full year (defined conservatively here as less than 48 weeks of paid work).

Comparing across degrees, engineers with a BS diploma typically have higher returns to experience than engineers with advanced degrees. The BS holders earned one-half to three-fourths more in their peak years (aged 41-50) compared to their entry years (aged 21-30). Engineers with a graduate degree (MS/PhD) earned one-tenth to one-fifth more in their peak years compared to a decade earlier (aged 31-40), which is shortly after their entry years since they have more schooling.

The variance in earnings increased with age for prime-aged and older engineers (see 90/10 ratio and graphs). Typically the growing variance is thought to reflect faster growing pay for the higher performers, and pay for the top earners would be expected to increase as engineers become managers. However part of the increase in variance between prime-aged and older engineers reflects a sharp drop in the pay at the bottom end, especially in 2004. These profiles indicate that many older engineers are facing declining and inadequate job opportunities.

|                                                                                                     | Age Ranges |        |        |        |  |  |  |
|-----------------------------------------------------------------------------------------------------|------------|--------|--------|--------|--|--|--|
|                                                                                                     | 21-30      | 31-40  | 41-50  | 51-65  |  |  |  |
| <bachelors degree<="" th=""><th>***</th><th>10.00%</th><th>0.00%</th><th>35.71%</th></bachelors>    | ***        | 10.00% | 0.00%  | 35.71% |  |  |  |
| Bachelors degree                                                                                    | 25.00%     | 3.28%  | 2.56%  | 10.53% |  |  |  |
| Masters or PhD degree                                                                               | ***        | 3.23%  | 4.55%  | 12.50% |  |  |  |
|                                                                                                     | 20         | 02     |        |        |  |  |  |
|                                                                                                     |            | Age Ra | nges   |        |  |  |  |
|                                                                                                     | 21-30      | 31-40  | 41-50  | 51-65  |  |  |  |
| <bachelors degree<="" th=""><th>14.81%</th><th>0.00%</th><th>14.89%</th><th>31.82%</th></bachelors> | 14.81%     | 0.00%  | 14.89% | 31.82% |  |  |  |
| Bachelors degree                                                                                    | 13.70%     | 11.11% | 9.24%  | 28.57% |  |  |  |
| Masters or PhD degree                                                                               | 13.33%     | 16.13% | 3.70%  | 26.09% |  |  |  |
|                                                                                                     | 20         | 04     |        |        |  |  |  |
|                                                                                                     |            | Age Ra | nges   |        |  |  |  |
|                                                                                                     | 21-30      | 31-40  | 41-50  | 51-65  |  |  |  |
| <bachelors degree<="" th=""><th>35.71%</th><th>7.69%</th><th>3.70%</th><th>20.00%</th></bachelors>  | 35.71%     | 7.69%  | 3.70%  | 20.00% |  |  |  |
| Bachelors degree                                                                                    | 15.85%     | 10.62% | 9.82%  | 10.71% |  |  |  |
| Masters or PhD degree                                                                               | 25.00%     | 7.34%  | 12.35% | 17.78% |  |  |  |

Table 3: Proportions Working Less Than Full Year (48 Weeks), By Degree Level2000

\*\*\* Not shown since <10 observations.

Note: The value in each cell is the proportion of that age group with the indicated degree who worked less than 48 weeks in the indicated year.

<u>Returns to education</u>. As expected, median and average earnings increase with education. Comparing real median earnings for the younger groups, we see that the return to a BS degree has been fairly high, with the college graduate typically earning one-fifth to twothirds (depending on age and year) more than those who finished high school but not college. Put another way, the typical young engineer (aged 21-30) with a BS degree made the same pay as the typical engineer without a BS but with ten years more experience (aged 31-40) in 2002 and 2004.

The graduate degree premium over a BS degree (median earnings for MS/PhD compared to BS) were not stable over the short time period shown, and so it is difficult to determine the trend for returns to graduate education. The graduate degree premium for the youngest group, when many were still in school, was 36% in 2002, and then fell to 8% in 2004. The graduate degree premium for workers in the early stage of their careers (age 31-40) was 7% in 2000, and then it shot up to 25% in 2002 and 36% in 2004, which confirms our interview-based findings that the relative demand for MS and PhD holders is increasing as a result of the growing technical complexity in manufacturing and design. The typical engineer (aged 31-40) with an MS or PhD made slightly less pay than the average engineer with a BS but with ten years more experience (aged 41-50).

For workers in their peak years (age 41-50), the graduate degree premium fell from 16-19% (2000 and 2002) to 9% in 2004. For the oldest workers, the returns to a graduate degree also feel dramatically from 38-49% (2000 and 2002) to 13% (2004). For engineers above forty in 2004, the graduate degree premium of only 10% indicates weak incentives for domestic workers to pursue the graduate degrees that our fieldwork indicates are needed by the industry.

The variance in earnings was higher for engineers with a graduate degree than for engineers with a BS in 2004. In both 2002 and 2004, the variances of earnings for the older engineers with BS and graduate degrees was very high, with the 90/10 ratio ranging from 4.3 to 7.6.

Earnings over time. The ACS earnings profiles show slower growth of average earnings between 2000 and 2004 than indicated by the OES data between 2000 and 2005, primarily because the ACS earnings compared to the OES earnings are higher in 2000 and comparable in 2004 and 2005. Looking at the average earnings in all industries of electrical and electronics engineers (EE) and of computer software engineers (CS) in the two data sets, we see that in 2000, ACS reports much higher average earnings for EE and slightly lower average earnings for CS than OES reports (not shown in Tables). In 2004 ACS reports much higher earnings for both EE and CS compared to OES in 2005. In the ACS, average CS earnings grew much faster than average EE earnings, whose growth did not keep up with inflation.

Although the ACS data are developed to be compared over time, while the OES data are not, the small sample sizes of the ACS data make them less representative and less reliable than the OES data. For these reasons, we cannot say with confidence to what extent semiconductor engineer earnings have grown over the period 2000 to 2005.

<u>Summary.</u> Overall these earnings data indicate potential problems in the high-tech engineering market. Although the returns to a graduate degree appear to be adequate, the low returns to experience for engineers with graduate degrees make the returns to the investment in a graduate degree inadequate over the engineer's career, especially the returns implied by the 2004 ACS data. The return to a BS degree and the returns to experience appear adequate for engineers under age 50. However older workers in all three education groups experienced a troubling drop in median real earnings. The data also indicate that the variance of earnings for these high-tech engineers has been rising,

partly because the earnings at the bottom of the distribution are rising very slowly or falling as the engineers age. Although the high-tech engineering labor market appears strong nationally, the data by age and education indicate that engineering jobs at the bottom end may be deteriorating and that older engineers may be encounter worsening job opportunities.

### 2.3 Career Paths for Semiconductor Professionals (LEHD data)

We look briefly at how the jobs and earnings of semiconductor workers, including engineers, changed over the period 1992-2001 by using a very large linked employer-employee data set, the Census Bureau's Longitudinal Employer-Household Dynamics (LEHD).<sup>17</sup> The data cover all occupations, so they include engineers as well as office workers, technicians, managers, and others. We look at workers who are prime-aged (aged 35-54) males and females in two education groups—medium (some college) and high (college graduate and above).

The career paths are shown for modal groups, i.e., the largest groups of workers who have one, two, or three jobs, with at least one job in a semiconductor establishment during the decade. There are other (smaller) groups of workers who change jobs and experience different career ladders, with different initial earnings and earnings growth and with different patterns of moving into, out of, and within the semiconductor industry.

For those with two jobs, the modal group had a first job outside the semiconductor industry and the second job in it. For those with three jobs, the first two are outside semiconductors, and the last one in the industry.

|           |   | Males    |          |                   | Females  |          |                   |
|-----------|---|----------|----------|-------------------|----------|----------|-------------------|
|           |   | Loyalist | Two Jobs | <b>Three Jobs</b> | Loyalist | Two Jobs | <b>Three Jobs</b> |
| Medium    | Α | \$32,564 | \$15,046 | \$12,458          | \$13,084 | \$8,1480 | \$7,314           |
| Education | B | .054     | .056     | .058              | .039     | .030     | .041              |
|           | С | \$55,780 | \$25,926 | \$21,998          | \$19,641 | \$10,999 | \$10,999          |
| High      | Α | \$36,084 | \$22,893 | \$18,197          | \$14,990 | \$10,132 | \$9298            |
| Education | B | .059     | .048     | .047              | .044     | .028     | .030              |
|           | С | \$65,207 | \$36,925 | \$29,068          | \$23,569 | \$13,356 | \$12,570          |

Table 4: Semiconductor Career Paths, Workers aged 35-54

Rows for each education level are:

- A: Mean initial earnings (2005 dollars, inflated from 2001 dollars using the CPI-urban)
- B: Net annualized earnings growth rate (in log points) across the 10-year simulated career path
- C: Simulated 2001 final average earnings (2005 dollars)

Source: *Economic Turbulence* (Brown et al, 2006), Chapter 6, Table 6.1. Original calculations by authors from Census LEHD data. These career paths are for all workers in all occupations in the industry, so they include engineers as well as office workers, technicians, managers, and other occupations.

<sup>&</sup>lt;sup>17</sup> This material is taken from the Sloan-Census project that produced the book *Economic Turbulence* by Brown et al (2006) and related papers (see www.economicturbulence.com). See book chapter 5 for an overview of firms' job ladders and chapter 6 for an overview of worker's career paths in the semiconductor and four other industries (software, finance, trucking, and retail food).

<u>2.3.A Career paths.</u> Semiconductor workers exhibit two distinct types of career paths-loyalists and job changers (see Table 4). Workers who already work for a semiconductor employer with good job ladders (high initial earnings and good earnings growth) become loyalists, i.e., they do not change jobs over the period studied. Loyalists have career paths that are considerably better than the career paths of job changers.

Workers on inferior job ladders outside the semiconductor industry become job changers, since by changing jobs most workers are able to eventually end up on a relatively good job ladder. Job changers have relatively low initial earnings in a job outside the semiconductor industry, and then experience substantial earnings growth (usually 20 to 30% for younger and 10 to 20% for older workers) by taking a job in the semiconductor industry. Among job changers, two-jobbers begin with higher pay outside the industry and are able to enter the semiconductor industry sooner than three-jobbers. Although high-education three-jobbers experience healthy earnings increases when they change jobs outside the semiconductor industry, the increase is below the increase experienced when they take a semiconductor job. The overall earnings growth of twojobbers and three-jobbers is about the same over the ten year period, so the two-jobbers usually maintain their initial earnings advantage. Although job changers usually experience higher earnings growth over the decade than the loyalist, it is not enough to offset their much lower initial earnings, and so loyalists end the period with substantially higher earnings. The legendary job hoppers in the Silicon Valley, i.e., engineers who leave a good job for an even better one, are a smaller group than the job changers shown here, who are leaving relatively low-wage jobs to do a little better.

2.3.B Job ladders. Data (not shown here) indicate that large firms provide 85% of semiconductor jobs. Firm fortune matters in the job ladders offered by large, low-turnover firms, as we see by comparing firms with growing employment to firms with shrinking employment. Large growing firms with low turnover provide 50% of the jobs in the industry, and these firms are usually known for providing good jobs. Semiconductor jobs tend to last relatively long in these firms, where 27% of the jobs lasted at least five years during the decade studied. Large shrinking firms with low turnover provide an interesting contrast. Even though the firms are reducing employment, new hires still account for 30% of jobs, and less than 20% of jobs lasted over five years. These firms appear to be replacing experienced workers with less-expensive new hires. A comparison of ongoing and completed long (more than five years) jobs indicates that shrinking large firms are shedding experienced workers with lower earnings growth, since annualized earnings growth is higher (by half a percentage point) in ongoing jobs than completed jobs across all groups.

These patterns mark a change from the way big companies dealt with difficulties in the past. IBM provides a good example of how downsizing programs evolved over the 1980s into the 1990s. In 1983, IBM offered workers at five locations a voluntary early retirement program in which workers with 25 or more years experience would receive two years of pay over four years. IBM offered voluntary retirement programs again in 1986 and 1989.<sup>18</sup> Because these programs were voluntary for the general workforce, rather than for targeted job titles or divisions, the change in workforce usually did not

<sup>&</sup>lt;sup>18</sup> http://www.allianceibm.org/news/jobactions.htm

Brown and Linden (September 21, 2006) Draft for internal distribution and comments: do not quote or cite without permission.

turn out to be what the companies might have chosen: the better workers often opt to leave, and the weaker workers, without good job opportunities elsewhere, might stay.

The deep recession in the early 1990s finally pushed IBM, DEC, and Motorola, once known for their employment security, to make layoffs.<sup>19</sup> The new approach to downsizing included voluntary programs for *targeted* workers. If workers did not accept the termination program, they could become subject to layoff, making the program less than voluntary. In 1991 and 1992, IBM selected workers eligible for termination, which included a bonus of up to a year's salary. Over 40,000 workers were "transitioned" out. Downsizing continued through 1993, and by 1994 actual layoffs were occurring at IBM.<sup>20</sup>

With the dot.com bust in the early 2000s, massive rounds of layoffs by semiconductor companies occurred again. By the end of 2001, Motorola had laid off over 48,000 workers from its 2000 peak of 150,000 employees.<sup>21</sup> The volatile swings in demand meant that the idea of lifetime employment in the semiconductor industry was a thing of the past, although selected workers still had excellent job ladders with long careers

<sup>&</sup>lt;sup>19</sup> Some of the observations about specific firms here likely reflect divisions of these large, complex firms beyond their production of semiconductors. We think that the patterns discussed reflect the impact of globalization across high-tech firms. <sup>20</sup> http://www.allianceibm.org/news/jobactions.htm

<sup>&</sup>lt;sup>21</sup> http://www.bizjournals.com/austin/stories/2001/12/17/daily22.html

|   | Male          |   |                                  |                                    |                                   |                                  |                                   |
|---|---------------|---|----------------------------------|------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
|   |               |   | Growing<br>Large<br>Low Turnover | Shrinking<br>Large<br>Low Turnover | Growing<br>Large<br>High Turnover | Growing<br>Small<br>Low Turnover | Growing<br>Small<br>High Turnover |
| ĺ | Medium        |   |                                  |                                    | _                                 |                                  | _                                 |
|   | Education     | Α | \$21,462                         | \$18,012                           | \$14,810                          | \$15,517                         | \$17,115                          |
|   |               | В | 0.054                            | 0.061                              | 0.063                             | 0.068                            | 0.076                             |
| Ì |               | С | \$36,592                         | \$33,266                           | \$27,860                          | \$30,771                         | \$36,592                          |
| Ì | High          |   |                                  |                                    |                                   |                                  |                                   |
|   | Education     | Α | \$23,057                         | \$21,541                           | \$21,388                          | \$21,070                         | \$20,600                          |
| Ì |               | В | 0.059                            | 0.061                              | 0.040                             | 0.075                            | 0.055                             |
|   |               | С | \$41,582                         | \$39,503                           | \$32,018                          | \$44,493                         | \$35,761                          |
|   | <u>Female</u> |   |                                  |                                    |                                   |                                  |                                   |
|   | ī             |   | Growing<br>Large<br>Low Turnover | Shrinking<br>Large<br>Low Turnover | Growing<br>Large<br>High Turnover | Growing<br>Small<br>Low Turnover | Growing<br>Small<br>High Turnover |
|   | Madium        |   |                                  | 1                                  |                                   |                                  |                                   |

# Table 5: Industry Job Ladders For Semiconductor Industry Workers, Aged 35-54

| <u>r childe</u> |   | Growing<br>Large<br>Low Turnover | Shrinking<br>Large<br>Low Turnover | Growing<br>Large<br>High Turnover | Growing<br>Small<br>Low Turnover | Growing<br>Small<br>High Turnover |
|-----------------|---|----------------------------------|------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| Medium          |   |                                  |                                    |                                   |                                  |                                   |
| Education       | Α | \$13,024                         | \$9519                             | \$10,589                          | \$8,506                          | \$8,879                           |
|                 | B | 0.039                            | 0.036                              | 0.021                             | 0.048                            | 0.085                             |
|                 | С | \$19,128                         | \$13,722                           | \$12,890                          | \$13,722                         | \$20,791                          |
| High            |   |                                  |                                    |                                   |                                  |                                   |
| Education       | Α | \$14,080                         | \$10,334                           | \$12,424                          | \$10,692                         | \$9897                            |
|                 | B | 0.044                            | 0.036                              | -0.002                            | 0.054                            | 0.064                             |
|                 | С | \$22,038                         | \$14,970                           | \$12,059                          | \$18,296                         | \$18,712                          |

Rows for each education level are:

• A: Mean initial earnings (2005 dollars, inflated from 2001 using the CPI-urban)

• B: Net annualized earnings growth rate (in log points) across the simulated career path

• C: Simulated 2001 final average earnings (2005 dollars)

Source: *Economic Turbulence* (Brown et al, 2006), Chapter 5, Table 5.1. Original calculations by authors from Census LEHD data. These career paths are for all workers in all occupations in the industry, so they include engineers as well as office workers, technicians, managers, and other occupations.

The data in Table 5 show that, in growing firms relative to shrinking firms, medium-education men and all women receive much higher initial earnings (by 19 to 37%), but the men in growing firms have lower earnings growth (by -0.3 to -0.7 percentage points) while women have higher earnings growth (by 0.3 to 0.7 percentage points). High-education men have smaller differences in job ladders in growing and shrinking firms; initial earnings are slightly higher (by 7 to 11%) and earnings growth is similar (within -0.2 to 0.1 percentage points) in growing compared to shrinking firms. These results indicate that high-education men are more protected from the economic turbulence in a firm than other workers, and men's job ladders deteriorate less than those of women.

Over time, growing large firms paid higher initial earnings coupled with slightly lower earnings growth, and their short job ladders have become flatter. A comparison of stayers (i.e., ongoing long jobs) and movers (i.e., completed 1-3 years jobs) shows that annualized earnings growth in short jobs was only two-thirds that of the long jobs in both growing and shrinking large firms. These results indicate that growing firms use high initial earnings to attract talented workers, and then only a select group is given access to career development with long steep job ladders.

Compared to growing firms, large shrinking firms pay lower initial earnings along with higher earnings growth for short jobs, and the job ladders for younger men have improved relative to older men. The results indicate that large firms, both growing and shrinking, are using market-driven compensation systems based on salaries in the spot market for engineers. The growing firms appear to provide long job ladders with career development for a select group, and the other workers face either a plateau or "up or out" (although possibly those not on the fast track voluntarily leave for better jobs elsewhere). The shrinking firms appear to be selecting which experienced workers will keep their jobs, and replacing the other experienced workers with new hires at market rates. These new hires appear not to have access to long job ladders with career development, even if the long job ladders for the older workers still exist. These findings are consistent with changes we observed in our fieldwork at large U.S. companies in the 1990s.

In addition to large firms with low turnover, *small growing firms with low turnover* merit mention, since these firms are likely to be early stage fabless companies, who mainly hire technical personnel and offer relatively good job ladders for the college educated. Although these firms offer relatively low initial earnings, earnings growth is high. At the end of a decade, earnings have passed those of experienced workers in large shrinking firms and have drawn close to earnings at large growing firms with low turnover. The importance of small and growing firms in providing excellent job ladders indicates that these firms may be an increasingly important source of good job ladders.

Overall economic turbulence has worsened professional job ladders. Over the decade studied, growing large firms with low turnover seem to let highly-paid new hires compete for access to long job ladders with career development, while the shrinking large firms with low turnover have experienced workers competing to keep their jobs, which are being either destroyed or filled by new hires paid the market rate. The era of life-time jobs with career development is over; most workers must use mobility to improve their job prospects.

#### 3. Factors that Influence Engineering Work and Wages

The U.S. labor market for engineers is affected by a variety of long-term forces including technology, immigration policy, and education practices. In this section we consider evidence on each of these.

# 3.1 Technological Change: Wafer Size

The engineering jobs in chip fabs have evolved over the last several technology generations. This is driven primarily by the simultaneous increases in wafer size and automation, which have been important for raising productivity and keeping the industry on its Moore's Law trajectory.

Here we look at how engineering work within the fab changed across the transition from 150mm to 200mm wafers, based upon detailed data gathered in the mid-

90s by the Berkeley Competitive Semiconductor Manufacturing (CSM) Program at a sample of fabs running 150mm and 200mm wafers in four countries<sup>22</sup>.

Larger wafer size precipitates major re-engineering of the equipment and process technology. In addition materials handling and information systems become highly automated in order to safely handle the increased weight and value of each wafer and to minimize human error. Automation changes the composition of the workforce as the need increases for engineers and declines for operators. In the CSM data, engineers increased from 15% to 24% of the total workforce between 150mm- and 200mm-generation plants, with a corresponding decline in operators from 73% to 62% (see Table 6) even as the overall employment level of the fab stayed approximately the same at about 750 workers.

# **Table 6: Work Force Composition**

#### (Mean Headcount in Matched 150mm and 200mm Fabs)

|             | 150mm     | 200mm     |
|-------------|-----------|-----------|
| Operators   | 547 (73%) | 470 (62%) |
| Technicians | 91 (12%)  | 107 (14%) |
| Engineers   | 114 (15%) | 181 (24%) |
| Total       | 752       | 758       |

Source: Brown and Campbell, 2001.

The shifting of jobs from operators to engineers resulted in the growth of higher paying, high-skilled jobs at the expense of lower paying, low-skilled jobs. However the earnings structures also changed across occupations, (see Table 7). The initial pay of technicians and engineers was over one-third higher in the 200mm fabs than in the 150mm fabs, and their pay premium over operators increased.

# **Table 7: Work Force Compensation**

# (Mean Wage or Salary in Matched 150mm and 200mm Fabs)

|             | 150mm       |             | 200mm       |             |  |
|-------------|-------------|-------------|-------------|-------------|--|
|             | Initial pay | Maximum pay | Initial pay | Maximum pay |  |
| Operators   |             |             |             |             |  |
| (hourly)    | \$5.88      | \$15.47     | \$7.12      | \$18.44     |  |
| Technicians |             |             |             |             |  |
| (hourly)    | \$6.68      | \$11.50     | \$9.12      | \$15.83     |  |
| Engineers   |             |             |             |             |  |
| (monthly)   | \$1,785     | \$5,019     | \$2,381     | \$4,689     |  |

Source: Brown and Campbell, 2001.

A look at the returns to experience, which are proxied by the maximum pay compared to initial pay, shows that experienced engineers fared poorly as the ratio of

<sup>&</sup>lt;sup>22</sup> Twenty-three fabs in four countries were part of the CSM survey. For this table, the 150mm wafers fabs were matched to the 200mm wafers fabs by company, so that the company human resource policies are comparable between the two groups, which reduced the sample to fourteen.

maximum to initial pay fell from 2.8 (150mm fab) to 2.0 (200mm fab). The returns to experience for technicians and operators remained stable as the experienced techs and operators had the same pay improvement in the 200mm fab as the new hires.

The experienced engineers were losing out over time as their average maximum real salary was actually lower in the 200mm fabs compared to the 150mm fabs. In interviews, we learned that fabs liked having young engineers with knowledge of new technology, and they did not worry about losing older engineers. Over time, consequently, fabs were willing to increase wages of new hires without raising the wages of experienced engineers. Rapidly changing technology plus an ample supply of new hires and low turnover allowed the companies to flatten engineers' career ladders (see, for example, Figure 4, above) with no adverse consequences.

We do not have comparable data for the 300mm fab, which has total automation of materials handling and wafer processing. This was necessary because each 300mm wafer is more valuable than before, since its area is 2.25 times that of a 200mm wafer, but it is also heavier and more awkward to handle, which raises the risk of being dropped by—as well as the ergonomic risk to—human handlers.

Because these new 300mm fabs are processing advanced circuits, such as those using 90nm or 65nm processes, the amount of inspection, metrology steps, and in-line engineering-related activities are significantly higher than their older 200mm counterparts for the same wafer throughput. As a result, most of the 300mm worker savings achieved with the automation of materials handling, often cited to allow approximately 30% less labor input, is now being re-applied to the new engineering tasks, which are much higher value-added and more intellectually challenging, and include more troubleshooting. Therefore the number of workers has not been reduced as a result of the advanced factory automation; instead there has been a shift in task composition. The percentage of workers with higher engineering and technical problemsolving skills has greatly increased, while the percentage of workers needed for wafer movement and equipment starting and stopping has greatly decreased. However the proportion of engineers has not increased.<sup>23</sup>

#### 3.2 H-1B Visas

U.S. visa and educational policies directly impact the supply of engineers, especially those with advanced degrees, to the domestic market. Here we explore the earnings of H-1B visa holders, and below we discuss higher education.

The H-1B is a visa used by a foreigner who is employed temporarily in a position that requires the application of specialized knowledge and at least a bachelor's degree. H-1B visas are granted to companies (rather than workers), and the company must submit an application that provides a job title and the intended wage rate or earnings, which must reflect the prevailing wage. With various application fees and legal expenses, the initial cost to an employer will be in the \$2,500 to \$8,000 range per application.<sup>24</sup> H-1B employees can work only for the sponsoring U.S. employer,<sup>25</sup> and only in the activities

<sup>&</sup>lt;sup>23</sup> Personal communication, April 2005.

<sup>&</sup>lt;sup>24</sup> GAO (2003) http://www.gao.gov/new.items/d03883.pdf

<sup>&</sup>lt;sup>25</sup> The U.S. employer may place the H-1B visa worker with another employer if certain rules are followed.

Draft for internal distribution and comments; do not quote or cite without permission.

described in the application. A foreigner can work for a maximum of six continuous years on an H-1B visa (including one extension).

The current law limits the number of H-1B visas that may be certified to 65,000 per fiscal year, which many companies think is too low, and business has actively lobbied for higher limits. The numerical limitation was temporarily raised to 195,000 in FY2001, FY2002, and FY2003.<sup>26</sup> Note that only the initial application is included in the annual limitation; requests for an extension beyond the initial three-year period are not included. Applications by universities and nonprofit research institutions are also not counted against the cap. In addition, there are 20,000 special cap exemptions for foreigners with Master and PhD degrees from U.S. universities. Even in 2003, before these exemptions for U.S. graduates with advanced degrees, many H-1B visa holders had advanced degrees (MS 29%, PhD 14%, Prof degree 6%)<sup>27</sup> H-1Bs are granted to a wide array of occupations, including those in engineering, medicine, law, social sciences, education, business specialties, and the arts.

We collected data from the H-1B applications certified<sup>28</sup> to the top ten U.S. chip vendors and the top ten non-U.S. chip companies (referred to here for convenience as the top-20 companies) over the period 2001 through 2005 (U.S. government fiscal years). On the application, companies can provide either a specific proposed pay rate or the minimum and maximum of the proposed pay range, and pay can be annual, monthly, weekly, or hourly<sup>29</sup>. The reasons for choosing a specific rate or a range are worth exploring in future research because companies vary widely in their practices. One possibility is that a specific rate may be stated when there is a specific individual in mind for the visa, with the range used when the individual is not yet identified.

The twenty companies in our sample were granted approval of 15,784 H-1B visa applications during the five years, of which 14,035 went to the U.S. firms; 49% stated a specific salary rate, and 51% stated a minimum-maximum salary range, which we report separately in Table 8. We also look at four occupation groups, which represent most of the semiconductor applications: electrical engineering, computer-related jobs, manufacturing-related jobs, and business and administrative jobs. Since most H-1B applications were made by U.S. firms, we focus on these. Compared to U.S. firms, more of the applications by non-U.S firms were for business and support jobs (15%) or for non-EECS engineering jobs (18%), and the applications were more likely to state an earnings rate (80%). Compared to U.S. companies, the earnings stated by the non-U.S. companies for EE and CS applications tended to be slightly higher on average with a larger 90/10 ratio, and to be lower on average for the non-EECS jobs with a larger 90/10 ratio.

The U.S. chip companies were most likely to apply for H-1B visas for EE jobs (37% with average rate \$77,560 or average minimum \$66,944) or CS jobs (52% with average rate \$78,537 or average minimum \$75,685). The other applications were

<sup>27</sup> USCIS Report, "Characteristics of Specialty Occupations Workers (H-1B): Fiscal Yaer 2003"

<sup>&</sup>lt;sup>26</sup> http://www.uscis.gov/graphics/howdoi/h1b.htm

http://www.uscis.gov/graphics/aboutus/repsstudies/h1b/FY03H1BFnlCharRprt.pdf

<sup>&</sup>lt;sup>28</sup> During this five year period, 1.6% of the applications were denied (including a small number put on hold), and these applications are not included in our analysis. We also dropped one outlier: that was probably an input error an application stating \$10.6M as the pay for a senior test engineer, with the prevailing wage given as \$93,330.

<sup>&</sup>lt;sup>29</sup> The two methods of applying (rate and range) are reported separately here. Most applications (95%) use annual earnings; monthly, weekly, and hourly rates were converted to annual using twelve months, fifty-two weeks, or 2000 hours.

primarily for other engineering jobs (8% with average rate \$79,806, or average minimum \$65,425).

EE applications primarily stated a specific rate, whose distribution tended to be approximately 15% above the distribution for the minimum where a range was given. In contrast, CS applications primarily stated a range, whose minimum had a distribution close to the distribution of the specific earnings rates, where those were used instead. A possible interpretation, consistent with the OES data in Table 1, is that the high computer science minimum indicates that software programmers in the chip industry are receiving a premium.

We checked the applications in 2005 by all other companies and industries (called "other firms" here) for EE and CS jobs, in order to see if they used comparable rates and ranges, since H-1B visas might be functioning differently in different industries. The top chip companies accounted for 56% of all EE applications and only 5% of all CS applications.

Interestingly the "other firms" mostly specified an earnings rate in their H-1B applications for both EE and CS jobs. The rates used on EE applications by "other firms" have a lower mean and 10<sup>th</sup> percentile compared to the top chip firms; the rates used on CS applications by "other firms" have a considerably lower distribution compared to the top chip firms. Again consistent with the wage data in Table 1, the H-1B applications for EE-CS jobs in the chip industry appear to carry a premium compared to other industries.

We can compare H-1B application rates to actual earnings for EE-CS engineers. In the ACS data, EE-CS engineers earned on average \$69,000 to \$96,000 (overall average \$86,000) during 2000 to 2004, and in the OES data they earned \$66,000 to \$84,000 (overall average \$74,000) during 2000 to 2005. The average rates on H-1B visa applications granted to the top 20 semiconductor companies were between these two national averages. However it is hard to make comparisons of these earnings independent of worker experience and education, since many semiconductor companies hired their H-1B visa workers as new EE-CS graduates, often with graduate degrees, from U.S. universities.

The GAO (2003) study of H-1B visa holders compared the annual pay for a selected group of occupations, including electrical/electronic engineers (called EEs), to a sample of U.S. workers using the Census Department's Current Population Survey in 2002. As GAO notes, these annual salary comparisons are not exact for a variety of reasons, including that we do not know if the visas are actually used.

The GAO comparison of EEs with H-1B visas compared to U.S. citizens in 2002 show that the H-1Bs compared to citizens are younger (32 years vs 41 years; 62% under 35 years old vs 28%) and much more likely to have graduate degrees (50% vs 20%) (GAO, 2003, pp 14, 15). When median annual salary of EEs aged 31 to 50 years old are compared, H-1Bs earned less than citizens: H-1Bs with graduate degree earned \$77,000, and citizens earned \$88,000; H-1Bs with less than a graduate degree earned \$65,000, and citizens earned \$70,000 (ibid, p 42). For younger EEs (aged 18-30) without a graduate degree, however, H-1Bs earned more than citizens (\$60,000 vs \$52,000; ibid, p 42). These data indicate that H-1B visa holders may be having a downward impact on the labor market opportunities of mature engineers, but probably not on young engineering college graduates.

Draft for internal distribution and comments; do not quote or cite without permission.

| Top Ten US Chip Firms |            |                                  |           |                |        |         |  |  |  |
|-----------------------|------------|----------------------------------|-----------|----------------|--------|---------|--|--|--|
| EE Job Codes          |            | Obs (%)                          | Mean      | Std. Dev.      | 10%    | 90%     |  |  |  |
| Rate given            |            | 3436 (24%)                       | 77,560    | 16255          | 62,400 | 96,160  |  |  |  |
| Range given           | min        | 3430 (2470)                      | 66,944    | 13991          | 52,800 | 85,225  |  |  |  |
| Range given           | max        | 1792 (13%)                       | 102,992   | 23410          | 73,375 | 130,000 |  |  |  |
| CS Job Codes          | Ших        | 1772 (1570)                      | 102,772   | 25110          | 15,515 | 150,000 |  |  |  |
| Rate given            |            | 2106 (15%)                       | 78,537    | 18275          | 61,302 | 98,239  |  |  |  |
| Range given           | min        | 2100 (10,0)                      | 75,685    | 18318          | 56,277 | 100,000 |  |  |  |
| 8- 8                  | max        | 5234 (37%)                       | 96,118    | 19662          | 75,000 | 125,000 |  |  |  |
| Manufacturing         |            | · · · · ·                        |           |                | ,      | - )     |  |  |  |
| Rate given            | 0          | 649 (5%)                         | 79,806    | 16801          | 58,200 | 96,000  |  |  |  |
| Range given           | min        |                                  | 65,425    | 14609          | 48,788 | 85,000  |  |  |  |
| 00                    | max        | 403 (3%)                         | 104,798   | 25202          | 73,006 | 130,000 |  |  |  |
| Business, Mark        | keting, Ad | dmin. Support J                  | ob Codes  |                |        |         |  |  |  |
| Rate given            |            | 163 (1%)                         | 87,533    | 40824          | 50,400 | 130,000 |  |  |  |
| Range given           | min        |                                  | 73,549    | 24725          | 44,200 | 106,000 |  |  |  |
|                       | max        | 252 (2%)                         | 101,535   | 34193          | 64,900 | 140,000 |  |  |  |
|                       |            | Top Ten No                       | n-US Chip | ) Firms        |        |         |  |  |  |
| EE Job Codes          |            | Obs (%)                          | Mean      | Std. Dev.      | 10%    | 90%     |  |  |  |
| Rate given            |            | 430 (25%)                        | 80,161    | 18941          | 59,527 | 105,694 |  |  |  |
| Range given           | min        |                                  | 77,580    | 18627          | 55,104 | 99,808  |  |  |  |
|                       | max        | 188 (11%)                        | 106,911   | 31388          | 70,900 | 154,300 |  |  |  |
| CS Job Codes          |            |                                  |           |                |        |         |  |  |  |
| Rate given            |            | 432 (25%)                        | 79,525    | 18476          | 57,500 | 101,100 |  |  |  |
| Range given           | min        |                                  | 68,712    | 13843          | 52,361 | 86,606  |  |  |  |
|                       | max        | 124 (7%)                         | 91,773    | 22201          | 64,676 | 120,000 |  |  |  |
| Manufacturing         | Engineer   |                                  |           |                |        |         |  |  |  |
| Rate given            | T -        | 292 (17%)                        | 73,458    | 16419          | 53,600 | 95,000  |  |  |  |
| Range given           | min        | 19 (1%)                          | 69,070    | 16997          | 53,100 | 102,168 |  |  |  |
|                       | max        |                                  | 86,217    | 25232          | 60,270 | 132,000 |  |  |  |
|                       | teting, Ad | dmin. Support J                  |           | <b>A A A A</b> |        | 101000  |  |  |  |
| Rate given            |            | 230 (13%)                        | 81,882    | 39447          | 42,150 | 134,838 |  |  |  |
| Range given           | min        | 24 (20/)                         | 60,406    | 24271          | 39,145 | 88,486  |  |  |  |
|                       | max        | 34 (2%)                          | 82,882    | 36511          | 50,000 | 140,000 |  |  |  |
|                       |            | Other Chip a                     |           |                |        |         |  |  |  |
| EE Job Codes          |            | Obs (%)                          | Mean      | Std. Dev.      | 10%    | 90%     |  |  |  |
| Rate given            | 1          | 7701 (6%)                        | 69,302    | 24175          | 45,000 | 100,000 |  |  |  |
| Range given           | min        |                                  | 67,737    | 20807          | 45,000 | 95,256  |  |  |  |
|                       | max        | 2098 (2%)                        | 84,710    | 28592          | 50,000 | 124,000 |  |  |  |
| CS Job Codes          |            |                                  |           |                |        |         |  |  |  |
| Rate given            |            | 96720 (71%)                      | 60,698    | 20371          | 42,000 | 87,250  |  |  |  |
| Range given           | min        |                                  | 58,523    | 16860          | 42,000 | 81,600  |  |  |  |
|                       | max        | 29964 (22%)<br>r: http://www.flc | 77,277    | 25747          | 50,000 | 120,000 |  |  |  |

| Table 8: H-1B | Visa Apr | olications | Approved, | 2001-2005 |
|---------------|----------|------------|-----------|-----------|
|               |          |            |           |           |

Source: U.S. Department of Labor: http://www.flcdatacenter.com/CaseH1B.aspx

Note: companies can submit applications with a specific proposed rate to be paid, or provide a range (min, max). No duplicates were submitted.

.

T-- 4 - 1

<u>H-1B Visa applications for Intel and Motorola.</u> We explore the H-1B visa applications in greater detail for two large companies (see Table 9)—Intel and Motorola—which together accounted for 47% of the H-1B applications in our sample. Motorola spun off its chip operations as an independent company, Freescale, in 2004. Here we include the applications made by Freescale with Motorola's applications, and also report Freescale's applications separately.

 Table 9: H-1B Visa Granted to Intel and Motorola/Freescale, 2001-2005

| <u>Intel</u> |           |                |               |              |             |               |
|--------------|-----------|----------------|---------------|--------------|-------------|---------------|
|              |           |                |               |              | Sample      | Sample        |
| Var          | iable     | Obs            | Mean          | Std. Dev.    | Min         | Max           |
| Rate giv     | en        | 1580           | \$78,070.2    | 11656.51     | 45552       | 144482        |
| Range        | min       |                | 65,902.9      | 10214.89     | 29878       | 112593        |
| given        | max       | 1135           | 121,231.7     | 19946.58     | 45074       | 200000        |
| Motorol      | a and Fr  | <u>eescale</u> |               |              |             |               |
|              |           |                |               |              | Sample      | Sample        |
| Var          | iable     | Obs            | Mean          | Std. Dev.    | Min         | Max           |
| Rate giv     | en        | 266            | \$66,435.7    | 28877.91     | 33500       | 375000        |
| Range        | Min       |                | 62,866.2      | 13117.71     | 27955       | 144753        |
| given        | Max       | 2289           | 93,186.3      | 31792.39     | 28000       | 1292000       |
| Freescal     | e         |                |               |              |             |               |
|              |           |                |               |              | Sample      | Sample        |
| Var          | iable     | Obs            | Mean          | Std. Dev.    | Min         | Max           |
| Rate given   |           | 13             | \$68,800.8    | 4826.635     | 58500       | 75000         |
| Range        | Min       |                | 65,354.2      | 12450.58     | 43400       | 123268        |
| given        | Max       | 184            | 99,126.1      | 17375.22     | 65200       | 160000        |
| Source: 11   | S Departn | nent of L      | ahor H-1R Pro | oram Data at | http://www. | fledatacenter |

Source: U.S. Department of Labor, H-1B Program Data at <u>http://www.flcdatacenter.com/CaseH1B.aspx</u> Note: companies can submit applications with ta specific proposed rate to be paid, or provide a range (min, max). No duplicates were submitted.

Intel was granted 2,696 H-1B visas (another 10 were not granted) during 2001-2005. Intel was more likely than the other companies in our sample to submit an earnings range rather than an earnings rate. For the applications stating a rate, Intel's average was very close to the average for the top 20 companies. Intel's average minimum was also comparable to the top-20 average, but its average maximum was almost 20% higher. Intel applied for H-1B visas for a wide range of jobs, and the earnings rates ranged from \$45,552 to \$144,482 (and earnings ranges between \$29,878 and \$200,000). Overall the Intel rates seem to reflect the national EE-CS salaries in the ACS. However the range of earnings across job applications was extremely large and indicates that Intel was using H-1B visas to fill jobs that varied across skill and experience.

Motorola/Freescale was granted 2,521 H-1B visas (another 34 were not granted). Motorola differed from other top-20 companies by stating a specific proposed wage rate only 10% of the time, and then the average given was 16% below the average for the top-20 companies. Motorola's stated average minimum-maximum earnings ranges were also below those of the other top 20 companies. Motorola's average minimum earnings were 4% below, and Motorola's average maximum earnings were 9% below, the top-20

average. However note that the highest maximum-maximum wage (\$1,292,000) of all the companies was requested by Motorola, and the Motorola rates seem to be slightly higher than the national EE-CS salaries in the OES.

If we compare Freescale's applications to Motorola's for the years 2004 and 2005, we can estimate to what extent the Motorola applications were for engineers in their semiconductor business. Freescale was granted 11% as many H-1B visas in 2004 and 18% as many in 2005 as Motorola. Freescale's pay rate had a much narrower range than Motorola's pay rate, with the ratio of Freescale's maximum to minimum rates between 2.5 and 2.7 while Motorola's ratio of maximum to minimum rates was between 5.0 and 46. However Freescale's averages for the minimum and maximum rates were very close to Motorola's averages in 2004 and 6% higher in 2005. This indicates that the semiconductor engineers had only average earnings compared to other jobs at Motorola, which covered a very broad range of occupations.

The proposed wages for the top-20 companies as well as for Intel and Motorola indicate that some of the H-1B visas were for high-level jobs that paid well over \$100,000, as well as for low-level jobs that paid well under \$50,000. To what extent the lower-paying jobs are being used to keep semiconductor earnings low for domestic new hires, and to what extent the higher-paying jobs are going to foreigners at the expense of qualified experienced U.S. engineers cannot be determined. These remain important policy questions.

<u>Inter-year comparisons.</u> If we compare the H-1B visas granted by year, we see that H-1B visas granted to the top-20 companies, especially to Intel and Motorola/Freescale, jumped in 2004 and remained high in 2005, even as the national H-1B cap dropped dramatically. The semiconductor companies were perhaps benefiting from the additional 20,000 H-1Bs available for foreigners with a graduate degree from U.S. universities, although this is a subject for further research. Over the five year period, 61% of the H-1B applications were approved for the top-20 companies during the last two years, and 53% of the H-1B visas approved for the top-20 companies were granted to Intel and Motorola/Freescale during that time.

Intel's H-1B visa policy appears to have shifted dramatically during the five year period. Intel increased its use of H-1B visas: one-quarter of the H-1Bs were granted in the first three years and three-quarters in the last two years. The company shifted from stating the min-max range to stating the actual rate in applications, although the earnings rates remained comparable.

Motorola/Freescale also increased their use of H-1B visas during the five years, with 40% granted in the first three years and 60% in the last two years. Motorola continued to primarily use the min-max rate range (rather than specific rate), and the earnings ranges remained comparable over the period.

<u>H-1Bs as a share of workforce</u>. Let us look at how these H-1B visa applications compare to company employment. In 2005, Intel employed approximately 99,900 people worldwide, with more than 50% located in the U.S., and Motorola employed 69,000 employees (number of domestic employees not given)<sup>30</sup>. This indicates that

<sup>&</sup>lt;sup>30</sup> These employment figures are from the company's 10-k reports: Intel at http://finance.yahoo.com/q/sec?s=INTC and Motorola at http://finance.yahoo.com/q/sec?s=MOT.

Brown and Linden (September 21, 2006) Draft for internal distribution and comments; do not quote or cite without permission.

approximately 2.6% of Intel's workers were newly-hired H-1B visa holders. If H-1B visa holders work for Intel for at least five years, then approximately 5.4% of their domestic workers were H-1B visa holders, which translates to an even larger percentage of their engineers.

H-1B visa holders were probably an even larger proportion of the workforce at Motorola, since they accounted for 3.7% of all employees worldwide. The percentage of domestic engineers that are H-1B visa holders could easily be twice that.

These data indicate that semiconductor companies use H-1B visas strategically in hiring and managing their engineering talent. Below we show that part of the reason for the importance of H-1B visas is that major U.S. universities are providing graduate training to many foreign students, and upon graduation these students are in great demand by U.S. companies.

#### 3.3 U.S. Education of Foreign Students

Higher education has played an important role in the development of the U.S. semiconductor industry. Many U.S. graduate engineering students are foreign nationals. The highest level of engineering education, the PhD, provides engineers with state-of-the-art knowledge plus the ability to conduct research and to stay abreast of the latest technology during their careers. MS and PhD engineering graduates provide the essential workforce to semiconductor companies.

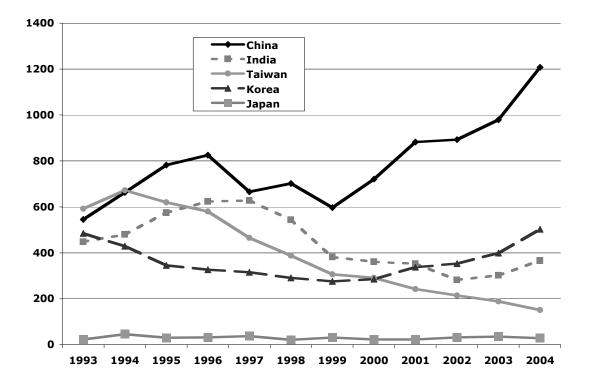



Figure 5: Engineering PhDs in the US by Country of Origin, 1993-2004

Brown and Linden (September 21, 2006) Draft for internal distribution and comments; do not quote or cite without permission.

Source: National Science Foundation, Division of Science Resources Statistics, *Science and Engineering Doctorate Awards*:2002 (App.Table 5), 2003 (App Table 11), and 2004 (App Table 11).

Figure 5 shows the annual engineering PhDs (not including computer science) awarded at U.S. universities to students from five key Asian countries over a 12-year period. The figure makes clear that China has sent a large and growing number of doctoral engineers to the U.S. At the other extreme, Japan sent very few students during the period.

The number of students from Taiwan, which relied on U.S. PhDs to develop its semiconductor industry, has declined since 1994. When we were conducting fieldwork in Taiwan in February 2005, many Taiwanese semiconductor experts mentioned concerns about the decreased interest in U.S. graduate study, since Taiwanese doctoral training is considered to be inferior to U.S. training. India and Korea also sent decreasing numbers of advanced engineering graduate students in the late 1990s, although both started to increase beginning in 2002.

We also looked at the overall division of U.S. higher education resources between U.S. and non-citizen students. Figure 6 shows a decade of electrical engineering PhDs by citizenship status and by gender. Non-citizen males garnered significantly more diplomas than their U.S. counterparts throughout the period. Non-citizen females exceeded the degrees awarded to U.S. women beginning in 1998.

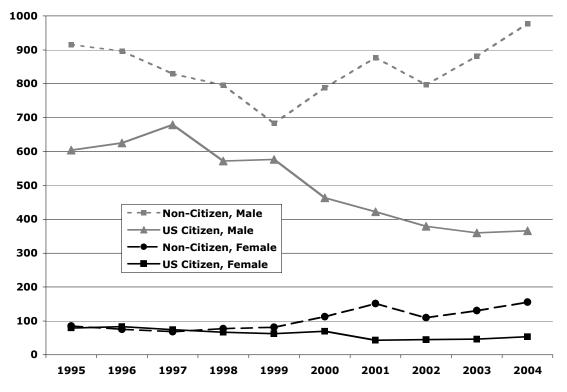



Figure 6: Electrical Engineering PhDs by Gender and Citizenship Status, 1995–2004

Source: National Science Foundation, Division of Science Resources Statistics, *Science and Engineering Doctorate Awards*:2004 (App.Table 3).

Brown and Linden (September 21, 2006) Draft for internal distribution and comments; do not quote or cite without permission.

Turning to the same data for the field of computer science (Figure 7), the number of degrees awarded to citizens and non-citizens are much closer, although once again non-citizen males took home more PhDs than their U.S. counterparts in nearly every year.

These figures make clear that the U.S. is training hundreds of foreign advanced engineers every year, which augments the ability of foreign chip firms to compete with U.S. companies, as well as the ability of U.S. firms to find qualified personnel either for their U.S. operations, if the non-citizen is able to remain, or for offshore subsidiaries.

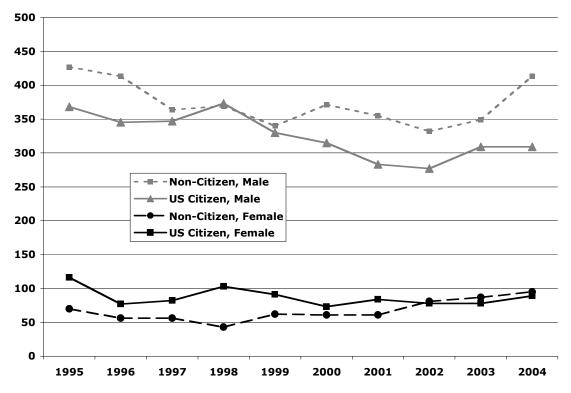



Figure 7: Computer Science PhDs by Gender and Citizenship Status, 1995–2004

Source: National Science Foundation, Division of Science Resources Statistics, *Science and Engineering Doctorate Awards*:2004 (App.Table 3).

The earlier discussion of the returns to education noted that the premium for a domestic BSEE to pursue a graduate degree was relatively low. For foreign BSEEs, however, the financial incentive to pursue a U.S. graduate degree is much greater, since a U.S. graduate degree opens the door to high-paid jobs both in the U.S. and at home. Our fieldwork found that advanced degree holders, especially with some U.S. work experience, in semiconductor centers like Shanghai or Bangalore are often paid similarly to their U.S. counterparts while locally-educated BSEEs are paid much less.

#### 4. Globalization

Globalization is one of the primary forces affecting the work and rewards of U.S. semiconductor engineers. In this section we briefly sketch offshore investments by U.S.

semiconductor companies, provide some data on chip engineers and then profile the state of the chip industry in Taiwan, China, and India.

# 4.1 Offshoring by U.S. Semiconductor Firms <sup>31</sup>

The three primary reasons for locating value chain activities globally are 1)access to location-specific resources, especially engineering talent; 2) cost reduction; and 3) local market development and access. Often, the shift of an activity to a new location via internal investment or outsourcing is in response to all three reasons. For example, a company may move chip design to China in order to take advantage of engineering talent that is low cost and knowledgeable about customized solutions for the regional Chinese telecommunication systems as well as to gain government approval for market access.

Offshore investments in chip fabrication were historically been driven by market access concerns, particularly tariffs, more than by cost reduction because of the capitalintensive nature of chip manufacturing. This is reflected by the the location of most U.S.owned offshore fabs in developed countries such as Japan. In 2001, approximately onethird of U.S.-owned capacity was located offshore as shown in Table 10. Conversely, about 22% of the fab capacity located in North America was owned by companies based in other regions (not shown). Foreign companies still find the U.S. an attractive place to invest, as evidenced by Samsung's recent commitment to a new, multi-billion-dollar fab in Austin.<sup>32</sup>

Table 10: Distribution of U.S-Owned Fab Capacity, 2001

| North America      | 65.4% |
|--------------------|-------|
| Europe/Middle East | 18.6% |
| Japan              | 13.0% |
| Asia ex-Japan      | 3.0%  |
|                    |       |

Source: Calculations courtesy of Rob Leachman.

One factor limiting fab investment by U.S. companies is the availability of highquality fabrication services. In 2005, the outsourced fabrication market was worth \$18 billion,<sup>33</sup> with most of it accounted for by dedicated contract manufacturers, known as "foundries," in Taiwan. The first foundry, Taiwan Semiconductor Manufacturing Corporation (TSMC), remains the largest. If it sold chips under its own name, TSMC would have made the chip industry's top 10 list in 2005 with \$8.2 billion in revenue, although foundries are excluded to avoid double-counting of their and their customers' chips. Since foundry price is about one-third of the final chip value, TSMC actually manufactured nearly \$25 billion worth of chips, which would place it number two in the overall chip industry behind only Intel.

Although the emergence of the foundry model in Asia meant that less production capacity would be built in the US, it has greatly facilitated the growth of the fabless

<sup>&</sup>lt;sup>31</sup> See Brown and Linden (2006) for a more detailed discussion of offshoring by U.S. semiconductor firms.

<sup>&</sup>lt;sup>32</sup> David Lammers, "Analysis: Samsung fab deal ends drought for Austin," EE Times, April 14, 2006.

<sup>&</sup>lt;sup>33</sup> Gartner Dataquest estimate reported in "Foundry Revenue Drops in 2005, Gartner Reports," Electronic News, March 27, 2006.

Brown and Linden (September 21, 2006)

Draft for internal distribution and comments; do not quote or cite without permission.

design sector, which is one of the industry's growth engines, as discussed in Section 1.<sup>34</sup> As a back of the envelope calculation, we estimate that if all foundry production were based in the United States instead of Asia, it might add 11,000 jobs, of which some 2,600 would be highly-paid engineers.<sup>35</sup> But it must be noted that not all foundry sales are to U.S. customers. In 2003, for example, half of TSMC's gross revenue came from non-U.S. sources.<sup>36</sup>

As a point of comparison, the Fabless Semiconductor Association reported that publicly-traded fabless companies in North America employ approximately 45,000 workers as of December 2004.<sup>37</sup> A review of company information suggests that more than half of these are software or hardware engineers, although an unknown share of them are located offshore.

On the design side, U.S. chip firms have opened an increasing number of offshore design subsidiaries in Asia over the last decade.

Specialized skills are an important reason that U.S. semiconductor companies invest overseas, particularly in Europe. Britain, for example, has developed expertise in consumer multimedia, and Scandinavian countries are noted for their skills in wireless network technology. U.S. firms regularly acquire small European companies to obtain both application know-how and a team of pre-trained engineers.

As is true of fabrication, design offshoring works both ways, and many foreign companies maintain a Silicon Valley or other U.S. design center to take advantage of the high skills and productivity available there as well as to be closer to U.S. customers. Philips of the Netherlands, for example, bought VLSI Technology, a major ASIC company with over 2,000 employees (about one-third of whom were fab workers), in 1999 for nearly \$1 billion.<sup>38</sup> Hitachi Semiconductor has a U.S. design group several hundred strong.<sup>39</sup> Toshiba has a network of seven ASIC design centers around the United States.<sup>40</sup> Even foreign start-ups may need to have a U.S. design team to work with U.S. customers or to access leading-edge analog design skills.

However the reason for design offshoring that is perhaps getting the most attention is cost reduction. For Silicon Valley firms, some cost reduction is available by opening satellite design centers elsewhere in the U.S., where some locations have average engineering salaries that are up to 20% lower than those in the Silicon Valley. But these salaries are still much higher than salaries in India and elsewhere, as discussed below.

Cost-driven in-house offshoring incurs non-wage costs that partially offset the difference in salaries, especially during the early stages of establishing an offshore design center. One that is often mentioned is the lower quality and productivity of inexperienced engineers, which also adds monitoring costs. The time and inconvenience of

<sup>&</sup>lt;sup>34</sup> See Macher, Mowery, and Hodges (1998) for a discussion of the factors leading to the U.S. industry's resurgence after its loss of global market share in the mid-1980s.

<sup>&</sup>lt;sup>35</sup> TSMC, which accounts for about half the foundry industry, has one 150mm, one 300mm, and five-and-a-half 200mm fabs outside the United States. These fabs probably have different rated capacities, but we can approximate employment by calculating 750 workers per plant, which works out to 5,625. Doubling that to approximate the entire foundry sector brings us to 11,250.

<sup>&</sup>lt;sup>36</sup> Note 27c of Form 20-F filed by TSMC with the Securities and Exchange Commission for fiscal year ended December 31, 2003.

<sup>&</sup>lt;sup>37</sup> FSA "Global Fabless Fundings and Financials Report, Q4 2004".

<sup>&</sup>lt;sup>38</sup> "Philips to acquire VLSI Technology for \$953 million," Semiconductor Business News, May 3, 1999.

 <sup>&</sup>lt;sup>39</sup> "Hitachi Forms North America Semiconductor Systems Solutions Unit," Hitachi Press Release, September 2, 1998.
 <sup>40</sup> "Toshiba Expands Soc Design Support Network With Opening Of San Diego Design Center," Toshiba Press Release, November 26, 2002.

communicating across time zones can also be considerable. Additional control mechanisms may also be needed to protect key intellectual property. According to a venture capitalist, the actual savings from going offshore is more likely to be 25 to 50% rather than the 80 to 90% suggested by a simple salary comparison.<sup>41</sup>

Nevertheless, U.S. firms are investing regularly in low-cost Asia design centers, especially in India. Among the top twenty U.S. semiconductor companies, only two (Micron and Atmel) have *not* established a design center in India. Nine of these companies opened their Indian operations since 2004. In 1985 Texas Instruments was the first U.S. company to establish design operations there. The size of the operations varies widely, with Intel employing about 3,000 engineers, and smaller companies like Marvell employing fewer than 100.

The net impact on U.S. jobs from the offshoring and outsourcing of fabrication is hard to assess. Offshore fabs have, as described above, been at least partially balanced by foreign-owned fabs in the U.S. And while Asian foundries have probably contributed to a long-run reduction of U.S. chip manufacturing, the net loss of engineering jobs has probably been offset to some extent by the increase in design jobs at fabless companies. The government data in Table 1 suggest that the growth of offshoring in recent years has not prevented growth in the number of engineers employed in the industry.

Data from the Semiconductor Industry Association (SIA), provide further support for this view (see Table 11). The SIA data are based on an annual survey of large- and medium-sized U.S. semiconductor companies, which together represent approximately 80% of the U.S. industry's sales, and then the results are extrapolated to represent all U.S. semiconductor firms.

|           | 1997   | 1998   | 1999   | 2000   | 2001    | 2002    | 2003    | 2004    | 2005    |
|-----------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| U.S       | 49,702 | 46,704 | 61,856 | 76,129 | 72,564  | 72,860  | 71,991  | 66,581  | 83,167  |
| based     |        |        |        |        |         |         |         |         |         |
| Engineers |        |        |        |        |         |         |         |         |         |
| Offshore  | 7,253  | 19,692 | 17,446 | 19,964 | 27,226  | 29,813  | 30,876  | 34,632  | 42,193  |
| Engineers | ,      | ,      | ,      | ,      | ,       | ,       | ,       | ,       | ,       |
| Total     | 58,952 | 68,394 | 81,301 | 98,093 | 101,791 | 104,675 | 104,870 | 103,217 | 127,365 |
| % in U.S. | 87.3%  | 70.3%  | 77.9%  | 79.2%  | 72.7%   | 70.9%   | 69.9%   | 65.8%   | 66.3%   |

 Table 11: U.S. Semiconductor Engineers By Location, 1997-2005

Source: David R Ferrell, "SIA Workforce Strategy Overview," ECEDHA Presentation March 2005; 2004 and 2005 data: unpublished SIA survey results provided by Ferrell.

Although the data may not be strictly comparable from year to year, they can be used to discuss general trends and confirm other data. The total engineering employment at these companies has increased significantly over the period, with the offshore engineering staff growing slightly faster in most years.

The number of engineers located in the U.S. experienced a sharp increase at the end of the 1990s, before the recession caused a slump in employment during the early

<sup>&</sup>lt;sup>41</sup> Interview, May 2004.

2000s. Then another sharp increase in U.S. employment is recorded between 2004 and 2005, although the OES engineer data for those two years do not confirm such a trend.<sup>42</sup>

The number of offshore engineers takes a sharp jump in 1998, and again in 2001, and again in 2005. Even with the ups and downs, the percentage of the workforce in the United States tended to hover between 70% to 80% over the 1998 to 2003 period, and then it fell to 66% in 2004-2005. These data indicate a mild shift by these companies in their employment of engineers offshore relative to the United States, which could have a depressive effect on U.S. engineer employment and earnings if it continues.

#### 4.2 Engineers in Japan, Taiwan, China and India

Engineers in the U.S. semiconductor industry have long been accustomed to competition from abroad. However now the competition may be taking place within a single company, for example between two design groups in different countries. Here we look at the availability, quality, and cost of chip engineers outside the U.S.

A major problem with comparing semiconductor engineering talent across countries is that the engineers in China and India, and to a lesser extent Taiwan, are younger and have less education than the engineers in the U.S. and Japan. In India and China, technicians with a two-year degree are often classified as engineers, and this is much less often the case in the U.S. and Japan. India and China have very little graduate training available in semiconductor engineering, and what is available is not comparable to the graduate programs in the U.S. and Japan. Taiwan is an intermediate case, where their undergraduate and masters engineering programs are comparable to those in the U.S. and Japan, although their PhD programs are still catching up.

Taiwan's semiconductor industry was built on the backs ofin large part by PhD engineers who returned after receiving their degrees and valuable work experience in the United States. We see a similar process occurring in China and India, and in many ways we think that Taiwan provides us with a model of how semiconductor engineering will develop in India and China as the semiconductor industry matures, with the important difference that Taiwan is a much smaller country. In India and China, the industry is still quite young in design, in which both countries are active, and in fabrication, which is not yet occurring in India. Subsidiaries of multinational companies (MNCs) are playing a major role in the development of the semiconductor industry in India. In China, domestic companies, often with personnel and funds from Taiwan, are playing a major role in semiconductor design. Both In China's fabrication sector, both MNCs and domestic companies (again with input from Taiwan) are playing a major role in semiconductor fabrication in China.

<u>Overview of engineering in Asia.</u> With the caveat that comparisons of semiconductor engineering talent in the U.S., Japan, Taiwan, China and India areis a comparison of comparing engineers with different education and experience, we present rough estimates for engineer salaries, worldwide fab investment by local companies, and the number of active chip designers (excluding embedded software) in Table 12, which is based on a combination of published sources and interviews, We also include an index of

<sup>&</sup>lt;sup>42</sup> The OES total for all software and other engineer categories was 73,650 in the May 2004 data and 76,300 in May 2005.

intellectual property protection for these countries, since this is an important consideration in deciding what engineering activities to undertake in other countries. However the IP protection rating covers all industries, and so weakness weak scores in the table may be driven by lapses in specific sectors such as pharmaceuticals, trademark goods, or recorded media, which are not relevant to the semiconductor industry.

The salary figures suggest that engineers in the United States and Japan earn much higher pay compared to most Asian engineers. These data are imprecise and have high variance; they are intended as a general guide only. The salaries are for engineers with at least five years experience in the U.S. and for engineers aged 40 in Japan., Japanese engineers since that is the approximate age they exit the union at about the age of 40 and begin to experience greater salary increases at an age where U.S. engineers start to see their salary trajectory level out. The semiconductor engineers in the other countries tend to be younger and less experienced, and so the salaries for China and India are for engineers with one to three years experience. As the semiconductor industry quickly expands in China and India, wages are reportedly rising rapidly. For example, the salary range offered for a design engineer with one to three years experience by SanDisk in Bangalore at jobstreet.com in June 2005 was \$9,200 to \$18,400.<sup>43</sup>

|                      | Annual<br>EE/CS<br>engineer<br>salary | Value of fabs<br>constructed<br>by country of<br>ownership,<br>1995-2006 | Number of<br>chip<br>designers | Intellectual<br>property<br>protection,<br>2002<br>(10=high) |
|----------------------|---------------------------------------|--------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|
| <b>United States</b> | \$ 82,000                             | \$74 billion                                                             | 45,000                         | 8.79.0                                                       |
| Japan                | \$ 60,000                             | \$66 billion                                                             | <sup>a</sup>                   | 6.27.2                                                       |
| Taiwan               | \$ 30,000                             | \$72 billion                                                             | 14,000                         | 6.75                                                         |
| China                | \$ 12,000                             | \$26 billion                                                             | 47,000                         | 4.05.0                                                       |
| India                | \$ 15,000                             | \$0                                                                      | 47,000                         | 4.23.7                                                       |

**Table 12: Statistics, Selected Countries** 

<sup>a</sup> We have been unable to obtain an estimate for the number of chip designers in Japan. Sources: U.S. salary from 2004 BLS Occupational Employment Statistics web site (average for electronics and software engineers in NAICS 3344); Japan salary (average for circuit designer and embedded software engineers aged 40 years old) from Intelligence Corporation's data on job offers in 2003; Taiwan salary information from March 2005 interview with U.S. executive in Taiwan; China and India salaries are estimated based on a combination of interviews, business literature and online job offerings; value of fabs (when fully equipped) from Strategic Marketing Associates (www.scfab.com), reported in "Chipmaking in the United States," Semiconductor International (www.reed-electronics.com/semiconductor), August 1, 2006; number of chip designers in U.S., China, and India from iSuppli as reported in "Another Lure Of Outsourcing: Job Expertise," WSJ.com, April 12, 2004; number of chip designers in Taiwan from interview with Taiwan government consultant to industry, March 2005; number of chip designers in India and China are author estimates based on conflicting published sources and discussions with industry analysts in 2005; Intellectual property protection data from World Economic Forum as cited in Economic Freedom of the World, 20064 Annual Report, Chapter 3 (Vancouver, Canada: Fraser Institute). All numbers rounded to reflect lack of precision.

<sup>&</sup>lt;sup>43</sup> converted at 43.52 Indian Rupees to the dollar

The salary gap is narrower for comparable key employees. One report claimed in 1999 that the salary ratio between the U.S. and India for experienced design engineers or managers was only 3-to-1.<sup>44.</sup> The differential between Indian and U.S. salaries has been declining as Indian salaries have been rising. The earnings of domestically-trained Indian engineers has been doubling in their first five years on the job. Senior managers with foreign experience are paid a large premium that mostly wipes out any cost advantage, since these managers are critical in implementing new technology and projects.<sup>45</sup>

Salaries are also difficult to compare because of different compensation packages. I in the U.S. and Taiwan, profit sharing bonuses that vary over the business cycle can be an important part of compensation. Benefits, which include health insurance and Social Security, and options also cloud the picture in the U.S.

The value of fab construction over the past decade gives some idea of the presence of this part of the value chain in each country. China, at \$26 billion, has made significant inroads since its early public-private joint ventures with Japan's NEC in the mid-1990s. India, in sharp contrast, has yet to see a single commercial-scale fab constructed, although several have been proposed.

We also estimated the number of chip designers, since this group is critical to developing the semiconductor industry. According to some sources, the number of chip designers being added each year in India and China is on the order of 400 each.<sup>46</sup> However the number of chip designers can be misleading, since there is confusion about the definition of "chip designer". One industry executive claimed that the number of "qualified IC designers" in China in 2004 wass only 500.<sup>47</sup> A Taiwan consultant didn't even consider the later (and lower-skilled) stage of physical design, called "place and route," to be part of chip design;<sup>48</sup> this group amounts to about 30% of the Taiwan designers shown in the table.

<u>Comparison of higher education.</u> As we saw above, U.S. universities have attracted large numbers of foreign students to their engineering programs. The United States leads the world in higher education, and especially in graduate training, as the Academic Ranking of World Universities (http://ed.sjtu.edu.cn/ranking.htm) by Shanghai JiaoTong University shows (see Table 13). Fifty-three of the top one hundred universities are located in the U.S. and five are in Japan. In the top five hundred universities, 168 are in the U.S., 34 are in Japan, and only 21 are in China, Taiwan, and India combined.

The Bachelor of Science engineering degree numbers in Table 13 must be treated with caution, since the quality of education is not comparable across countries. The numbers may indicate political and social commitment to advancing technical education rather than actual capability. Also, these numbers are dynamic because of continuing drives to expand engineering degree programs in India and especially China. According to a widely-cited Duke University study, the number of new EE-CS-IT bachelor degrees in China in 2004 had reached 350,000 (Gereffi and Wadhwa, 2005), but how long it will take the new programs to develop quality teaching programs is an open question.

<sup>&</sup>lt;sup>44</sup> "Special report: India awakens as potential chip-design giant," EE Times, January 22, 1999.

<sup>&</sup>lt;sup>45</sup> Interviews at fifteen semiconductor design centers in Bangalore in November 2005.

<sup>&</sup>lt;sup>46</sup> For India: "Designs on the future," IT People, February 10, 2003; for China: "China's Impact on the Semiconductor Industry," PriceWaterhouseCoopers, December 2004, p.7.

<sup>&</sup>lt;sup>47</sup> "China's Impact on the Semiconductor Industry," PriceWaterhouseCoopers, December 2004, p.7.

<sup>&</sup>lt;sup>48</sup> E-mail exchange, March 2005.

Although China and India have large numbers of engineering graduates, the graduates from U.S. universities, according to our interviews, are better trained, especially in team work on projects and on tools and equipment. For example, undergraduate students in India and China usually do not have the opportunity to work on automated chip design (EDA) tools, while EE students in the U.S. do. According to McKinsey, only 10% of Chinese and 25% of Indian engineering graduates are likely to be suitable for employment by U.S. multinationals (McKinsey Global Institute, 2005).<sup>49</sup>

|        | 2005 Academ<br>World U     | Engineer BS                |                 |
|--------|----------------------------|----------------------------|-----------------|
|        | Universities<br>in Top 100 | Universities<br>in Top 500 | diplomas (2001) |
| U.S.   | 53                         | 168                        | 110,000         |
| Japan  | 5                          | 34                         | 110,000         |
| Taiwan | 0                          | 5                          | 35,000          |
| China  | 0                          | 13                         | 220,000         |
| India  | 0                          | 3                          | 110,000         |

**Table 13: Higher Education, Selected Countries** 

Source: Academic Ranking of World Universities values tabulated by authors from ARWU 2005 Edition, accessible at http://ed.sjtu.edu.cn/ranking2005.htm; engineer BS degrees tabulated by authors for "Engineering" and "Math/Computer Science" from Appendix Table 2-33, "Science and Engineering Indicators 2004," National Science Foundation except for India, which is an estimate for 2003-2004 from Appendix "USA-China-India" in "Framing the Engineering Outsourcing Debate", Gary Gereffi and Vivek Wadhwa et al, Engineering Management Program, Duke University, 2005.

However, as shown above, the competition is not only between U.S. students trained in the U.S. and foreign students trained abroad, since a large number of foreign students receive training in the U.S.

## 4.3 Semiconductor Industry Country Profiles

Next we look at the evolution of the semiconductor industries in Taiwan, India, and China and compare the technology capability of these countries with the United States. On the design side, the quality of engineers, both in the universities and in companies, in Asian countries has been improving, as represented by the submission of papers to the International Solid-State Circuits Conference (ISSCC), which is IEEE's global forum for presentation of advances in chip design (see **Figure 8**). Over the 2001 to 2006 period, submissions from China, India, and especially Taiwan increased noticeably. Taiwan's acceptances also increased dramatically, even as the conference's overall acceptance rate fell from 53% to 38%, and we expect acceptances from India and China will increase in the near future as the quality of their university engineering programs improves

<sup>&</sup>lt;sup>49</sup> These figures were arrived at by McKinsey based on a survey of HR managers at multinational subsidiaries in these and other countries which asked the question: "Of 100 graduates with the correct degree, how many could you employ if you had demand for all?"

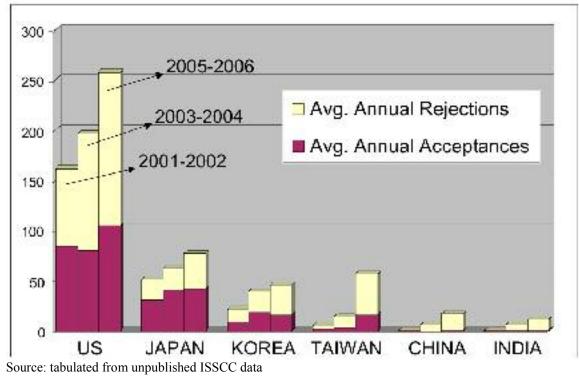



Figure 8: ISSCC Acceptances and Rejections by Country, 2001-2006

We now turn in greater detail to Taiwan, China, and India.

*Taiwan* has the most well-established semiconductor industry of the three Asian countries. According to Taiwan's Ministry of Economic Affairs, it ranked third (behind the U.S. and Japan) in semiconductor-related patent grants from the U.S. PTO.<sup>50</sup> As discussed above, the foundry model originated in Taiwan in 1987, and three of the top five foundries are located there. Taiwan also has successful fabless chip companies, with four companies reporting revenue over \$500 million in 2005.<sup>51</sup>

Table 14 shows the 2005 value of Taiwan's semiconductor industry output by stage of production. Fabrication, at \$18.9 billion, accounts for the largest portion of the \$34.8 billion total, followed by chip design at \$8.6 billion. Such breakdowns are not possible in most major chip-producing countries because all the stages of production occur within large integrated producers, but Taiwanese companies have embraced the disaggregated business model with only a handful of companies covering multiple parts of the value chain.

<sup>&</sup>lt;sup>50</sup> cited in "Taiwan ranks 4th in the world in US patents received," Taipei Times, Oct 17, 2006.

<sup>&</sup>lt;sup>51</sup> "Data Snapshot," Semiconductor Insights: Asia (FSA), Issue 1, 2006.

Draft for internal distribution and comments; do not quote or cite without permission.

|                  | Output Value<br>(US\$ billions) | Growth<br>vs 2004 |
|------------------|---------------------------------|-------------------|
| IC design        | \$8.63                          | 5.8%              |
| Foundry services | \$18.9                          | -3.0%             |
| IC packaging     | \$5.21                          | 6.4%              |
| IC testing       | \$2.04                          | 13.0%             |

| Ta | ble | 14: | Taiwan | 's | Semicond | luctor | Industr | y V | Value, 2 | 2005 |
|----|-----|-----|--------|----|----------|--------|---------|-----|----------|------|
|    |     |     |        |    |          |        |         |     |          |      |

Source: IEK-IT IS data, reported in "Taiwan IC production value reached US\$34.8 billion in 2005, says government agency," DigiTimes.com, January 19, 2006.

Beginning in the late 1970s, Taiwan benefited from focused government programs and the return of U.S. educated and trained engineers.<sup>52</sup> In 1980, the government created the Hsinchu Science-Based Industrial Park which is still the location of the island's largest concentration of semiconductor firms. Hsinchu is the location of two of Taiwan's leading engineering universities and also home to the government's microelectronics lab, ERSO, which played a pioneering role, including the creation of chip companies such as TSMC and UMC. ERSO undertakes some of Taiwan's most advanced research, and its thousands of alumni are encouraged to commercialize technology via local start-up companies.

The Taiwanese chip design sector is mostly locally-owned, with a few multinational companies also operating design subsidiaries. Taiwanese companies have embraced the fabless model, with some sixty fabless companies listed on the Taiwan Stock Exchange in December 2004.<sup>53</sup> By comparison, there were about seventy fabless companies listed on NASDAQ at that time. In 2001, the government began a renewed effort (Si-Soft) to improve local chip design capabilities. As part of the program, the faculty teaching chip design more than doubled from 200 in 2001 to more than 400 by 2005.<sup>54</sup>

One advantage for Taiwan's fabless firms is the availability of an important local market, since many Taiwanese systems companies design, assemble, and procure components for computers, communication equipment, and consumer electronics for world-famous brands, including Hewlett-Packard, Nokia, and Sony. In 1999, 62% of Taiwan's chip design revenue came from local sales.<sup>55</sup> Taiwan is second to the U.S. in fabless firms by revenue, with firms specializing in cost-down, fast-follower capabilities. From a U.S. perspective, Taiwanese competition has shortened the market window during which U.S. chip companies can recoup their investments in chips before similar products appear at a lower price.

Taiwan's design teams were praised in our interviews for their execution, which is a vital trait in an industry where time-to-market is often the difference between profit and loss. A frequent criticism we heard was that they are not yet truly innovative. Ironically, they are locked in as technology followers to some extent by their reliance on business from the local systems firms, who are themselves as much as a generation behind the leading-edge technology.<sup>56</sup>

<sup>55</sup> Data from Taiwan's Industrial Technology Research Institute cited in Table 5, Chang and Tsai (2002).

<sup>&</sup>lt;sup>52</sup> Saxenian (2002).

<sup>&</sup>lt;sup>53</sup> FSA "Global Fabless Fundings and Financials Report, Q4 2004".

<sup>&</sup>lt;sup>54</sup> Chikashi Horikiri, "Taiwan Transforms into IC Development Center," Nikkei Electronics Asia, February 2006.

<sup>&</sup>lt;sup>56</sup> Breznitz (2005).

Taiwan depended upon graduate training in the U.S. in the early stage of development of its semiconductor industry. Since the mid-1990s the number of Taiwanese receiving PhDs in engineering has declined steadily, and today few Taiwanese are obtaining graduate training in the U.S. Although graduate training has improved in Taiwan, we heard in our interviews in Taiwan some concern about the declining numbers of returnees from the U.S. Past returnees brought with them both graduate training and work experience that imparted management skills as well as practical knowledge.

Taiwan's government has instituted several programs to improve the local design sector, including a plan to train several thousand new design engineers in Taiwan's universities, the creation of an exchange where local chip design houses can license reusable functional blocks, and an incubator where early-stage start-ups can share infrastructure and services.<sup>57</sup> Another initiative aims to attract chip design subsidiaries of major semiconductor companies, with early takers including Sony and Broadcom (a major U.S. fabless company). In 2000, a government research institute created the SoC Technology Center (STC) to design functional blocks that can be licensed to local companies, which is a model Taiwan has used successfully in other segments of the electronics industry. The STC has over 200 engineers, most of whom have a Master's degree or better.<sup>58</sup>

For the Taiwanese semiconductor industry, China presents both a major challenge and opportunity. The challenge comes from competition in the foundry and fabless sectors, especially for low-cost designs using older technology, and from competition for engineering talent to work in China and bring with them their knowledge of advanced technology in design and manufacturing. The opportunity comes from the ability to partner with Chinese companies elsewhere in the value chain, so that Taiwanese companies can provide high-end design services, and from access to the rapidly growing markets in China. Political issues have been constraining the opportunities for companies to develop partnerships and markets in China, even as the companies experience the loss of experienced engineers to Chinese competitors. Currently Taiwan-born engineers are an important force in the technology development that is occurring in China, in much the same way that the U.S. played a role in the earlier development in Taiwan. Although China seems to be benefiting more than Taiwan from the flows of engineers, capital and business activities between the two countries, this may change over time if Taiwan government policy changes.

*China* appears to be following a similar pattern to Taiwan: government sponsorship, local access to system firms such as Haier, Huawei, and TCL that are increasingly engaged in world markets, and active involvement of expatriates returning from the United States or experienced engineers relocating from Taiwan.<sup>59</sup>

In little over a decade, Chinese firms have developed impressive fabrication capability, with the help of foreign companies (as investors or as technology licensors) and the Chinese government. Table 15 shows the main chip fabs in China, based primarily in Shanghai. The most striking feature is that they are all foundries working under contract rather than companies that design and manufacture their own products.

<sup>&</sup>lt;sup>57</sup> "Trends in SOC design unthaw at SOC 2004," EDN, December 9, 2004.

<sup>&</sup>lt;sup>58</sup> SoC Technology Center interview, March 2005. "SoC" is a common industry acronym for "system-on-a-chip" meaning a complex semiconductor. integrating multiple functions. <sup>59</sup> Saxenian (2002).

U.S.-based chip companies have few high-profile deals with the China foundries—the major exception being Texas Instruments, which began working with Semiconductor Manufacturing International Corp (SMIC) in 2002 and added a deal to co-develop SMIC's 90nm process in 2004.<sup>60</sup> Executives with U.S. experience have also played key roles. For example, the CEOs of ASMC and HHNEC had previously worked at AMD.<sup>61</sup>

| Company                                                  | Fab location                         | Year entered production | Capacity (wafers per<br>month, 8-inch<br>equivalent) |
|----------------------------------------------------------|--------------------------------------|-------------------------|------------------------------------------------------|
| Advanced Semiconductor<br>Manufacturing Corp (ASMC)      | Shanghai                             | 1995                    | 25,000                                               |
| Shanghai Hua Hong NEC<br>Electronics (HHNEC)             | Shanghai                             | 1999                    | 50,000                                               |
| Semiconductor Manufacturing<br>International Corp (SMIC) | Shanghai,<br>Tianjin, and<br>Beijing | 2001                    | 150,000                                              |
| Grace Semiconductor<br>Manufacturing Corp (GSMC)         | Shanghai                             | 2003                    | 27,000                                               |
| He Jian Technology                                       | Suzhou                               | 2003                    | 42,000                                               |
| Taiwan Semiconductor<br>Manufacturing Co (TSMC)          | Shanghai                             | 2004                    | 15,000;<br>(40,000 planned)                          |

 Table 15: Major Fabs in China, 2006

Source: iSuppli data, reported in Cage Chao and Esther Lam, "Despite China-based foundries reporting full utilization rates in 1Q, Taiwan players not overly impressed," Digitimes.com, March 22, 2006

Apart from SMIC, China's foundries have adopted modest growth plans, especially compared to the headline-grabbing predictions of two or three years ago.<sup>62</sup> But there is no question that chip fabrication is firmly established in China and will gradually expand. Although China's fabs pose a growing challenge to the Taiwan foundries, from the perspective of U.S. chip firms they add welcome competition to the market for wafer processing.

A potentially more worrying development for U.S. firms is the emergence of a fabless design sector in China. Since 2003, China claimed to have over 400 chip design firms. Many of these are small, poorly managed and rapidly running through their seed money before they can bring a product to market, while others offer design services rather than their own products.<sup>63</sup> One interviewee, echoed by others, claimed that many, if not most, firms outside the top 10 are engaged in various types of reverse engineering, which is often illegal.<sup>64</sup> Foreign firms are generally reluctant to bring lawsuits for fear of

<sup>&</sup>lt;sup>60</sup> Mark LaPedus, "TI, SMIC sign deal to develop 90-nm technology by Q1 '05," Silicon Strategies, Oct.28, 2004.

<sup>&</sup>lt;sup>61</sup> Chintay Shih, "Experience on developing Taiwan high-tech cluster," presentation at 4th ITEC International Forum, Doshisha University, June 17, 2006.

<sup>&</sup>lt;sup>62</sup> Mike Clendenin, "Deflated expectations in China's IC biz," EE Times, August 28, 2006.

<sup>&</sup>lt;sup>63</sup> Assessment of Byron Wu, iSuppli analyst, reported in "Analyst: China's IC design houses struggling for survival," EE Times, May 20, 2004.

<sup>&</sup>lt;sup>64</sup> Interview with a European chip executive, conducted by Elena Obukhova in Shanghai, December 2003.

displeasing the authorities and the unlikelihood of winning in Chinese courts, but at least two U.S. companies are suing Chinese rivals in export markets for intellectual property violations.<sup>65</sup>

China's top 10 chip design firms in 2005 had total revenue of more than \$1 billion, \$400 million of which is from the Hong Kong-based Solomon Systec, a designer of LCD drivers that was spun off from Motorola in 1999.<sup>66</sup> The next largest firms (Actions, media player chips, \$150 million and Vimicro. PC camera image processors. \$95 million) had IPOs on NASDAQ in 2005.

However the large and growing domestic market provides the opportunity for China's chip design companies to grow and become profitable, so that in the future they may be able to design products for the global marketplace. The local systems firms provide a sizable market for local fabless start-ups. The best design is being done by the local systems firms and a few world-class start-ups headed by U.S. returnees.

The Chinese government has taken many steps in support of chip design firms, some of the largest of whom are state-owned. Measures include tax reductions, venture investing, incubators in seven major cities, and special government projects.<sup>67</sup> A valueadded tax preference for domestically-designed chips was phased out under U.S. pressure, and will reportedly be replaced by a WTO-friendly R&D fund, although it has not been announced as of this writing (September 2006).<sup>68</sup>

The return of Chinese nationals with education and work experience has been an important part of China's recent technology development.<sup>69</sup> The returnees provide valuable management experience and connectivity to global networks that will tend to accelerate the pace at which China's chip sector develops.<sup>70</sup> The government maintains statistics on student returnees. In 2003, it was reported that, of 580,000 students that had gone abroad since 1978, 150,000 had returned.<sup>71</sup> These returnees had started 5,000 businesses, including over 2,000 IT companies in Beijing's Zhongguancun Science Park (one-sixth the park total).<sup>72</sup> China is working to attract more high-tech returnees with a range of specially-targeted incentives and infrastructure.<sup>73</sup>

China is not yet an important destination for design offshoring by U.S. firms. Of the top twenty U.S. semiconductor companies, only a handful had opened design centers in China (compared to eighteen in India) as of June 2006. Most of the Chinese centers are targeting the local market for the time being, and, according to press reports, some are

<sup>&</sup>lt;sup>65</sup> See "An offshore test of IP rights," Electronic Business, May 2004; and "SigmaTel Sues Chinese Chipmaker over IP," Electronic News, January 6, 2005.

<sup>&</sup>lt;sup>66</sup> Chinese government data cited in Mcallight Liu, "China's Semiconductor Market: IC Design and Applications," Semiconductor Insights: Asia (FSA), Issue 1, 2006 and iSuppli data in Mark LaPedus, "iSuppli lists China's top fabless IC rankings," EE Times, April 21, 2006.

<sup>&</sup>lt;sup>67</sup> "Synopsys Teams with China's Ministry of Science and Technology, SMIC," Nikkei Electronics Asia, March 21, 2003; "An Uneven Playing Field," Electronic News, July 3, 2003; "China nurtures home-grown semiconductor industry," EBN, December 8, 2003; "China government to support Solomon Systech, Actions and Silan," DigiTimes, April 14, 2005.

<sup>&</sup>lt;sup>68</sup> "China to form R&D fund to replace VAT rebate, says report," EE Times, April 15, 2005. <sup>69</sup> Saxenian (2002).

<sup>&</sup>lt;sup>70</sup> "Story behind the Story: Design in China is growing, but not exploding," audiocast by Bill Roberts, Electronic Business, September 1, 2006, http://www.edn.com/article/CA6368425.html?text=%22design+in+china%22#

<sup>&</sup>lt;sup>71</sup> "More overseas Chinese students returning home to find opportunities," November 16, 2003, http://www.chinaembassy.org/eng/gyzg/t42338.htm <sup>72</sup> "More overseas Chinese students return home," January 1, 2004, http://www.china-

embassy.org/eng/gyzg/t57364.htm <sup>73</sup> Mike Clendenin, "China starting to lure back its best brains," EE Times, January 3, 2002.

engaged in software or system design rather than chip design *per se*. Concerns over intellectual property protection appear to pose a greater barrier to foreign design activity than in India.<sup>74</sup>

Chip design in China is at an early stage. Its relatively young chip design engineers will steadily build their experience. One factor that favors the development of local design companies is that engineers prefer to work for domestic start-ups and domestic companies rather than MNCs. Many young Chinese engineers, especially returnees, want to take the risk working for an emerging company that may result in great wealth. Some companies, particularly those whose founders include expatriates returning with foreign education and experience, will likely begin to impact global markets by the end of the decade. It is too early to predict the eventual relative importance of domestically-owned and foreign-owned chip design activity, or to predict whether domestic firms will be involved mostly with contract services or with creating and selling their own chips.

Education of semiconductor engineers is also at an early stage. As discussed above, the quality of the engineering graduates varies widely, and few of them have the knowledge and skills to work on advanced technology or for MNCs. Multinational companies, including chip and EDA firms, have been involved with improving engineering education in China, and the government has been actively involved with recruiting world-class engineering professors to Chinese universities. Over time we expect semiconductor engineering education, especially at the graduate level, to continue improving. Returnees from the U.S. and experienced engineers from Taiwan will continue to play an important role in transferring technology to China.

*India* presents a very different picture than China in the semiconductor industry. India faces benign neglect by the government, a lack of manufacturing for chips and systems, and weaker levels of brain circulation with its U.S.-based expatriates.<sup>75</sup> Unlike Taiwan and China, India has no high-volume chip manufacturing, although as many as five proposals to build a foundry are in various stages of negotiation.<sup>76</sup>

India is estimated to have 120 chip design firms. Indian chip design revenue in 2005 is estimated to be \$583 million.<sup>77</sup> Most of this chip design is taking place in foreign subsidiaries, including most of the top 20 U.S. companies and many European companies. This flow of semiconductor engineering talent to multinationals slows down the diffusion of technology to local firms. India has no major fabless companies designing chips for sale under their own brand. Domestic chip design companies mainly provide design services, which vary in their capabilities. Local design companies use a time and material-based pricing method, which allocates specific tasks to be carried out within set time lines and is easy to execute, according to an India Semiconductor Association (ISA) study.<sup>78</sup> These companies tend to develop simple subsystems based on customer specifications. The larger independent design services firms are much more sophisticated. They use a fixed price method, are able to provide end-to-end solutions

<sup>&</sup>lt;sup>74</sup> "SIA Pushes Steps to Better IP Protection in China," Electronic News, November 17, 2004.

<sup>&</sup>lt;sup>75</sup> Saxenian (2002).

<sup>&</sup>lt;sup>76</sup> Russ Arensman, "Move over, China," Electronic Business, March 2006.

<sup>&</sup>lt;sup>77</sup> Data from Frost & Sullivan, in Chitra Giridhar, "India design firms as product innovators," Electronic Business, July 18, 2006.

<sup>&</sup>lt;sup>78</sup> "Study: Indian design firms prefer time and material model", EE Times, Sept 22, 2006.

that incorporate in-house proprietary IP, and offer design services across the VLSI design flow. The government is developing policies to support domestic chip design firms.

Indian engineers, according to our fieldwork, prefer multinationals over local start-ups, which are perceived by the engineers and family members as too risky. This is a contrast with China, where engineers are relatively eager to join start-ups, which are often provided some government support.

The foreign chip companies were attracted by Indian engineers' knowledge of English and the successful Indian software sector. Many of the early Indian investments by chip companies were software-focused, writing the microcode that becomes part of the chip. Over time, the Indian affiliates have taken on a bigger role, eventually extending to complete chip designs from specification to physical layout. This transition can happen quite quickly. Intel, for example, opened a software center in Bangalore in 1999, then started building a design team for 32-bit microprocessors in 2002.<sup>79</sup>

The American MNCs are highly dependent upon returnees with advanced degrees from the U.S. to develop new projects in India, since most domestically-trained engineers lack the knowledge of the technology being transferred, lack the management skills required, and also lack knowledge of the entire product cycle. So far MNCs in India have had few instances where design engineers leave to start their own companies, as is often the case in the U.S. However we heard of at least two cases of this occurring over the past two years at one U.S. subsidiary. We also heard that the possibility of leaving a multinational to start a company is becoming more acceptable among Indians engineers, whose personal motivation is often to help India develop rather than to accumulate great wealth.<sup>80</sup>

Foreign subsidiaries are facing formidable problems in their operations in India, including a very tight labor markets and inadequate infrastructure. As in China, the quality of engineering graduates is highly variable. This is exacerbated in India by the fact that most engineers want to study computer science rather than electronics, and many are not aware of the job opportunities in semiconductors. Graduate education in EE is in its infancy, and doctoral education in the seven major technical universities is not up to U.S. standards. The very low wages paid to professors, the lack of expensive and everchanging EDA tools, and the difficulty and expense in getting engineering chips fabricated, partly explain the problems in developing world-class graduate education. In addition, India has not attracted returnees to the extent that China has, and so the flow of returnees with graduate degrees is low. The low flow of new domestic graduates and returnees into the EE labor supply, coupled with the need for at least three to five years of experience to be a fully-productive chip designer, has prevented the supply of design engineers from keeping up with the fast-growing demand. As a result, wages for chip designers have been rising rapidly, both at entry level and during the first five years. As mentioned above, salaries after five years of experience are double the entry-level salary.

Inadequate infrastructure, especially in Bangalore, also imposes serious problems for chip design centers. The lack of a stable energy supply and lack of office space means that foreign subsidiaries must make substantial investments to provide both offices and electricity. The small, pothole-filled roads are gridlocked in Bangalore, the country's primary city for high-tech, and employees spend long hours in commuting. In addition,

<sup>&</sup>lt;sup>79</sup> "Intel, TSMC Set Up Camps In Developing Asian Markets," WSJ.com, August 30, 2002.

<sup>&</sup>lt;sup>80</sup> Personal communications in Bangalore, November 2005.

high-tech companies are spread out over the city, and commuting between companies, or even between company locations, is very time consuming. The housing stock has not kept up with growth, and housing prices and rents have been rising rapidly. Many employees are faced with the choice of living in inadequate housing or living far from work. The housing and schooling problems are especially severe for the returnees from the U.S., who want to replicate the quality of housing and schools their families experienced in the United States. In Bangalore, we were told by several executives that their cost of living was almost as high in Bangalore as in the U.S. because of the high cost of housing and international schools.<sup>81</sup>

The shortage of engineering talent and weak infrastructure is constraining how fast the semiconductor design industry, both for foreign subsidiaries and local companies, can grow in India, especially in Bangalore. Some companies have been moving operations to areas that are not as expensive as Bangalore and have better infrastructure. However the talent shortages still remain, especially for experienced engineers with advanced degrees.

We now look at the outlook for semiconductor engineers in the U.S. and sum up what we know so far about how U.S. companies and engineers have fared as the industry has become more global. Then we briefly look at some key policy issues, and conclude with lessons learned so far.

## 5. Outlook and Conclusion

The U.S. remains the world leader in the semiconductor industry in terms of market share, development of successful new companies, supply of experienced engineers, and graduate engineering education Moreover, the U.S. is the largest market in terms of the location of system design, which is the stage at which most semiconductor purchase decisions are made.<sup>82</sup> Our competitors, especially Japan, Korea, Taiwan, and the EU, look to the U.S. for lessons in how to foster innovation and emerging companies in the semiconductor industry. Nonetheless, competition from low-cost countries, especially China and India who have rapidly growing and potentially large markets, may pose competitive threats to U.S. companies and engineers in the future.

#### 5.1 Outlook for U.S. Engineers

The job market for U.S. semiconductor engineers shows some strength in employment and earnings growth, but evidence of labor market problems exist, especially for older engineers and for the bottom 10 percent across all education groups. We also observed signs of a decline in the earnings premium for a graduate degree (MS/PhD compared to a BS), and low returns to experience for engineers with graduate degrees. The situation is especially difficult for older engineers, who face rapid skill obsolescence. Experienced design engineers are often forced to work on mature technologies, which pay less. For example, the EE Times 2004 salary survey found that the average annual salary for U. S. and European engineers skilled at designing for the

<sup>&</sup>lt;sup>81</sup> Personal communications in Bangalore, November 2005.

<sup>&</sup>lt;sup>82</sup> iSuppli data reported in Dylan McGrath, "U.S. still top design influencer; China, India rising fast,"EE Times September 28, 2006.

latest chip process technology was \$107,000, whereas engineers designing for the more mature analog technology averaged \$87,000.<sup>83</sup>

Results from a regional survey of the Silicon Valley, considered the cradle and creative font of the semiconductor industry, reveal a difficult job climate there. Overall the number of jobs in the Silicon Valley has continually decreased since 2001. Silicon Valley jobs in the semiconductor and semiconductor equipment industries declined 23% between 2002 and 2005, although the average wage rose 12% during the same period, painting a mixed picture of the sector's health.<sup>84</sup>

Perhaps unsurprisingly, industry participants themselves are split on the significance of offshoring for the U.S. job market. A 2004 survey of more than 1,453 chip and board design engineers and managers by EE Times shows that about half saw foreign outsourcing as leading to a reduction in headcount. Qualitative opinions in the survey were also divided, with optimists noting that reduced costs made for a stronger company and a more secure job, while the pessimists bemoaned downward pressure on wages and employment plus a possible loss of intellectual property and, in the long run, industry leadership.<sup>85</sup>

We have observed some movement of design jobs over the business cycle. A wave of design offshoring took place at the height of the dot.com bubble. When the cascading effect of the subsequent downturn reached the semiconductor industry, chip companies cut staff at home. Now that the recovery requires expansion of design operations, chip companies appear to be expanding design operations abroad faster than at home.<sup>86</sup> It is too early to predict where this relative shift in the geographic distribution of employment will find a new equilibrium.

Even experts cannot agree if the U.S. is educating too few engineers and scientists and is facing a shortage.<sup>87</sup> This is partly because economists find it hard to think a shortage exists in a labor market when real earnings are not rising across the board, as is generally the case in the high-tech engineering labor market. Partly this is a reflection of government policies that affect immigration and education of high-tech engineers, which we discuss below.

## **5.2 Policy Issues**

The industry's offshoring has gone well beyond the point where blunt instruments such as trade policy can help engineers without harming companies. Taxes or quotas on traded activities or goods would raise the cost structure of the many companies who have already invested offshore in a wide array of design and manufacturing activities for both the foreign and the domestic chip market.

Policy is thus unlikely to be able to improve the demand side of the labor market, and industry has been active in lobbying for changes on the supply side in the form of education and immigration changes. The Winter 2005 newsletter of the Semiconductor

<sup>&</sup>lt;sup>83</sup> "After 10-year surge, salaries level off at \$89k," EE Times, August 28, 2003.

<sup>&</sup>lt;sup>84</sup> Joint Venture: Silicon Valley Network, "2006 Index of Silicon Valley," available online at

http://www.jointventure.org/PDF/Index%202006.pdf. The data are from state unemployment insurance data, which is the basis for the Census data.

<sup>&</sup>lt;sup>85</sup> "It's an outsourced world, EEs acknowledge," EE Times, August 27, 2004.

<sup>&</sup>lt;sup>86</sup> See, for example, "The perfect storm brews offshore," Electronic Business, March 2004, accessible at www.reed-electronics.com/eb-mag/toc/03%2D01%2D2004/

<sup>&</sup>lt;sup>87</sup> See for example Richard B. Freeman (2003, 2005); Task Force On The Future Of American Innovation (2005); National Research Council (2000, 2001); William Butz et al (2004).

Industry Association includes articles such as "Maintaining Leadership As Global Competition Intensifies" by the organization's president and "America Must Choose To Compete" by the outgoing CEO of Intel. One of the main targets of these industry analyses is education.

Higher education policies, which reflect both university decisions and government funding, determine the number and country of origin of graduate students at all levels but especially the graduate level. The importance of foreign nationals in our MS and PhD programs in science and engineering has a direct impact on the supply of knowledge workers both in the United States as well as China and India. Foreign graduates of U.S. universities must obtain temporary visas, usually H1-B visas, before they can work in the U.S. after graduation. Legislation is under consideration to provide permanent residency status to foreigners educated in the United States, and hopefully this policy will be implemented soon.

Government policies regulating immigration, especially the issuance of H-1B (Non-Immigrant Professional) and L-1 (Intra-Company Transfer) visas, have an important impact on the number of foreign engineers engaged in semiconductor and software work. Changes in the policy appear to have had an effect on in-house offshoring. When the number of H-1B visas issued was dramatically cut in 2004 in a delayed response to the recession, many U.S. companies used the opportunity to send foreign nationals with U.S. education and experience back to India and China to help build operations there.

An area of policy that has received less attention is compensation to engineers who are harmed by offshoring. Thanks to the offshoring of chip design, consumers benefit from lower prices and new products (although much of that benefit is received outside the United States), but some of the short-term cost of the offshoring is borne by engineers in particular companies or industry sectors whose companies are restructuring globally. Currently, white-collar workers like chip designers don't qualify for tradeadjustment assistance from the government when their jobs are sent abroad. It would make sense to help these workers with retraining and other forms of assistance that will keep these highly-skilled individuals productive. As Federal Reserve Chair Bernanke remarked, "The challenge for policymakers is to ensure that the benefits of global economic integration are sufficiently wide-shared — for example, by helping displaced workers get the necessary training to take advantage of new opportunities — that a consensus for welfare-enhancing change can be obtained."<sup>88</sup>

Finally, more and better data are needed. As researchers in other industries have noted, more labor market data, both for the U.S. and our trading partners, are needed in order to properly understand offshoring and its effects.<sup>89</sup> In the meantime, national policies affecting education, labor markets, and innovation will continue to be based upon informed speculation.

#### 5.3 How should U.S. engineers respond?

American engineers can and are responding to the impact that the changing labor market is having upon their careers. The highly-rewarded career path of working for one company for one's entire adult life is no longer an option for most engineers, who can

<sup>&</sup>lt;sup>88</sup> Edmund L. Andrews, "Fed Chief Sees Faster Pace for Globalization", New York Times, August 25, 2006

<sup>&</sup>lt;sup>89</sup> See the excellent study by Tim Sturgeon et al (2006).

expect to work for several firms. In fact, changing jobs is now the way that engineers can develop their careers, both in terms of improving pay and in learning new technologies and skills. Networking with colleagues from one's alma mater and former companies as well as through professional associations is an excellent way to keep up with knowledge about job opportunities as well as to learn about new technologies.

Our advice is to semiconductor engineers is to embrace the mobile labor market and see job change as the way to advance your own development. Choose your next job carefully to improve your skills and learn from experience. Continually stay in touch with your network, and share knowledge with your colleagues about what is happening in the field and about job opportunities. Today's engineers must be in charge of their careers; they can no longer depend upon their employer to provide them with the continual training they need to keep up their skills.

Foreign nationals who are working for U.S. companies can use their networks to develop their careers both in the U.S. and in the home country. Returnees can bargain good salary packages with their U.S. employers, if they are willing to return home for short- or long-term stints. U.S. nationals should go abroad to develop contacts and expertise about specific cultures and regional markets.

Semiconductor engineers are known for their flexibility and ability to solve challenging problems and learn new technologies. The semiconductor industry will remain in continual crisis and change. Chip engineers should use these industry characteristics to their advantage in planning their careers by seeking jobs where they can learn new technology and new markets. To be successful in the industry, an engineer (or manager) must view change as an opportunity rather than a problem.

## **5.4 Lessons Learned**

In its short history, the semiconductor industry has faced continual challenges and has done an extraordinary job of overcoming them, often in innovative ways that were not anticipated. The industry has also continually experienced large swings in demand and prices, and we expect the cyclical nature of the industry to continue, even as the longterm trend is upward. In predicting the future of the industry and in setting policy, we must not extrapolate from the short run, especially during a downturn, since this will not provide the correct basis for making policy, either by governments or by companies.

Macro policies that ensure a strong economy with steady growth are critical to the development of the semiconductor industry, which is harmed by national recessions and by high interest rates.

Government support of higher education, especially graduate education, should be the cornerstone of public policy to support innovation. A strong university system with state-of-the-art graduate training and strong links to companies is critical for innovation in the semiconductor industry. U.S. universities play a central role in educating PhD-level engineers, who are as likely to be from Asia as from the U.S. A company's knowledge base incorporates the workers' contacts at their former universities as well as at former employers, and these university and professional social networks are an important extension of a firm's formal knowledge base. Company awareness of this is critical to ensuring that employees' knowledge is recognized and used, and not just leaked.

# 5.5. Conclusion

The semiconductor industry is still in the intermediate stages of globalization, which is a complex dynamic process, and policy interventions need to be flexible. At this point it is hard to say what the impact of offshoring will be on the competitive position of the U.S. semiconductor industry, how long it will take for the economy to adjust, and whether the new equilibrium will be acceptable.

Offshoring has provided an important step in the integration of India and China into the global economy. China and India appear to be pursuing different roles vis-à-vis the United States, with the Chinese industry acting more as a more a competitor (e.g. fabless start-ups) and the Indian industry playing a more a complementary role (e.g. design services). Both countries will play an increasingly important role in high-tech industries, both as markets and suppliers. However their ability to move up the technology curve is constrained by lack of graduate education, undeveloped financial systems, and inadequate IP protection, as well as political systems that face severe problems.

We expect the United States to maintain its leadership position in the semiconductor industry, and we expect the industry and its resourceful engineers to continue to find ways to overcome challenges. Modifications in government policies affecting universities, immigration, and workers affected by trade would alleviate some of the labor market problems observed.

### References

Borrus, Michael. 1988. *Competing for Control: America's Stake in Microelectronics*. Cambridge, MA: Ballinger Publishing.

Breznitz, Dan. 2005. "Development, Flexibility, and R&D Performance in the Taiwanese IT industry – Capability Creation and the Effects of State-Industry Co-Evolution." *Industrial and Corporate Change*, 14(1): 153-187.

Brown, Clair, and Benjamin Campbell. 2001. "Technical Change, Wages, and Employment in Semiconductor Manufacturing". *Industrial and Labor Relations Review*, Winter.

Brown, Clair, and Greg Linden. 2006. "Offshoring in the Semiconductor Industry: A Historical Perspective," pp. 279-333, in Lael Brainard and Susan M. Collins, eds., <u>Brookings Trade Forum 2005:</u> <u>Offshoring White-Collar Work—The Issues and the Implications</u>, Washington DC: Brookings Institute.

Butz, William, Terrence Kelly, David Adamson, G. Bloom, D. Fossum, and M. Gross. 2004. *Will the Scientific and Technical Workforce Meet the Requirements of the Federal Government?* RAND Corporation.

Chang, Pao-Long, and Chien-Tzu Tsai. 2002. "Finding the niche position — competition strategy of Taiwan's IC design industry." *Technovation*, 22(2): 101-111.

Ernst, Dieter. 2004. "Internationalisation of Innovation: Why is Chip Design Moving To Asia?" Working Paper 64 (rev.March 2004). Honolulu, HI: East-West Center.

Flamm, Kenneth S. 1985, "Internationalization in the Semiconductor Industry," in Joseph Grunwald and Kenneth S. Flamm, *The Global Factory: Foreign Assembly in International Trade*. Washington, D.C.: Brookings Institution, pp.38-136.

Brown and Linden (September 21, 2006)

Draft for internal distribution and comments; do not quote or cite without permission.

Freeman, Richard B. 2003. "Trade Wars: The Exaggerated Impact of Trade in Economic Debate." NBER Working Paper No. W10000, National Bureau of Economic Research.

Freeman, Richard B. 2005. "Does Globalization of the Scientific/Engineering Workforce Threaten U.S. Economic Leadership?" NBER Working Paper 11457, June.

GAO. 2003. "H-1B Foreign Workers: Better Tracking Needed to Help Determine H-1B Program's Effects on U.S. Workforce." GAO Report 03-883, Washington, DC.

Garner, Alan C. 2004. "Offshoring in the Service Sector: Economic Impact and Policy Issues." *Economic Review (Federal Reserve Bank of Kansas City)*, Third Quarter: 5-37.

Gereffi, Gary and Vivek Wadhwa, 2005, "Framing the Engineering Outsourcing Debate: Placing the United States on a Level Playing Field with China and India," Engineering Management Program, Duke University.

Groshen, Erica L., Bart Hobijn, and Margaret M. McConnell. 2005. "U.S. Jobs Gained and Lost through Trade: A Net Measure." *Current Issues in Economics and Finance* 11 (8):1–7.

Gupta, Deepak. 2005. "Ties that Bind: An Econometric Analysis Of the Return Home of Foreign-born US Ph.D.s," Working Paper 2005-1, Amrita School of Business, Ettimadai, India.

Ham, Rose Marie, Greg Linden, and Melissa M. Appleyard, 1998, "The Evolving Role of Semiconductor Consortia in the U.S. and Japan," *California Management Review*, 41(1): 137-163.

Hemani, Ahmed. 2004. "Charting The EDA Roadmap." IEEE Circuits & Devices, 20(6): 5-10.

Henderson, Jeffrey W. 1989. The Globalisation of High Technology Production: Society, Space, and Semiconductors in The Restructuring Of The Modern World. New York: Routledge.

Henisz, Witold J., and Jeffrey T. Macher. 2004. "Firm- and Country-Level Trade-offs and Contingencies in the Evaluation of Foreign Investment, *Organization Science*, 15(5): 537–554.

Hira, Ron. 2004. "U.S. Immigration Regulations and India's Information Technology Industry." *Technological Forecasting & Social Change*, 71: 837 - 854.

Hira, Ron. 2005. "Impacts and Trends of Offshoring Engineering Tasks and Jobs" The Bridge (NAE), 35 (3). Accessible at http://www.nae.edu/NAE/bridgecom.nsf/weblinks/NAEW-6GEK5J?OpenDocument

Howell, Thomas R., Brent L.Bartlett, William A.Noellert, and Rachel Howe. 2003. *China's Emerging Semiconductor Industry: The Impact of China's Preferential Value-Added Tax on Current Investment Trends*. San Jose, CA: Semiconductor Industry Association.

International Business Strategies. 2002. "Analysis of the Relationaship Between EDA Expenditures and Competitive Positioning of IC Vendors: A Custom Study for EDA Consortium." accessed on April 15, 2005 at www.edac.org/downloads/resources/profitability/HandelJonesReport.pdf.

Leachman, Robert C., and Chien H.Leachman. 2004. "Globalization of Semiconductors: Do Real Men Have Fabs, or Virtual Fabs?" in Martin Kenney with Richard Florida, eds., *Locating Global Advantage: Industry Dynamics in the International Economy*. Stanford, CA: Stanford University Press, pp.203-231.

Linden, Greg, Clair Brown, and Melissa Appleyard. 2004. "The Net World Order's Influence on Global Leadership in the Semiconductor Industry" in Martin Kenney with Richard Florida, eds., *Locating Global Advantage*. Stanford, CA: Stanford University Press, pp.232-257.

Draft for internal distribution and comments; do not quote or cite without permission.

Linden, Greg, and Deepak Somaya. 2003. "System-on-a-Chip Integration in the Semiconductor Industry: Industry Structure and Firm Strategies," *Industrial and Corporate Change*, 12(3): 545-576.

Macher, Jeffrey T., David C. Mowery, and David A. Hodges. 1998. "Back to Dominance? U.S. Resurgence in the Global Semiconductor Industry." *California Management Review*, 41(1): 107-136.

MAEI. 1995. "Malaysian-American Electronics Industry: Annual Survey 1994/1995." Mimeo. Kuala Lumpur, Malaysia: MAEI.

McKendrick, David G., Richard F. Doner, and Stephan Haggard. 2000. *From Silicon Valley to Singapore : Location and Competitive Advantage in the Hard Disk Drive Industry*. Stanford, CA: Stanford University Press.

McKinsey Global Institute, "The Emerging Global Labor Market,", June 2005, San Francisco: McKinsey & Company.

National Research Council. 2000. Forecasting Demand and Supply of Doctoral Scientists and Engineers. National Academy Press.

National Research Council. 2001. *Building a Workforce for the Information Economy*. National Academy Press.

Saxenian, Annalee. 2002. "Transnational Communities and The Evolution of Global Production Networks: The Cases Of Taiwan, China And India." *Industry and Innovation*, 9(3): 183-202.

Semiconductor Industry Association. 2003. "International Technology Roadmap For Semiconductors: Design." accessible at public.itrs.net/Files/2003ITRS/Home2003.htm as of April 19, 2005.

Sturgeon, Timothy J. 2006. "Services Offshoring Working Group: Final report." MIT Industrial Performance Center, September.

Task Force On The Future Of American Innovation. 2005. "The Knowledge Economy: Is The United States Losing Its Competitive Edge?" Accessible electronically at www.futureofinnovation.org/ as of April 20, 2005.

Tilton, John E. 1991. *International Diffusion of Technology: The Case of Semiconductors*. Brookings Institute: Washington DC.