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Abstract

In order to find the real market value of an asset in an exchange
economy, one would typically apply the formula appearing in Lucas
(1978), developed in a discrete time framework. This theory has also
been extended to continuous time models, in which case the same
pricing formula has been universally applied.

While the discrete time theory is rather transparent, there has been
some confusion regarding the continuous time analogue. In particular,
the continuous time pricing formula must contain a certain type of a
square covariance term that does not readily follow from the discrete
time formulation. As a result, this term has sometimes been missing
in situations where it should have been included.

In this paper we reformulate the discrete time theory in such a way
that this covariance term does not come as a mystery in the continuous
time version. It is shown, e.g., that this term is of importance also in
the equivalent martingale measure approach to pricing.

In most real life situations dividends are paid out in lump sums, not
in rates. This leads to a discontinuous model, and adding a continuous
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environment during my sabbatical stay for the academic year 2004-2005.
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time framework, it appears that our framework is a most natural one
in finance.

KEYWORDS: Exchange economy, state price deflator, discrete time, con-
tinuous time, equivalent martingale measure, the Gordon growth model

1 Introduction

1.1 The two time scales

In the Lucas (1978) exchange economy with one consumption good, the real
market value St of a security at time t is given by the formula

St =
1

πt

Et

{ T∑
s=t+1

πsδs

}
, (1)

where Et provides the conditional expected value given the information Ft

at time t, π is a state price deflator, also known as a pricing kernel or a
marginal rate of substitution process, a strictly positive process, and δ is the
security’s dividend process, measured in units of the consumption good.

Here St is the price of the security, ex dividend, at time t. That is, at
each time t the security pays its dividend and is then available for trade at
price St. The cum dividend price at time t is St + δt.

In an equilibrium setting with a representative agent having the time
additive utility representation given by

U(c) = E
{ T∑

t=0

u(ct, t)
}

, (2)

the state price deflator takes the form πt = u′(ct, t) under certain regularity
conditions, where u′(·, t) is the marginal utility index of the representative
agent at time t, and c is interpreted as aggregate consumption in the market.

The formula (1) is equivalent to the condition of no arbitrage possibilities
in the market. Consider the gains process Gt = St +

∑t
s=1 δs, the price

plus accumulated dividends. The deflated gains process Gπ is defined as
Gπ

t = Stπt +
∑t

s=1 δsπs. Then there is no arbitrage if and only if there is a
deflator π with the property that the deflated gains process is a martingale.
Add the assumption that ST = 0 at the horizon T , and formula (1) follows
directly.

The fact that the state price deflator πt has the form πt = u′(ct, t) when
U is given by (2), follows from the first order condition of agent optimality,
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noticing that the directional derivative of U at the ”point” c and in the
”direction” δ has the form OU(c; δ) = E{

∑T
t=0 u′(ct)δt} in this case. See

Ross (1978) for the concept of state price in one period models, Duffie and
Schaefer (1985) for the finite dimensional case in discrete time, and Harrison
and Kreps (1979) for the general case.

Moving to continuous time, the pricing formula corresponding to (1) has
been shown to have the form (see e.g., Aase (2002))

St =
1

πt

Et

{∫ T

t

(
πs−dDs + d[π, D]s

)}
. (3)

Here Dt is the accumulated dividends of the security by time t, and the term
[π, D] is called the realized quadratic covariance between dividends and the
deflator. Suppose π and D are semimartingales, the most general continuous
time models for which integrals can be constructed in an intuitive manner,
and consider a time grid 0 = s0 < s1 < · · · < sn = T , which is refined as n
increases. Then

[π, D]T = lim
4sk−1→0

∑
sk≤T

(πsk
− πsk−1

)(Dsk
−Dsk−1

), (4)

where 4sk−1 := (sk − sk−1) and the convergence is in probability uniformly
on [0, T ]. Sometimes the notation 〈π, D〉ts = Et[π, D]s for t ≤ s is used, in
which case the formula (3) can be written

St =
1

πt

(
Et

{ ∫ T

t

πs−dDs

}
+

∫ T

t

d〈π, D〉ts
)
. (5)

In neither of its forms can this quadratic covariance term be directly com-
pared to an ordinary covariance, but comes fairly close in some cases. If,
for example, π and D are both Itô-diffusions driven by the same Brown-
ian motion, then d[π, D]t = σπ(t)σD(t)dt. In this case d

ds
covt(πs, Ds)|s=t+ =

σπ(t) ·σD(t), i.e., we have an instantaneous covariance interpretation at time
t. There is a similar simple relationship for jump-diffusions driven by Pois-
son random measure and Brownian motion (see Section 6). The term may
disappear under independence, but this assumption is certainly not enough,
since it is easy to find even deterministic processes that jump at the same
time points and have a nonzero quadratic covariance term.

The formula (3) is true for π and D appropriately integrable semimartin-
gales, which includes both continuous Itô-processes, pure jump processes and
the more general jump-diffusions. In Aase (2002) a proof of (3) was presented
in the case of Itô-processes using the economic argument of numeraire invari-
ance. We demonstrate in Section 4 that the same argument also works for
more general semimartingales, containing, e.g., jumps.
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In situations where this extra term has a covariance like flavor, it can be
given an economic interpretation, as pointed out in Aase (2002). Suppose
we consider the equilibrium setting with a decreasing marginal utility index.
If the term [π, D]s > 0 for some s in the time interval (t, T ] with positive
probability, this means that the state price is positively correlated with the
dividends of the security under consideration, which ought to have a positive
effect on the market price of the security, as compared to the situation where
this term is zero or negative. Such a security would simply possess the
fortunate property paying out more dividends on the average, in units of
consumption, in states where the consumption c tends to be low - in other
words, in states where these dividends will be relatively valuable - a property
of an asset that must be reflected in its market price.

1.2 Are the two formulas mutually consistent?

In various treatments the following continuous time analogue of (1) often
appears

St =
1

πt

Et

{∫ T

t

πs−dDs

}
(6)

or close variants of this, but without the quadratic covariance term of (3), or
(5). The formula (6) appears both in scientific papers published during the
last couple of decades, e.g., Duffie and Zame (1989), and also in textbooks,
even recent ones, e.g., Dana, R.-A., M. Jeanblanc-Picqué, and H. F. Koch
(2003). Nielsen (2004) considers the case where adjusted price processes are
Itô-processes, and gives an overview of some of the different uses and misuses
of this formula.

In situations where π and D are independent processes, the formulas (3)
and (6) may coincide, but mere independence is certainly not sufficient to
get rid of the quadratic covariance term, as observed above. Moreover, in
economically interesting situations π and D are certainly not inpendent. In
continuous models like Itô-diffusions, however, if the aggregated dividends
D are of bounded variation, then the formulas above are equal, since in this
case d[π, D]t = σπ(t)σD(t)dt, and σD(t) = 0 for all t if D is a finite variation
process. It should be added that this is a fairly common assumption in the
financial economics literature (see e.g., Merton (1973)).

However, in most real life situations dividends are paid out in lump sums,
not in rates. This leads to a discontinuous model, and adding a continuous
time framework, it follows from the subsequent discussion that our framework
is the most natural one in finance.

The quadratic covariance term in (3) does not vanish for pure jump mod-
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els, where all the changes in the quantities π and D take place at common,
discrete, random time points 0 < τ1 < τ2 < · · · < T . This would be a useful
framework if there is one common source of risk. Since this situation is very
close in spirit to the discrete time model, one may be led to wonder if there is
some kind of inconsistency between the two formulas (1) and (3). The main
difference between a pure random jump process and a discrete time process
is, as far as we are concerned, that the time spacing between events, or obser-
vations, is not deterministic for the former model, but is so by construction
for the latter.

Thus we ask the question: Can formulas (1) and (3) be reconciled? And
if so, can it be done in an intuitive and transparent manner? In the next
section we provide answers to these questions.

The paper is organized as follows: In Section 2 we clarify the puzzle men-
tioned above, in Section 3 we make the passage from discrete to continuous
time, in Section 4 we prove the numeraire invariance theorem for semimartin-
gales, in Section 5 we show how the realized quadratic covariance term enters
under equivalent martingale measures, in Section 6 we develop the Gordon
growth formula for continuous time models, and Section 7 concludes.

2 The appropriate informational constraints

In order to take a closer look at formula (1) in the discrete time setting, notice
that the profit from time (t− 1) to time t is (St + δt−St−1) for someone who
bought the security at time (t − 1), after the dividend payment at time t.
Thus the capital gain is (St − St−1) and the dividend is δt over this period,
and the value of the security is given by (1) in the neoclassical world.

Using the notation 4St−1 := (St−St−1) and 4Dt−1 := (Dt−Dt−1), note
that 4Dt−1 = δt is the change in dividends over the period from (t− 1) to t,
or the dividends paid by the security at time t. Using this notation we may
rewrite formula (1) as

St =
1

πt

Et

{ T∑
s=t+1

πs4Ds−1

}
. (7)

To prepare for a continuous time sum, an integral, we must be careful in
keeping track of when the various payments are being made. To this end it
will be convenient to rewrite the formula (7) as follows:

St =
1

πt

Et

{ T∑
s=t+1

(
πs−14Ds−1 + (πs − πs−1)4Ds−1

)}
. (8)
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Here the essential part is that while the sum in (7) is not a candidate for a
stochastic integral since the ”integrand” πs dates to the end of the interval
over which the dividend (Ds − Ds−1) is paid, the sum in (8) is such a can-
didate, since here the relevant informational constraints are satisfied. This
suggests the continuous time analogue

St =
1

πt

Et

{∫ T

t

(
πs−dDs + d[π, D]s

)}
, (9)

where we have used the device 4[π, D]t = 4πt4Dt. This is formula (3).
Here it is also essential that the integrand πs− dates to the beginning of
the interval [s, s + ds) where the dividend over this interval dDs is yet not
known, which gives us the conventional stochastic integral in the limit, with
the so called Itô’s choice. Contrary to the case of ordinary Lebesgue-Stieltjes
integrals, this latter distinction is crucial for stochastic integrals.

In other words, by paying attention to the fact that the dividend incre-
ment 4Ds−1 is a forward difference, and that the prices are ex dividend, the
rewriting of (7) to the form in (8) follows rather natural, in which case the
continuous time analogue (9) does not appear as a big surprise.

In the next section we give sufficient conditions for the passage from
discrete to continuous time.

3 From discrete to continuous time

In this section we indicate how the passage from the formula (1) to the
formula (3) may be carried out by considering smaller and smaller time in-
tervals 4si−1. Consider first any two semimartingales X and Y on a filtered
probability space (Ω,F , {Ft}0≤t≤T , P ) satisfying the usual conditions. The
processes are, by convention, right continuous having left hand limits. Con-
sider the predictable version Xt− of the process X. Let {Xn

t } be a sequence
of simple predictable, left continuous processes satisfying

sup
(t,ω)∈[0,T ]×Ω

|Xn
t (ω)−Xt−(ω)| → 0. (10)

Then ∫ T

0

Xn
t dYt →

∫ T

0

Xt− dYt, (11)

where the convergence is in probability. The relations (10) and (11) may
be viewed as a rather natural continuity property and is in fact a defining
property of the semimartingale Y (e.g., Protter (2004)). If a continuity
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property like this does not hold, the model may produce results that are
difficult to interpret.

Now consider the case where π and D are semimartingales in L2(P ),
so that (10) and (11) hold for both these processes. Let us call {πsk

} and
{Dsk

}, respectively, the approximating sequences in (10) and assume that
their variances are uniformly bounded. Then we have the following:

Theorem 1

S
(n)
0 :=

1

π0

E
{ n∑

k=1

πsk
4Dsk−1

}
→

S0 :=
1

π0

E
{∫ T

0

(
πs−dDs + d[π, D]s

)}
as n →∞, or 4sk−1 → 0.

Proof: First we rewrite S
(n)
0 , using equation (8) as

S
(n)
0 =

1

π0

E
{ ∑

sk≤T

(
πsk−1

4Dsk−1
+4[π, D]sk−1

)}
. (12)

By our assumption that D is a semimartingale,∑
sk≤T

πsk−1
4Dsk−1

→
∫ T

0

πs− dDs

in probability. Also

E
∣∣ ∑

sk≤T

πsk−1
4Dsk−1

∣∣ ≤ M1 < ∞

by the Schwartz inequality, for some constant M1, since the variances of {πsk
}

and {Dsk
} are uniformly bounded. Thus, by the dominated convergence

theorem,

E
( ∑

sk≤T

πsk−1
4Dsk−1

)
→ E

( ∫ T

0

πs− dDs

)
,

which takes care of the first term. Note now that the following identity holds
for discrete sums

[π, D]T :=
∑
sk≤T

(πsk
− πsk−1

)(Dsk
−Dsk−1

) =

πT DT − π0D0 −
∑
sk≤T

πsk−1
4Dsk−1

−
∑
sk≤T

Dsk−1
4πsk−1

.
(13)
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As for the square covariance term we rewrite the expression for Sn
0 in (12)

using the identity (13):

S
(n)
0 =

1

π0

E
{ ∑

sk≤T

(
πsk−1

4Dsk−1
+4[π, D]sk−1

)}
=

1

π0

E
{

πT DT − π0D0 −
∑
sk≤T

Dsk−1
4πsk−1

}
.

(14)

By our assumption that π is a semimartingale, again∑
sk≤T

Dsk−1
4πsk−1

→
∫ T

0

Ds− dπs

in probability. As above,

E
∣∣ ∑

sk≤T

Dsk−1
4πsk−1

∣∣ ≤ M2 < ∞

by the Schwartz inequality, for some constant M2, since the variances of {πsk
}

and {Dsk
} are uniformly bounded. Thus, by the dominated convergence

theorem, we have that

E
( ∑

sk≤T

Dsk−1
4πsk−1

)
→ E

( ∫ T

0

Ds− dπs

)
as well. The result of the theorem now follows since

S
(n)
0 =

1

π0

E
{

πT DT − π0D0 −
∑
sk≤T

Dsk−1
4πsk−1

}
→

1

π0

E
{

πT DT − π0D0 −
∫ T

0

Ds− dπs

}
=

1

π0

E
{∫ T

0

(
πs− dDs − d[π, D]s

)}
,

where the latter equality follows from the integration by parts analogue to
the formula (13), valid also for semimartingales. �

Notice from the above proof how stochastic integrals with respect to semi-
maringales behave just like ordinary sums. This is one reason why this class
of processes appear to be a natural one to work with. Norberg and Steffensen
(2004) discuss the solution to a certain stochastic differential equation, by
finding the analogues solution to a corresponding difference equation in dis-
crete time, demonstrating a similar connection between sums and integrals.

By some standard procedures of conditioning, the theorem can be shown
valid also for an arbitrary time t ≥ 0.
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4 The numeraire invariance theorem

In this section we demonstrate that if there exists a state price deflator π,
then prices are given by the formula (3) when price processes, gains processes
and accumulated dividend processes are all semimartingales. To this end,
consider a market of N assets having price processes S = (S1, S2, ..., SN)
with an associated vector of dividends D, and of gains processes G = S +
D. Maintaining our convention that prices are ex dividend, a portfolio θ =
(θ1, θ2, ..., θN) is self-financing if

θt(St +4Dt) = θ0S0 +

∫ t

0

θs−dGs = θ0S0 +

∫ t

0

θs−dSs +

∫ t

0

θs−dDs (15)

for all t ≤ T . Let X be any deflator, a strictly positive semimartingale, and
consider the deflated price process SX

t = StXt. First we demonstrate the
following:

Theorem 2 When prices S, adjusted prices G, and accumulated dividends
processes D are all semimartingales, the deflated gains process GX is given
by

GX
t = StXt + DX

t , where dDX
t = Xt−dDt + d[X, D]t (16)

is the deflated dividend process, for any of the risky assets in the market.

Proof: The property that a portfolio is self-financing is invariant under a
change of numeraire, so we have from (15)

θt(S
X
t +4DX

t ) = θ0S
X
0 +

∫ t

0

θs−dSX
s +

∫ t

0

θs−dDX
s . (17)

Let us use the notation V X
t := θt(S

X
t + 4DX

t ) = θt(St + 4Dt)Xt). By the
product rule we get

d(θt(St +4Dt)Xt) = Xt−d(θt(St +4Dt))

+ θt−(St− +4Dt−)dXt + d[θ(S +4D), X]t. (18)

By the ex dividend convention, 4Dt− = 0. We now use the definition of a
self-financing portfolio in (15), which can be written in differential form

d(θt(St +4Dt) = θt−dGt = θt−dSt + θt−dDt.

From this it follows that d[θ(S + 4D), X]t = θt−(d[S, X] + d[D, X]t), and
thus we get

dV X
t = Xt−(θt−dSt + θt−dDt)

+ (θt−St−)dXt + θt−(d[S, X] + d[D, X]t). (19)

9



Furthermore, using the product rule once more, equation (19) can be written

dV X
t = θt−(d(S ·X)t + Xt−dDt + d[D, X]t). (20)

By comparing this to equation (17), which can alternatively be written

dV X
t = θt−(dSX

t + dDX
t ),

we see that dDX
t = Xt−dDt + d[D, X]t. �

If the pricing formula (3) holds, there is no arbitrage. This formula is
true if there exists a state price deflator π, i.e., a deflator such that the
deflated gains process is a martingale, assuming ST = 0 at the time horizon
of the economy. Having solved the the controversy of how any deflated gains
process GX looks like, we can now finally show the following

Theorem 3 Suppose there exists a state price deflator π. Then market
prices of risky securities are given by (3).

Proof: The requirement that Gπ is a martingale means that Gπ
t = Et(G

π
T )

for all t ≤ T , which can be written

Stπt + Dπ
t = Et

(
ST πT + Dπ

T

)
, for all t ≤ T.

Using that ST = 0 this can be written

St =
1

πt

Et

(
Dπ

T −Dπ
t

)
=

1

πt

Et

( ∫ T

t

dDπ
s

)
,

for all t ≤ T , which by virtue of (16) of Theorem 2 proves the assertion. �

5 The Equivalent Martingale Measures Ap-

proach to Pricing

By the popular approach in finance of pricing using an equivalent martingale
measure, at first sight it seems like one can avoid the extra realized square
covariance term. Let us assume that there a locally riskless asset having
dynamics dYt = rtYtdt, or Yt = Y0e

R t
0 ru du, where is r interpreted as the short

rate process. If this function is deterministic, Y −1
t is the price of a zero

coupon bond at time t = 0, maturing at time t. Consider again the price
process G = S + D adjusted for dividends. If the discounted gains process
GY −1

is a martingale under a probability measure Q, equivalent to the given
one P , then the pricing formula can be written

St = EQ
t

[ ∫ T

t

e−
R s

t r(u)du dDs

]
. (21)
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When our formula (3) is valid, the expression (21) follows by the ”Bayes rule”,
where the probability measure Q is constructed via the Radon-Nikodym
derivative dQ/dP = ξT , and the associated density process is given by

ξT = (e
R T
0 r(u) du)πT /π0 where ξt = Et(ξT ) is a P -martingale. This provides

the connection between the state price deflator π in our presentation and the
density process ξ associated to Q in this approach.

Since the square covariance term does not appear in (21), why bother?
In reality the formula above could be written

St = YtE
Q
t

[ ∫ T

t

(
Y −1

s dDs + d[Y −1, D]s
)]

, (22)

but since the discount factor Y −1 is a continuous process of bounded varia-
tion, the square covariance term vanishes, since [Y −1, D] = [Y −1, Dc], where
Dc is the continuous part of D, and [Y −1, Dc] = [Y −1, Dc]c = 0 when Y −1

(or Dc) is of bounded variation, so (21) results.
However, this is not the only way pricing is carried out using equivalent

martingale measures. The essential property used above is that the price of
a zero coupon bond is strictly positive. Consider any other strictly positive
price process Z ∈ L2(P ), and assume that there exists a probability measure
QZ−1

, equivalent to P , such that the discounted gains process GZ−1
is a QZ−1

-
martingale. From theorems 2 and 3 we then conjecture that the discounted
gains process GZ−1

is of the form (under QZ−1
)

GZ−1

t = StZ
−1
t + DZ−1

t where dDZ−1

t = Z−1
t− dDt + d[Z−1, D]t. (23)

If true, it follows from (23) that

St = ZtE
QZ−1

t

{∫ T

t

(
Z−1

s−dDs + d[Z−1, D]s
)}

, (24)

in which case the square covariance term does not vanish, even in the equiv-
alent martingale measure approach. The connection to the pricing formula
(3) is this time via the transformation ξt = Zt(πt/π0Z0) for t ∈ [0, T ], where
ξt is the density associated with the change of measure from P to QZ−1

, i.e.,
ξT = dQZ−1

/dP . Since Z is assumed to be a price process in the market
(with no dividends), the ξ-process defined this way becomes a P -martingale,
and thus satisfies the requirements of being a density process.

Since the results in the previous section do not depend upon which prob-
ability measure is being employed, it appears that the pricing formula (24)
must follow.

The deflation rule in (16) (and (23)) introduces a new kind of calculus,
which we now illustrate by an example.
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Example 1. Consider the case when the processes Z, D, S, ξ and π are
all Itô-diffusions. We now show by direct calculations that the formulas (3)
and (24) are equivalent. We start with (24). By the Bayes rule

St = ZtE
QZ−1

t

{∫ T

t

(
Z−1

s dDs + d[Z−1, D]s
)}

=

Zt
1

ξt

Et

{
ξT

∫ T

t

(
Z−1

s dDs + d[Z−1, D]s
)}

.

By the fact that the density process ξ is a P -martingale, and the numeraire
invariance rule (16) with X = ξ, we get by iterated expectations

St = Z0π0
1

πt

Et

{∫ T

t

(
Z−1

s (ξsdDs + d[ξ, D]s) + ξsd[Z−1, D]s
)}

. (25)

By Itô’s lemma we have that

dZ−1
s =

1

Z0π0

d
(
πs · ξ−1

s

)
=

1

Z0π0

(
ξ−1
s dπs + πsd(ξ−1

s ) + (d(ξ−1
s ))(dπs)

)
.

From this it follows that

d[Z−1, D]s =
1

Z0π0

(
ξ−1
s d[π, D]s + πsd[ξ−1, D]s

)
,

since the last term in the above equation is of bounded variation, and thus
does not contribute to the quadratic covariance term. Furthermore, by Itô’s
lemma

dξ−1
s = −ξ−2

s dξs + ξ−3
s d[ξ, ξ]s,

so d[ξ−1, D]s = −ξ−2
s d[ξ, D]s for the same reason as above. Also Z−1d[ξ, D]s =

(1/Z0π0)πsξ
−1
s d[ξ, D]s, which follows from the functional relationship between

Z, ξ and π. Putting all this together, we have that the expectation in (25)
can be written

Et

{∫ T

t

(
Z−1

s ξsdDs + Z−1
s d[ξ, D]s + ξsd[Z−1, D]s

)}
1

Z0π0

Et

{∫ T

t

(
πsdDs + πsξ

−1
s d[ξ, D]s + d[π, d]s − πsξ

−1
s d[ξ, D]s

}
,

from which it follows that St is given by formula (3).
Starting with the latter, on the other hand, the argument goes as follows:

St =
1

πt

Et

{∫ T

t

(
πs−dDs+d[π, D]s

)}
=

1

πtξ
−1
t

EQZ−1

t

{
ξ−1
T

∫ T

t

(
πsdDs+d[π, D]s

}
=

Zt

Z0π0

EQZ−1

t

{∫ T

t

(
πs(ξ

−1
s dDs + d[ξ−1, D]s) + ξ−1

s d[π, D]s

}
.
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In the last equality above we have used that ξ−1 is a martingale under QZ−1
,

iterated expectations, and the numeraire invariance rule (16) with X = ξ−1.
First notice that πsξ

−1
s dDs = (Z0π0)Z

−1
s dDs. Second, we have similar to

the above that πsd[ξ−1, D]s = −(Z0π0)Z
−1
s ξ−1

s d[ξ, D]s. The last term we get
from Itô’s lemma (the product rule):

dπs = (Z0π0)d(ξsZ
−1
s ) = (Z0π0)

(
Z−1

s dξs + ξsdZ
−1
s + dξsdZ

−1
z

)
.

From this the realized quadratic covariance term has the differential

d[π, D]s = (Z0π0)
(
Z−1

s d[ξ, D]s + ξsd[Z−1, D]s
)
,

since the last term in the above is of bounded variation, and thus does not
contribute to the quadratic covariance. Putting this together, we have that

St = ZtE
QZ−1

t

{∫ T

t

(
Z−1

s (dDs−ξ−1
s d[ξ, D]s)+Z−1

s ξ−1
s d[ξ, D]s+d[Z−1, D]s

)}
,

which is (24). �
In situations where the interest rate r is stochastic, the approach lead-

ing to (24) becomes important. Examples are the forward measure, where
the numeraire is different from the one in (21), see e.g., Jamshidian (1989)
and Geman, El Karoui and Rochet (1995), and also derivative pricing un-
der stochastic interest rates require different, stochastic numeraires, see e.g.,
Amin and Jarrow (1993). Even the price of a European call option with
exercise price K and short rate r equal to a constant (the standard Black
and Scholes formula) can be written using different, stochastic numeraires,
namely as St = VtQ

V −1

t (VT ≥ K)− (Yt/YT )KQY −1

t (VT ≥ K), where QV −1

t is
a conditional probability, given Ft, using the equivalent martingale measure
resulting from applying the underlying price process V as a numeraire, and
similarly is QY −1

t derived from using the zero coupon bond as numeraire.
Consider the world of continuous Itô-diffusions. In this case the square

covariance term in (24) would disappear if the accumulated dividends D are
of bounded variation. An important class of financial instruments where this
is not the case is futures contracts, where the futures price process is modeled
as a non-trivial Itô-diffusion, and the futures price process is precisely the
accumulated dividend process associated with the futures contract. Natu-
rally, in the more general framework of semimartingales containing jumps,
the mere assumption of accumulated dividends being of bounded variation
is not enough for the square covariance term to vanish.

In conclusion, when different numeraires are being employed, it is impor-
tant to take into account the realized, quadratic covariance term treated in
this paper, when analyzing market prices and dividends.
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6 The Gordon growth model

In the deterministic world of future cash discounting with an infinite horizon,
the Gordon formula says something like S/D = µD/(r − µD), where r is the
discount rate and µD is the dividend growth rate. Consider the following
continuous model in continuous time:

dDt = Dt

(
µDdt + σD,1dB1(t) + σD,2dB2(t)

)
, (26)

and
dπt = πt

(
− rdt + σπ,1dB1(t) + σπ,2dB2(t)

)
. (27)

Here B1 and B2 are two independent standard Brownian motions, D and π
have the same meanings as before, µD, µπ, σD,1, σD,2, σπ,1, σπ,2 are all con-
stants and r is the equilibrium risk free interest rate given by r = −µππt/πt,
also a constant. In this case the pricing formula (3) can be written

St =
1

πt

Et

{∫ T

t

(
πsdDs + d[π, D]s

)}
= DtEt

{∫ T

t

πsDs

πtDt

(µDds + ρσπσDds)
}

.

(28)

Here σ2
π := σ2

π,1+σ2
π,2, σ2

D := σ2
D,1+σ2

D,2, σπ,D := σπ,1σD,1+σπ,2σD,2, and ρ :=
σπ,D

σπσD
, the latter parameter being the instantaneous correlation coefficient

between the dividend growth and the change in the state price.
Using the fact that the product πtDt is lognormally distributed for any t

in this model, we readily deduce the following version of the Gordon growth
formula:

St

Dt

=
µD + ρσπσD

r − µD − ρσπσD

(
1− e−(r−µD−ρσπσD)(T−t)

)
. (29)

When T → ∞ we must require that r > µD + ρσπσD, in which case the
formula reduces to

St

Dt

=
µD + ρσπσD

r − µD − ρσπσD

. (30)

We notice that the difference from the standard formula under certainty
enters through the covariance rate σπ,D appearing both in the numerator and
in the denominator of formula (30), with different signs. Only the term in
the numerator stems from the realized quadratic covariance term of formula
(3). The effects of both terms point in the same direction, however, and is
that of lowering the price of an asset relative to the case of no uncertainty if
ρ < 0, and raising the price if ρ > 0. Typically the sign of ρ is negative, so
the effect of uncertainty is to lower the price/dividend ratio for most assets.
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We also notice that this ratio is a convex function in the parameter µD

in its most likely range of values. If we enlarge the model such that this
parameter becomes a random variable µ̃D, by conditioning and using Jensen’s
inequality, it then follows that the price/dividend ratio is larger than the
expression in (30). If there is uncertainty also about the covariance term,
this effect may not be so clear anymore, since the Gordon formula is convex
to the left, and concave to the right in the parameter ρ.

Perhaps more interestingly in this regard is to consider pure jump models,
where dividends are paid by lump sums. We consider a pure jump model
with two sources of jump risk as follows:

dDt = Dt−
(
µDdt + zD,1dÑ1(t) + zD,2dÑ2(t)

)
, (31)

and
dπt = πt−

(
− rdt + zπ,1dÑ1(t) + zπ,2dÑ2(t)

)
. (32)

Here Ñi(t) = (Ni(t)− λit), i = 1, 2, are two compensated Poisson processes,
where the Poisson processes Ni(t) have frequencies λi, i = 1, 2, respectively.
The parameters zD,1, zD,2, zπ,1 and zπ,1 are all constants, signifying the re-
spective jump sizes associated to the various sources of jump risk. If the div-
idends are paid out by positive lump sums, e.g., then zD,1 and zD,2 are both
positive. Given that a dividend is paid out at some date t, it is of size zD,1

with probability λ1/(λ1 + λ2) and of size zD,2 with probability λ2/(λ1 + λ2).
A similar interpretation holds for the state price deflator. At least one of
the jump sizes zπ,1 and zπ,1 would typically be negative, and the realized
quadratic covariance term is here given by

[π, D]t = (λ1zD,1zπ,1 + λ2zD,2zπ,2)

∫ t

0

Ds−πs−ds, (33)

clearly indicating that this term does not vanish for pure jump type models.
In this case the Gordon growth formula takes the form

St

Dt

=
µD + (λ1zD,1zπ,1 + λ2zD,2zπ,2)

r − µD − (λ1zD,1zπ,1 + λ2zD,2zπ,2)

(
1− e−(r−µD−σ̃π,D)(T−t)

)
,

where σ̃π,D := (λ1zD,1zπ,1 + λ2zD,2zπ,2). A similar simplification results as in
(30) if the transversality condition is met. Here the instantaneous correlation
coefficient ρ̃ is given by

ρ̃ :=
λ1zD,1zπ,1 + λ2zD,2zπ,2√

λ1z2
D,1 + λ2z2

D,2

√
λ1z2

π,1 + λ2z2
π,2

.
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Finally, let us consider a time homogeneous jump-diffusion model with an
arbitrary jump size distribution:

dDt = Dt−
(
µDdt + σDdB(t) +

∫
R

γD(z)Ñ(dt, dz)
)
, (34)

and

dπt = πt−
(
− rdt + σπdB(t) +

∫
R

γπ(z)Ñ(dt, dz)
)
. (35)

Here B is a standard Brownian motion, Ñ(dt, dz) = N(dt, dz) − ν(dz)dt
is a compensated Poisson random measure, where N(t, U) is the number
of jumps which occur before or at time t with sizes in the set U of real
numbers. The process N(t, U) is called the Poisson random measure of the
underlying Lévy process. The functions γD(z) and γπ(z) give the jump sizes
in the processes D and π respectively, as a function of the random jump
size Z(ω) of the underlying jump source of the Lévy process (ω signify a
state of the economy). The deterministic functions γD(z) and γπ(z) satisfy
γD ≥ −1 and γπ ≥ −1, for all z ∈ R, and if only positive lump sum dividends
are paid out, then γD > 0 and σD = 0. The Lévy measure is denoted by
ν(U) = E[N(1, U)]. If we assume that this measure can be decomposed into
ν(dz) = λF (dz), where λ is the frequency of the jumps and F (dz) is the
probability distribution function of the jump sizes Z(ω), this gives us a finite
Lévy measure, and the jump part becomes a geometric compound Poisson
process.

We have here two different sources of risk, one continuous and one jump
type. In this case the realized quadratic covariance term can be written

[π, D]t =

∫ t

0

(πs−Ds−)(σπσD)ds +

∫ t

0

(Ds−πs−)

∫
R

γD(z)γπ(z)N(ds, dz),

and assuming that π and D are both in L2, the Gordon growth formula is as
follows:

St

Dt

=
µD + (σπσD +

∫
R

γD(z)γπ(z)ν(dz))

r − µD − (σπσD +
∫

R
γD(z)γπ(z)ν(dz))

(
1− e−(r−µD−σπ,D)(T−t)

)
,

where σπ,D := (σπσD+
∫

R
γD(z)γπ(z)ν(dz)), and the respective instantaneous

correlation coefficients are both equal to one. By adding one source of risk
of each type, for example, these correlation coefficients will again be of the
form indicated in the above two examples. We notice that the qualitative
conclusions reached in the simpler cases also carry over to this more complex
model.
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7 Conclusions

In this paper we made the observation that since dividends are being paid
out in lump sums, not in rates as assumed in most of the extant literature,
we need a pricing theory that takes account of this fact in a continuous-time
framework.

To this end we started out by trying to demystify the realized quadratic
covariance term appearing in the pricing formula of risky assets, in the con-
tinuous time version of an exchange economy. We pointed out that when
dividends have only jumps, this square covariance term must still be present
even if there are no continuous parts in the dynamics of the relevant price
processes and deflators in the market. Thus, this extra term should indeed
show up also in the discrete time formulation.

By making the convention that prices are observed ex dividend, a closer
inspection revealed that the analogous discrete time pricing formula (1) can
indeed be written with an appropriate additional term, quantified in equation
(8) in the paper, which was our starting point to explain this puzzle. We
then proceeded by making the passage from discrete to continuous time in
a more formal manner, where the quadratic covariance term appeared quite
naturally.

We presented a proof of the general pricing formula, by using the principle
that a self-financing portfolio is still self-financing after a change of numeraire.

We introduced equivalent martingale measures, and outlined the relevant
pricing result in this setting. Although the square covariance term does
not appear in the simplest version, where the short term interest rate is a
continuous, deterministic process, this is no longer true when the discount
factor is allowed to be a bit more general. If this is the case, there is also an
additional quadratic covariance term in the equivalent martingale measure
approach to pricing, and we point out some simple examples where this term
must be taken into account.

The classical Gordon growth formula takes on a fairly simple form for
most continuous-time financial models, indicated in Section 6, where the
effect of the realized quadratic covariance term is further explored. Here we
also indicate how this term looks like for jump-diffusions.

Our results are of course not depending upon the ex-dividend interpre-
tation of prices, since this is only a convention. If another convention is
preferred, we simply obtain additional terms in the pricing formulas. These
terms could even be made to disappear if we also used another, appropri-
ately chosen convention for stochastic integration, different from Itô’s choice.
However, we do not recommend this approach because of the rich integration
theory developed for semimartingales using this standard. In particular when
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it comes to portfolio theory, the current convention is a rather natural one
in economics and finance, as can, e.g., be seen from the flow of information
inherent in the definition of a self-financing portfolio.
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