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Introduction: Effective out-of-hospital administration of naloxone in opioid overdoses is dependent on
timely arrival of naloxone. Delays in emergency medical services (EMS) response time could potentially
be overcomewith drones to deliver naloxone efficiently to the scene for bystander use. Our objectivewas
to evaluate a mathematical optimization simulation for geographical placement of drone bases in
reducing response time to opioid overdose.

Methods: Using retrospective data from a single EMS system from January 2016–February 2019, we
created a geospatial drone-network model based on current technological specifications and potential
base locations. Genetic optimization was then used to maximize county coverage by drones and the
number of overdoses covered per drone base. From this model, we identified base locations that
minimize response time and the number of drone bases required.

Results: In a drone network model with 2,327 opioid overdoses, as the number of modeled drone bases
increased the calculated response time decreased. In a geospatially optimized drone network with four
drone bases, response time compared to ambulance arrival was reduced by 4 minutes 38 seconds and
covered 64.2% of the county.

Conclusion: In our analysis we found that in a mathematical model for geospatial optimization,
implementing four drone bases could reduce response time of 9–1–1 calls for opioid
overdoses. Therefore, drones could theoretically improve time to naloxone delivery. [West J EmergMed.
2023;24(5)823–830.]

INTRODUCTION
In 2021 over 100,000 people died from opioid overdoses in

the United States.1 Opioid death rates also increased 10-fold
from 2013 to 2019.2 Although death from an opioid typically
occurs over a few hours,3 there may be bystander delays in
calling 9–1–1.4–6 The reduction of deaths from opioid
overdoses often depends on prompt 9–1–1 response and use
of the reversal medication naloxone.

Naloxone is currently available without a prescription in
intranasal and intramuscular forms that lay-users can safely

administer with little skill. Because of this, bystanders can
play a vital role in preventing deaths from opioid overdoses
through the administration of naloxone. Despite expanded
access and education on naloxone, people who use opioids
may not carry this life-saving medication.7 Furthermore,
time to ambulance arrival, which can impede the provision of
naloxone, ranges from 1.7–51 minutes (median 6.9
minutes).8 National Fire Protection Agency Standard 1710
establishes target response times for EMS personnel. It states
that the goal for response times is five minutes for 90% of
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dispatched incidents.9 Analysis from 2017 suggested that
EMS response times averaged 7 minutes in the US, two
minutes longer than NFPA 1710.10

Unmanned aerial vehicles, or drones, may offer a bridge
for faster naloxone delivery while awaiting trained first
responders (firefighters, police, or paramedics). Drones have
previously been used for medication delivery in rural areas,7

disease surveillance and collection of biosamples,11 and they
have been investigated for use in automatic external
defibrillators delivery in cardiac arrest.12 Recently, a study by
Tukel et al demonstrated that drones have the ability to
travel straight-line distances carrying life-saving opioid
reversal medications faster than ambulances.13 Additionally,
a pre-print by Lejune and Ma describes use of a stochastic
method to improve response times by 78% in
Virginia Beach.14

Our objective in this study was to determine whether a
mathematical model could be used to optimize the placement
of drone bases to reduce response time to opioid overdoses.
Given the locations of opioid overdoses, this mathematical
model determines the number and location of drone bases to
meet any specified reduction in response time. When
compared to observed ambulance response times, our
optimized network was found to reduce response
times to opioid reversal medication delivery by over
four minutes.

METHODS
Study Setting

The study was conducted in a county in North Carolina
with a population of over 300,000 people in 2019 on ≈750
square kilometers of land with an average population density
of 434 per square kilometer.15 A single EMS agency responds
to medical emergencies for this area. In all suspected opioid
overdose calls, firefighters and sheriff’s deputies are
dispatched along with EMS. However, we only had access to
the EMS data for this study. Note that the data does not
include response times for law enforcement, firefighters, or
other emergency medical responders.

Dispatching ambulances use a hybrid system status
management (SSM). The hybrid SSM coordinates
responding units based in stations and automatic vehicle
location (AVL) to guide dispatch. The AVL ensures that the
unit closest to the call is assigned to the response based on
GPS. The paramedic service also strategically posts units
based on call volume. For example, if all responding units are
busy, outlying units will be sent to general geographic areas
to provide coverage in uncovered areas during a high-volume
period. General study setting information (eg, county
demographics, response times) are shown in Table 1. We
defined “dispatch time” as the time between when the call
came in and when a unit or drone was assigned to that
particular incident.

Study Design
Using a retrospective cross-sectional design, we used data

in prospectively collected electronic health records as part of
routine care. Our overall design was inspired by Boutilier
et al,16 which mathematically optimized drone networks for
automatic external defibrillators (AED) for out-of-hospital
cardiac arrest in Toronto, Canada. Their method optimized
by a threshold response time, determining how many
drones at each prospective base would be required to
reduce response times by one, two, and three minutes. We
furthered this analysis method by not holding the number of
bases constant and optimized the number of drones and
bases needed to produce the greatest coverage area
and produce the greatest decrease in response time
per drone.

DATA SOURCES
Opioid Overdose Episodes

We included in this study all dispatches for suspected
opioid overdoses in the service area from January 1,
2016–February 17, 2019 (EmergencyMedical Dispatch card
number 23 or naloxone administration during the call)
regardless of call priority). Locations of these dispatches
were automatically geocoded (converting a text-based
address to geographic coordinates) based on addresses
obtained during dispatch calls.

Candidate Base Locations
For the drone network, all fire, paramedic, and EMS

administrative buildings were considered potential drone
bases. The addresses of each station were obtained from the
local paramedic service and geocoded into Universal
Transverse Mercator (GIS Geography, Redlands, CA)

Table 1. Summary statistics for Durham County, North Carolina.

County Demographic and Historical Response Data

Characteristics

Population (2017) 311,640

Population density (2017), km2 935.7

Average annual number of opioid overdoses 743.1

Female gender in overdoses 43%

Average patient age, years 41

Number of paramedic and fire stations 29

Dispatch time, minutes/seconds

Average 03:01

90th percentile 05:00

Response time, minutes/seconds

Average 10:46

90th percentile 17:00
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coordinates. We used 29 such candidate stations in our
analysis. Drone bases were selected among these
candidate stations.

Drone Specifications
Drone parameters for our model were chosen to reflect

current, cost-effective drone capabilities. We set the
maximum speed as 18 kilometers per hour and a maximum
distance of 7 kilometers on one battery life. We chose more
conservative metrics than Boutilier et al because naloxone
will require less power to transport compared to an AED.
However, Tukel et al used drones that could reach speeds of
94 kilometers per hour, which would likely further improve
results from this study. These drones had the ability to carry
up to 1.4 kilograms in payload, which should easily allow for
naloxone to be transported. Because there is no previously
standardized launch time, we assumed drone lift off and
landing would each take 60 seconds. We did not account for
time for lay-users to reach the drone, remove the medication,
and return to the patient’s side, as these calculations have not
been established. Ambulance response time also does not
account for the time interval between EMS arrival on scene
to arrival to patient.

Each drone’s geographical catchment area was set to a
3.2 kilometer-(twomile) radius for the drone’s ability to fly to
and from the scene. We also accounted for wind speed and
rain on the days of overdose incidents using hourly North
Carolina climate data in the service area.17 Assuming the
drone could withstand a level 5 wind (wind speeds of 19–24
miles per hour), we set 19 miles per hour as the threshold
speed for drones to work normally. For most drones, it is not
recommended to operate in rainy conditions. We assumed
that drone service would pause during these times
(precipitation >0).

ANALYSIS
Measurements

Our primary outcomes were ambulance and drone
response times as depicted in Figure 1. For our dataset, we
defined ambulance response time as the duration between
EMS assignment and arrival at scene as documented in EMS
records. Drone response time was considered time between
drone assignment and arrival at scene. These definitions were
equivalent to those used by Boutilier et al. Drones would be
collected from the scene when an ambulance arrives. Time
between arrival on scene and arrival to the patient
was not calculated for either drone or ambulance response
times. We calculated drone response times using a genetic
optimization model and technological specifications of
current drones as described above. Additional time was
added to the calculated flight time to account for dispatching
the drone and allowing it to land after arriving on the field
site. This additional time produced a very conservative
estimate of the total response time for each drone flight. We
excluded incidents with missing data on scene location and
response time.

Genetic Optimization
Genetic optimization is an iterative process inspired by

natural selection in which the properties of a potential
solution to a problem are changed with each iteration. After
each iteration (generation), the performance (fitness) is
assessed for each potential solution. The subsequent
generation of solutions is then determined based on the
composition of the current highest performing solutions.
In biological terms, the best solutions in each generation
serve as the parents for the next set of potential solutions.
This process continues until a solution meets a set of
minimum criteria.18,19

Figure 1. Ambulance and drone timelines adapted from Boutilier et al 2017.16 The objective of the drone is to get naloxone to the patient as
early as possible. If the ambulance arrives first, the drone on-scene timewill be zero. If the drone arrives first, naloxone can be given while the
ambulance is in route.
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Our goal was to determine the optimal number and spatial
geographic distribution of drone bases that would reduce
naloxone distribution times to opioid overdoses. To
accomplish this, we first used locations of overdose incidents,
number of drone bases, and locations of drone bases to create
drone base networks. These networks each had a unique
combination of base locations, number of bases, coverage
rate (percentage of incidents covered by drone bases), and
coverage density (number of incidents covered by a drone
base). Given the prespecified number of bases from 0–29, the
genetic optimization model determines the geographical
locations of drones that maximizes coverage rate and density
(in mathematical terms, if entropy converged). Maximizing
coverage rate and density did not account for rural and urban
differences in response times. Our algorithm sought to
improve the overall distribution of response times, regardless
of location. For example, base locations for a two-drone
network may be completely different than a three-drone
network rather than simply adding another drone location.
The genetic optimizer was considered successful for drone
network optimization if entropy converged. We conducted
analyses with Python 3.6.8 (Python Software Foundation,
Wilmington, DE) on Jupyter Notebook and ArcGIS
Desktop 10.5.1 (Esri).

Observed and Estimated Response Time
We found that the drone networks improved average

response time for each added drone base. For each reduction
in response time, we identified the locations of these drone
bases chosen from candidate EMS/fire stations. We
calculated the distributions of the observed response times
and estimated drone response times for each incident. A
graph of response time and number of drone bases were
plotted. We chose the operating point, or the point closest to
the graph origin, as the optimum number of drone bases that
would minimizs the response time and number of bases.

We performed the test of significance with a Student
t-test by proposing the null hypothesis H0: the average
(or expected) response time of historical, optimized, and fully
deployed delivery network is different from each other. We
calculated the P-value for each paired combination of
historical, optimized and fully deployed delivery networks.
P-values less than 0.05 were considered significant.

Ethics Statement
The Duke University Institutional Review Board

determined this study to be exempt (Pro00101461).

RESULTS
Characteristics of Study Subjects and Climate

From 2016 to early 2019, 2,634 calls were dispatched for
suspected opioid overdose/poisoning. After eliminating
duplicate incidents with unique responding units, we found
2,327 distinct incidents of suspected overdose/poisoning or

dispatch calls in which naloxone was used. We excluded 303
cases in which response time data were missing, three cases in
which response times were greater than 40 minutes and
assumed to be inaccurate documentation, and one case that
was geocoded incorrectly, resulting in a total of 2020 final
encounters. Summary characteristics for opioid overdoses
are shown in Table 1. Of the included cases of opioid
overdoses 43% involved females, and the average age was
41 years old. Dispatch time took an average of 3 minutes
1 second, and response time took an average of 10 minutes
46 seconds. Regarding climate, no overdoses occurred when
winds exceeded 19 miles per hour, while 147 incidents
occurred during rain. We did not exclude in the genetic
algorithm the incidents that occurred in the rain.

Main Results
The entropy of the genetic optimization converged after

60 generations, meaning the drone base network was able to
be optimized. The change in response time and coverage rate
with each added drone base is shown in Table 2. Response
time and coverage rate consistently improved with increasing
number of drone bases up to the 29 available locations. For
example, having only one drone base reduced response time
by 2 minutes 24 seconds with a 36% coverage rate. But at full
deployment of 29 bases, response time was reduced by 8
minutes 12 seconds and covered 97.8% of incidents.

Table 2. Drone network characteristics for the response time
improvement in opioid overdoses.

Number of drone
bases

Improvement in response
time, mm:ss

Coverage
rate %

0 00:00 0.0

1 02:24 35.8

2 03:28 50.5

3 03:57 56.3

4 04:38 64.2

5 05:03 70.9

6 05:24 73.0

7 05:47 76.8

8 06:05 79.9

9 06:19 82.1

10 06:38 86.5

11 06:51 86.9

12 07:02 90.3

13 07:08 91.3

14 07:18 91.4

15 07:25 91.3

16 07:31 92.7

17 07:34 92.7
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The distribution of response times also narrowed with an
increase in drone bases (Figure 2). As more drone bases were
introduced into the network, the average and range of
estimated response times are markedly decreased compared
to historical ambulance response times. Because response
time cannot be improved without increasing the number of
drone bases, we chose a drone network that minimized
response time and number of bases, thereby maximizing
resource utilization. This ideal network, shown as the
point closest to origin (Figure 3), was four drone bases.
These optimal candidate bases improved average response
time by 4 minutes and 38 seconds with a coverage rate
of 64.2%. These bases are in areas with more opioid
overdoses (ie, urban areas), leaving rural areas largely
uncovered by drones due to constraints on flight time and
distance (Figure 4).

DISCUSSION
In this study we evaluated the potential benefit of using

drones to improve time to naloxone delivery in suspected
opioid overdoses. Our analysis found that a mathematical
model can optimize the location and number of bases to
reduce naloxone delivery time compared to historical
ambulance response times. We found that drones not only
improve the average time of naloxone delivery on scene
(Table 2), but also reduce the entire response time
distribution (Figure 2).

Drone delivery of naloxone has the potential to reduce the
time to naloxone administration and theoretically reduce

mortality from opioid overdoses. Our conservative model
demonstrates that drones could be used to deliver naloxone
ahead of ambulances. Compared to ambulances, dronesmay
overcome challenges and delays in reaching private
locations.8 In simulated out-of-hospital cardiac arrests,
drones have reduced response time by 16 minutes compared
to EMS.12

Figure 2.Comparison of response time distributions. The top row demonstrates the distribution of historical ambulance response times. The
second row shows the distribution of estimated response time corresponding to the four-base drone network. The third row shows the
distribution of estimated response time if all candidate bases were chosen as the part of the drone network. (Drone bases are fully deployed.)
Solid vertical lines demonstrate the mean response time. Dashed vertical lines represent the 90th percentile in response time.

Figure 3.Average response time given number of drone bases. This
figure demonstrates the relationship between the number of drone
bases and response time. The red star represents the point closest to
the origin (x-axismust be awhole number). This point corresponds to
the most efficient use of drone resources.
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In our optimized model, the locations of our drone bases
leave the most rural locations to be covered only by
ambulances. Drone networks can cover rural areas.
However, the number of drones needed to cover rural areas
would likely not be economical at the current range of
Federal Aviation Administration (FAA)-rated commercial
drones unless there was a cluster of opioid overdoses where
drones could be stationed nearby. The genetic algorithm did
not directly account for rural/urban differences. Instead, it
focused on covering the maximum number of overdoses, of
which the vast majority occur in urban areas. Thus, our
drone network maximizes our chances of reducing mortality
in opioid overdoses, especially during times of increased
traffic and call volume which can prolong ambulance
response times.

Although all states currently have some form of naloxone
access laws, studies suggest that Blacks are less likely to have
access to naloxone.20–22With Blacks making up 36.9% of the
population in the service area, a drone network has the
potential to provide this lifesaving treatment to those who
may not have equitable access.

LIMITATIONS
Because themodel depended on the estimated incidence of

opioid overdoses in each catchment area, bases in high-call
volume areas will have more drone busy time and require
more drones. However, the remaining parameters were more
conservative, likely leading to an overestimate in drone
network size. We assumed only one drone per base, whereas
in reality multiple drones could be deployed from one base,

Figure 4. Historical opioid overdoses, paramedic station locations, and optimal drone network. This county map demonstrates
locations of historical opioid overdoses (red pentagons). Additionally, it shows the locations of all candidate drone bases (+ signs) and the
optimized drone network (blue+ signs) and its coverage area (area inside blue circles).
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decreasing drone busy time. Drone resources may also be
overestimated because we included dispatches for opioid
overdoses that did not receive naloxone. This small fraction
of cases may be ruled out for future drone deployment.
Additionally, drone technology is progressing rapidly.
With our conservative drone specifications, response
times are likely an overestimate. Furthermore, potential
candidate bases locations such as hospitals and clinics
were not included in the model. Having these
additional locations could further reduce drone
response times.

We additionally used Euclidean distance to set our
coverage area and did not account for FAA regulations on
drone flight paths, which may require a slightly more
circuitous path to bystanders than anticipated by this model.
Further, difficult weather conditions (eg, wind and rain) may
limit the ability to fly drones based on technological
capabilities. Reassuringly, the number of overdose incidents
during these conditions were minimal. Thus, we expect real-
life implementation of drones to not be majorly impacted
by weather.

Lastly, the data we used was incomplete because we did
not have access to data from law enforcement or fire
departments. This may have led to an overestimation of
historical ambulance response times. In addition, data was
based on emergency medical dispatch (EMD) impression of
the chief complaint as a drug overdose. Calls in which EMS
impression was opioid overdose, but EMD impression was
not, may have been missed.We attempted to account for this
difference by including all calls in which naloxone was
administered, regardless of impression. Other opioid
overdose cases may have been unaccounted for due to data
exclusion based on incomplete or suspected inaccurate
documentation on response times. However, because we
excluded only 11.5% of cases based on documentation, the
impact of missing data is likely small.

CONCLUSION
We have established that a drone networkmathematically

optimized in location and number of drone bases would
potentially reduce time to naloxone delivery in opioid
overdoses compared to historical ambulance response times.
Our next steps will be to closely examine the feasibility of
implementing such a drone network by measuring GPS
signals, confirming flight paths, and completing live drone
tests. As drone technology improves and cost decreases,
future utilization of drone networks could help
temporize many emergency medical situations until
EMS arrives.
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