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Abstract 

Humans excel at causal reasoning, yet at the same time 
consistently fail to respect its basic axioms. They seemingly 
fail to recognize, for instance, that only the direct causes of an 
event can affect its probability (the Markov condition). How 
can one explain this paradox? Here we argue that standard 
normative analyses of causal reasoning mostly apply to the 
idealized case where the reasoner has perfect confidence in her 
knowledge of the underlying causal model. Given uncertainty 
about the correct representation of a causal system, it is not 
always rational for a reasoner to respect the Markov condition 
and other ‘normative’ principles. To test whether uncertainty 
can account for the apparent fallibility of human judgments, we 
formulate a simple computational model of a rational-but-
uncertain causal reasoner. In a re-analysis of a recent causal 
reasoning study, the model fits the data significantly better than 
its standard normative counterpart. 

Keywords: Causal reasoning; Markov violations, Inference 
judgments, Computational modeling 

Introduction 

The last decades have seen an explosion of research on causal 

cognition, guided by the advent of modeling tools such as 

Causal Bayes Nets (Pearl, 2000). Bayes nets are a formalism 

for normative causal reasoning, but researchers also hold that 

they might provide a good general hypothesis for how people 

represent and reason about causal systems (Glymour, 2003; 

Gopnik & Wellman, 2012; Hagmayer, 2016; Holyoak & 

Cheng, 2011; Rips, 2008; Rottman & Hastie, 2014; Sloman 

& Lagnado, 2015; Quillien & Lucas, 2023). Indeed, many 

studies suggest that causality is central to human cognition, 

and that people reason in a way that is well-approximated by 

algorithms for inference on causal Bayes nets (Waldmann, 

Holyoak, & Frantianne, 1995; Gopnik & Wellman, 2012; 

Griffiths & Tenenbaum, 2005; Rottman & Hastie, 2014; 

Marchant, Quillien, & Chaigneau, 2023). Against this 

background, it is surprising that one of the most replicable 

findings in the field is that people also consistently flout basic 

axioms of causal reasoning. 

One of the most important characteristics of causal Bayes 

nets is the Markov condition. This condition stipulates that 

the state of any given variable in a causal model is 

independent of its non-descendants, conditional on the state 

of its direct parents (Pearl, 2000). For illustration, consider a 

chain causal model where X→Y→Z, and where we want to 

infer the state of variable Z. The Markov condition states that 

if the state of Y is known, then the state of X should be 

irrelevant for estimating the likelihood of Z (it is also said that 

Y “screens off” X). The Markov condition is a necessary 

assumption of any causally sufficient system (Pearl, 2000; 

Glymour, 2003). If humans are Bayesian reasoners, they 

should respect this condition. However, it has generally been 

reported that people violate the Markov condition when 

making inference judgments (Rehder & Burnett, 2005; Park 

& Sloman, 2013; Rottman & Hastie, 2016). This violation of 

a basic axiom of Bayes nets is generally considered an 

important shortcoming of the theory as a description of 

human reasoning (Rehder, 2014; Rehder & Waldmann, 2017; 

Sloman & Lagnado, 2015). This, and other apparently non-

normative phenomena in causal-based reasoning, have led 

researchers to conclude that causal Bayes nets offer an 

incomplete account of human causal reasoning (Rottman & 

Hastie, 2016; Sloman & Lagnado, 2015; Rehder, 2018). In 

the current work, we highlight one way to reconcile people’s 

judgments with the causal Bayes net framework. We argue 

that normative principles like the Markov condition hold for 

idealized reasoners that have perfect confidence in their 

model of the causal system – for a reasoner who is uncertain 

about the causal model, it might sometimes be rational to 

deviate from these principles. 

The role of uncertainty in reasoning with 

causal models 

In causal reasoning experiments, subjects are typically 

informed of a model characterized by causally related 

features, where each of the features assume discrete values 

(such as present/absent or high/low) and are sometimes 

characterized by base-rate and causal strength probabilities 

(i.e., p(effect|cause)). Subjects are then typically asked to 

infer the probability (e.g., using a slider scale ranging from 0 

to 100) of a constituent feature occurring (or not; typically 

referred to as 1 for present and 0 for absent) given some 

known information about other constituent events. For 

example, researchers might first tell participants that z-

radiation causes green spots, and specify the probability that 

someone gets green spots, in the presence and in the absence 

of z-radiation; then in a later phase, they ask participants 

(e.g.) the probability that someone has been exposed to z-

radiation, given that they have green spots. 

When researchers compare participants’ judgments to the 

Bayes nets predictions, they implicitly assume that the 

participant is perfectly confident about the causal model that 

represents the system of interest. Formally, they assume that 

1292
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

mailto:sergio.chaigneau@uai.cl


the participant does not represent uncertainty about the 

structure or the parameters of the causal model. This is a 

strong assumption, ruling out for instance that the participant 

might hold both “74%” and “75%” to be plausible values for 

the probability with which the cause produces the effect. 

Below we lay out some reasons why one might expect 

participants to maintain uncertainty about the causal model, 

and then explore the consequences of this assumption for 

normative principles of causal reasoning. 

Sources of uncertainty 

In causal reasoning experiments, researchers often describe 

the causal model verbally, as well as with a graphical model, 

but do not necessarily communicate explicitly the parameters 

of the model to the participant. In these cases, participants 

presumably have to infer a probability distribution over the 

causal model. In other cases, researchers also show 

participants several samples from the causal system (e.g. 30 

people who were exposed / unexposed to z-radiation, and 

have / do not have green spots; see Rehder & Waldmann, 

2017). In these cases, if participants learn the model by 

updating a prior distribution over possible models in the light 

of the evidence, we expect them to learn a posterior 

distribution over possible models. However, these latter 

procedures still allow some uncertainty (see, e.g., Griffiths & 

Tenenbaum, 2005; Lu, Yuille, Liljeholm, Cheng & Holyoak, 

2008). In general, participants may also not completely 

discard the possibility that the experimenter might be 

deceitful, or mistaken about the correct causal model. 

Hierarchical reasoning (Kemp, Perfors, & Tenenbaum, 

2007) can also introduce uncertainty. Having wings causes 

birds to be able to fly, but this is not true of all species of 

birds: an ostrich cannot fly, regardless of whether it has 

wings. Participants might reason that the causal model given 

by the experimenter applies in some cases but not universally. 

For example, if the causal model states that low interest rates 

cause small trade deficits, participants might reason that this 

holds for countries in a particular region, and that countries 

in different regions might have different economic systems 

where no such relationship holds. Note that in various 

domains of cognition, people’s priors appear to favor sparsity 

(Klayman & Ha, 1987; Oaksford & Chater, 1994; 

Hendrickson, Navarro, & Perfors, 2016; Navarro & Perfors, 

2011). In particular, people’s priors for causal reasoning 

favor a sparsity of causal relationships: by default, most 

variables are assumed to be causally unrelated (Lu et al., 

2008). As such, even when an experimenter asserts that two 

variables are causally related, people might still assign a non-

trivial probability to the contrary possibility. 

Consequences of uncertainty 

Here we provide some intuition for why uncertainty can 

change normative prescriptions in causal reasoning. We use 

the example of the Markov condition in a X → Y → Z causal 

chain. Formally, the Markov condition states that a variable 

is conditionally independent of its non-descendants, given its 

parents (Pearl, 2000). In the chain X → Y → Z, this means 

that Pr(Z|X, Y) = Pr(Z|Y): once we know the value of Y, 

knowing the value of X does not provide new information 

about the value of X. 

Algebraically, the Markov condition follows 

straightforwardly from the factorization defined by the 

Bayesian network. The network topology X → Y → Z 

implies that we can write the joint probability distribution as: 

Pr(𝑋, 𝑌, 𝑍) = Pr(𝑍|𝑌)Pr(𝑌|𝑋) Pr(𝑋) (1) 

This factorization allows us to write Pr(Z|Y, X) as: 

Pr(𝑍|𝑌, 𝑋) =
Pr(𝑍, 𝑌, 𝑋)

Pr(𝑌, 𝑋)
=
Pr(𝑍|𝑌)Pr(𝑌|𝑋) 𝑃𝑟𝑋)

Pr(𝑌|𝑋)Pr(𝑋)
= Pr(𝑍|𝑌) 

(2) 

However, if the reasoner is uncertain about the correct 

causal model, and entertains several possible hypotheses Hi, 

…Hn, then (even if every H assumes X → Y → Z) we must 

write Pr(Z|Y,X) as: 

∑ Pr(𝑍|𝑌, 𝐻𝑖) Pr(𝑌|𝑋, 𝐻𝑖) Pr(𝑋|𝐻𝑖) Pr(𝐻𝑖)𝐻𝑖

∑ Pr(𝑌|𝑋,𝐻𝑖) Pr(𝑋|𝐻𝑖) Pr(𝐻𝑖𝐻𝑖
)

 
(3) 

The summation operations prevent us from canceling the 

identical terms in the denominators and numerators, and thus 

we cannot guarantee algebraically that Pr(Z|Y) = Pr(Z|Y, X), 

i.e., that the Markov condition holds.  

In what follows we show more systematically that a model 

of a rational-but-uncertain agent can account for empirically 

observed violations of the Markov condition and other 

normative violations in causal reasoning. 

Modeling uncertainty 

Here we define a very simple formal implementation of our 

hypothesis, that we will compare to human data. We assume 

that, when given a causal model to reason with, people also 

consider alternative causal models in their computations (see 

also Meder, Mayrhofer, & Waldmann, 2014). Specifically, 

people consider two competing hypotheses about the causal 

model. According to hypothesis H, the causal model 

representing the system of interest is the model given by the 

experimenter. According to the alternative hypothesis H*, 

there is actually no causal relationship between the variables 

in the system. The model in H* is otherwise similar to H in 

terms of the variables it contains. We then assume that 

participants compute the joint distribution over variable 

states by marginalizing over hypotheses H and H*: 

Pr(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧)
= Pr(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧|𝐻)Pr(𝐻)
+ Pr(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧|𝐻 ∗) Pr(H ∗) (4) 

Where Pr(H) is the prior of the received causal model and 

Pr(H*) = 1-Pr(H) is the prior for the alternative causal model. 

This joint distribution can then be used to compute the 

conditional probabilities of interest, e.g., Pr(Z|Y). 

Our model, viewed like this, is extremely simple, and we 

only assume that the relevant marginalizations are made on 
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the joint distribution of likelihoods that results from 

combining H and H* as shown in Eq. (4). Note that there are 

many other ways one could formally implement our 

hypothesis. For instance, one could model a reasoner who 

represents a probability distribution over many possible 

causal structures, and many possible model 

parameterizations. The simplicity of the current model is not 

only a matter of expository convenience: having a single free 

parameter Pr(H) limits excessive flexibility and the potential 

for overfitting. 

In what follows, we will use Eq. (4) to provide accounts of 

several purported normative violations: Markov in causal 

chains, Markov in common cause structures, explaining away 

in common effect structures, and conservativeness, by 

modeling data made publicly available by Kolvoort and 

colleagues (Kolvoort, Fisher, van Rooij, Schulz & van 

Maanen, 2022). 

Testing the model against empirical data 

We test the predictions of our uncertainty-augmented model 

against data from a recent study. Kolvoort et al. (2022) asked 

participants to make 27 types of inferences about each of 3 

causal structures with binary variables: a common-cause, a 

common-effect, and a chain structure (see Figure 1). For each 

structure, participants first were given verbal and graphical 

descriptions of the causal model, and then learned the 

associated probabilities by viewing 32 representative samples 

generated from the model. In the test phase, they made 

probability judgments, rating the probability of the presence 

of one variable given the state of other variables. 

Figure 1: Causal structures and their parameters. Panel A 

shows a causal chain (i.e., X → Y → Z) model, Panel B a 

common cause (Y←X→Z) model, and Panel C a common 

effect (X→Z←Y) model. See Table 1 for the values of c, m 

and b used to generate model predictions. The q parameters 

for the alternative H* models are consistent with the sparsity 

assumption, with qm = 0, qc = 0.5, qb = 0.5, p(H) = 0.59, 

and p(H*) = 1 - p(H). See the main text for further details. 

The causal models used by Kolvoort et al. are 

parameterized in the following way. If a variable has no 

parent in the graph, it has probability c. Otherwise the 

probability that variable E is present is given by a noisy-OR 

function: 

 
1 Note that it may be initially tempting to compute conditional 

probabilities by directly averaging the conditional probabilities 

defined by each causal model, i.e. compute Pr(𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 =
𝑧) as Pr(𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧|𝐻) Pr(𝐻) + Pr(𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 =

Pr(𝐸|𝑐1…𝑐𝑛) = 1 − (1 − 𝑏)∏(1 −𝑚)𝑐𝑖

𝑛

𝑐𝑖

 
(5) 

Where c1,...cn denote the presence of the potential causes 

of E in the graph (ci = 1 if present, 0 if absent), m denotes the 

strength of causal relationships, and b is the base-rate 

probability of E in the absence of any of its causes (see Figure 

1). For instance, when there is a single cause present then 

Pr(E) = m+b-mb. 

The parameters used by Kolvoort et al. are shown in Table 

1. We use these parameters in our modeling, effectively 

assuming that participants accurately incorporate the 

probabilities that they were taught for hypothesis H. As we 

mentioned above, we assume that people’s belief about the 

causal model is a mixture of two different models (i.e., the 

given causal model H, and an alternative causal model H*). 

For modeling purposes, we assume that the H* model is a 

null model that represents the possibility that there is in fact 

no causal relationship between the three variables. In that 

regard, H* is parameterized with parameter values of qc = .5, 

qm = 0 and qb = .5; that is, all variables have base rate .5, and 

there is no causal relationship between variables. In other 

words, this model induces a joint probability distribution 

where each possible state of the system has probability 1/8. 

We set the base rate of variables in H* to .5 to reflect the fact 

that study stimuli in Kolvoort et al. (2022) were 

counterbalanced. For example, in one of the scenarios 

(economics), C1=1 was operationalized as “high interest 

rates” for half of participants and “low interest rates” for the 

other half (while C1=0 was always “normal interest rates”). 

Table 1: Model parameters used in Kolvoort et al. (2022). 

 

 Common-cause, 

Chain 

Common-

effect 

c .5 .5 

m .67 .5 

b .25 0 

 

Our model has a single free parameter Pr(H): the ground 

truth causal model H is assumed to be correct with probability 

Pr(H); otherwise H* is correct (with probability 1-Pr(H)). 

The joint probability distribution over possible variable states 

can then be computed by marginalizing over causal models 

H and H* by following Eq. (4). Conditional probabilities can 

then be derived from this joint distribution1: 

Pr(𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧) =
Pr(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧)

Pr(𝑌 = 𝑦, 𝑍 = 𝑧)
 

(6) 

𝑧|𝐻 ∗) Pr(𝐻 ∗). But this computation is not in fact conform to the 

laws of probability. 
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We fit the model at the group level, by finding the value of 

Pr(H) that minimizes the root mean squared error (RMSE) 

between model predictions and average human judgment (we 

find Pr(H) = .59). We also compute predictions for the 

normative model (which fully relies on the ground truth 

causal model H). R code to reproduce our analyses is 

available on the Open Science Framework. 

Modeling results 

The Uncertainty-Augmented model has a better fit (RMSE = 

.0521) to mean human judgments than the normative model 

(RMSE = .1147). Its predictions are also more highly 

correlated with mean human judgments, r(79) = .937, p < 

.001, than the normative model, r(79) = .900, p<.001; see 

Figure 2. This result also holds when accounting for the extra 

free parameter of the Uncertainty-Augmented model. We 

computed model fit using Leave-One-Out Cross-Validation, 

repeatedly training the model to predict human judgments on 

two causal structures (e.g., chain and common-cause), and 

then testing its fit on the third structure (e.g., common-effect). 

We obtain very similar results as when we fit the model 

directly (RMSE = .0528). The uncertainty-based model also 

has a significantly better fit to the human data than the 

normative model as assessed by their respective BICs2: Bayes 

Factor > 10^4. 

These findings also hold at the individual level: 40 out of 

43 participants were better fit by the Uncertainty-Augmented 

than the normative model (even when using the same value 

of Pr(H), fitted at the group level, for all participants). 

 
2 BIC penalizes models with more free parameters. To compute 

log-likelihoods for the BIC, we assumed that responses for judgment 

i are generated from a normal distribution with mean 𝜇𝑖 and standard 

deviation 𝜎, where 𝜇𝑖 is the model’s prediction for judgment i. We 

Conservatism On Figure 2, the line of best-fit for the 

normative model is shallower than the identity line. This 

shows conservatism: participants' judgments tend to be closer 

to 50% than is predicted by the normative model. By contrast, 

the line of best-fit for our model coincides almost perfectly 

with the identity line, indicating that it accurately accounts 

for conservatism in participants’ responses. Conservatism 

has been shown in other studies of causal reasoning (Rottman 

& Hastie, 2016; see also Edwards, 1968). Here, conservatism 

falls out as a natural consequence of uncertainty about the 

causal model. 

Markov violations in causal chains In a causal chain (X1 

→ Y → X2), Markov implies that the following conditional 

probabilities should all be equal: p(X2=1|Y=1, X1=1) = 

p(X2=1|Y=1) = p(X2=1|Y=1, X1=0). This pattern means that 

the X1 feature’s effect on X2 is screened off by feature Y. 

However, the human pattern differs from the normative 

prediction in that the distal X1 cause does affect inferences 

about the state of the X2 effect: p(X2=1|Y=1, X1=1) > 

p(X2=1|Y=1) > p(X2=1|Y=1, X1=0). 

Figure 3(A and B) shows that participants violated the 

Markov condition in the chain structure. Participants made 

different judgments (see the gray bars) for questions to which 

the normative model (red dots) gives the same answer. Our 

Uncertainty-Augmented model shows the same qualitative 

pattern of judgments as participants and as it has been 

reported in the literature (Park & Sloman, 2013; Rehder, 

fit 𝜎 to the data at the group level. We then computed the Bayes’ 

Factor as 𝑒𝑥𝑝(− (𝐵𝐼𝐶𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦𝑚𝑜𝑑𝑒𝑙 − 𝐵𝐼𝐶𝑛𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑚𝑜𝑑𝑒𝑙) 2⁄ ). 

Figure 2: Average human probability judgments and model predictions. Each point represents one inference. Error 

bars represent the standard error of the mean. In all figures presented here, human data are from Kolvoort et al. 

(2022). 
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2014; Mayrhofer & Waldmann, 2015). The model is an 

especially good match to participants’ judgments when the 

intermediate variable is absent (Y = 0). When the 

intermediate variable is present (Y = 1), the model still 

predicts a Markov violation, although of a smaller magnitude 

than participants’. 

Markov violations in common-cause structures In a 

common cause model (X1←Y→X2), Markov implies that the 

following conditional probabilities should all be equal: 

p(X1=1|Y=1, X2=1)  = p(X1=1|Y=1) = p(X1=1|Y=1, X2=0). 

This pattern means that the state of feature Xi should depend 

only on the state of its direct cause. However, the human 

pattern differs from the normative prediction in that the 

second X2 effect does influence inferences about the state of 

the X1 effect independently from the state of the Y common 

effect: p(X1=1|Y=1, X2=1)  > p(X1=1|Y=1) > p(X1=1|Y=1, 

X2=0). 

Figure 3 (panel C) shows that participants violated the 

Markov condition in the common cause structure in the 

Kolvoort et al. (2022) data. Our model captures their 

qualitative pattern of judgments, which has also been found 

in the literature (Park & Sloman, 2013; Rehder, 2014; 

Mayrhofer & Waldmann, 2015; Rehder & Waldmann, 2017), 

although it does not perfectly capture the magnitude of the 

effect when the cause is present (i.e., Y = 1). 

 

Insufficient Explaining Away in common effect structures 

In a common effect model X1→Y←X2, explaining away 

implies the following difference: p(X1=1|Y=1, X2=1) < 

p(X1=1|Y=1) < p(X1=1|Y=1, X2=0). This pattern means that 

knowing about the presence of a cause X2 should reduce the 

estimated probability for an alternative cause X1 being also 

present. However, though humans do discount the probability 

of the X1 cause if they know that the X2 cause was also 

present, they fail to discount as much as normatively 

predicted. Figure 3 (panel D) shows that participants did not 

conform to Explaining Away in the common-effect structure. 

In most studies, people tend to exhibit the Explaining Away 

effect, but to a lesser extent than is normatively prescribed 

(Rehder, 2014; Rottman & Hastie, 2016; Rehder & 

Waldmann, 2017). 

In the current data, participants show an extreme version 

of the usual pattern: they not only fail to explain away as 

much as they should, but they also even show the reverse 

tendency, judging that the presence of a cause makes the 

other cause even more likely. Our model predicts the more 

commonly observed pattern, as it engages in explaining away 

but less so than the normative model, see Figure 3 (panel D). 

Modeling discussion 

Our simple model has a good overall fit to participants’ 

judgments and is able to account qualitatively for four 

documented deviations from the normative model (Markov 

violations in chain and common-cause structures, 

conservatism and insufficient explaining away), with only 

one free parameter (i.e., Pr(H)). For simplicity, we assumed 

that participants accurately learned the ground truth causal 

Figure 3: People’s empirical ratings and model predictions on certain inferences. Average human judgments in 

Kolvoort et al. (2022) data (gray), along with normative (red dots) and uncertainty-augmented (blue dots) model 

predictions. In panels A and B, inferences relevant to assessing the Markov condition in the chain structure (X1 → Y 

→ X2), when X1 is queried (A) or X2 is queried (B). Panel C shows relevant inferences for the Markov condition in 

common cause structure (X1←Y→X2). Panel D shows relevant inferences to assessing Explaining Away in 

common effect structure (X1→Y←X2). Error bars are standard errors of the mean. 

 

1296



model, but this might not have been perfectly the case. For 

instance, Markov violations were bigger when the 

intermediary variable Y was present than when it was absent, 

but these inferences should be symmetrical if participants 

inferred the  ground truth causal model H correctly (since the 

marginal probability of each variable is 0.5). Exploratory 

analyses (not reported here) show that our model can 

reproduce this asymmetry in the size of the Markov violations 

by assuming participants learned a slightly different 

parameterization of the causal model. 

The value of Pr(H) that gives the best account of our data 

is relatively low (Pr(H) = .59). Should we expect people to 

be that little confident in the causal model given by the 

experimenter? As outlined earlier, there are several potential 

sources of uncertainty about the applicability of the ground 

truth causal model. People might be uncertain about whether 

the causal model given by the experimenter holds in general; 

they could also be uncertain about whether the causal model 

applies in the particular case they are making a judgment 

about. To some extent, the best-fitting value of Pr(H) might 

also have been artificially pulled down by other sources of 

noise in the data (e.g. inattention or random responding). 

General discussion 

Our Uncertainty-Augmented model is able to predict several 

violations of Bayesian causal nets’ prescriptions that are 

problematic for the literature. Whereas the standard 

normative model sees the reasoner as completely certain 

about the causal model describing the system of interest, our 

model incorporates uncertainty. 
Our account predicts Markov violations to the extent that 

the values of the causal model parameters ‘move together’ 

across possible hypotheses that people have about the causal 

model.  For example, in a causal chain X → Y → Z, people 

believe that either the X → Y and Y → Z relationships are 

both strong, or both relationships are weak. This assumption 

explains the Markov violation P(Z|Y,X) > p(Z|Y) because 

observing both Y and X provides evidence that the X→Y link 

is strong, which in turn provides evidence that the Y→Z link 

is also strong. 
As such, our account predicts that the magnitude of 

Markov violations will track the extent to which people 

generalize evidence about the strength of a causal link to 

other causal links in the graph. We know of no direct 

evidence for this conjecture, but a series of studies by Park & 

Sloman (2013, 2014) offers indirect evidence. The authors 

manipulated whether the two causal links in a model operate 

via the same or different mechanisms. For example, in the 

“different mechanisms” condition, components A and B in a 

machine were connected by a blue line, while components B 

and C were connected by a red line; in the “same 

mechanism”, both connections were of the same color. 

Markov violations were significantly higher in the “same 

mechanism” condition. Presumably, participants were more 

likely to generalize causal strength across relationships that 

rely on a similar mechanism. 

We argue that the standard normative analysis neglects the 

important role of uncertainty in reasoning, and that therefore 

human causal reasoning might be more rational than it seems. 

Our model differs theoretically from many existing accounts 

of non-normative causal reasoning, which assume some 

degree of irrationality on the part of human reasoners (e.g. 

Rottman & Hastie, 2016; Rehder, 2018; Davis & Rehder, 

2020). For example, systematic normative violations might 

in part be a byproduct of sampling-based approximation, in 

conjunction with limited cognitive resources (Davis & 

Rehder, 2020; Kolvoort, Temme & Van Maanen, 2023). 

Sampling-based models successfully predict an impressive 

number of features of human causal reasoning. On the other 

hand, some characteristics of Markov violations are not 

accounted for by these models. Under a sampling account, 

giving participants more time to think should allow them to 

take more samples, which should decrease the size of their 

Markov violations (Davis & Rehder, 2020). In contrast to this 

prediction, manipulations of time pressure do not affect the 

magnitude of Markov violations in causal reasoning tasks, 

although they affect overall accuracy (Kolvoort et al., 2022; 

Rehder, 2014). Also, sampling-based accounts do not directly 

account for the effect of mechanistic information (Park & 

Sloman, 2013; 2014; see discussion above). 
Our analysis is closely related to theories that argue 

participants use a different representation of the causal model 

than the one explicitly provided by the experimenter 

(Buchanan, Tenenbaum & Sobel, 2010; Park & Sloman, 

2013, 2014;  Mayrhofer & Waldmann, 2015). However, 

these theories are typically designed to account for reasoning 

violations in one or two causal structures, while our account 

can explain normative violations in chains, common-cause 

and common-effect structures. 
We note that it is likely that many different factors overall 

contribute to explaining why people fail to respect norms of 

good causal reasoning. Thus, we do not see our account as 

competing with, but rather complementing the other 

hypotheses mentioned above. 
    Our suggestion that uncertainty can play an important role 

in causal reasoning is consistent with previous research with 

a slightly different task. Meder, Mayrhofer and Waldmann 

(2014) found that when participants make conditional 

probability judgments on the basis of contingency data, these 

judgments do not depend only on the empirical conditional 

probabilities in the data: they are also independently 

modulated by the empirical correlation between the cause and 

effect variable. Participants’ judgments were well-

approximated by a Bayesian reasoner that is initially 

uncertain about whether C has a causal influence on E, and 

uses the empirical correlation between C and E to resolve this 

uncertainty.  

Open science statement 

R script for modeling the Uncertainty-Augmented model are 

open to download at the Open Science Foundation (OSF): 

https://osf.io/6xa7m/  
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