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OPTIMAL WELL NETWORK DESIGN FOR SUBSURFACE REMEDIATION

AND POLLUTANT CONTAINMENT

ABSTRACT

A methodology for the restoration and cleanup of existing subsurface contaminated

sites and for the containment of pollutants is developed. The remediation problem is posed

as an optimization model where the rates and locations of pumping and injections are to be

determined given the characteristics and extent of the contamination plume. The solution

of the remediation problem is based on the econometric method of feedback control

coupled with ground water flow and transport simulations. For site characterization and

monitoring of the contaminant distribution and extent, an optimal sampling methodology is

presented. The sampling design is based on geostatistical methods and yields optimal

estimation of the subsurface parameters and pollutant concentrations, therefore providing

informed decision-making for ground water remediation and contaminant removal. The

remediation plan is optimized so as to lower the contamination level to a pre-specified level

by the end of the remediation period while minimizing the cost of pumping and treatment

The objective function of the optimal feedback control model consists of a successive

minimization of a weighted sum of squared deviations of the achieved cleanup level at each

stage from the desired target level of ground water quality.

KEY WORDS: Ground Water Remediation, Optimization, Decision Models, Statistics,

Contaminant Transport, Dynamic Programming, Water Quality Monitoring.
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NOTATION

A global sorption matrix

A(e) element sorption matrix

At econometric model coefficient matrix

at target value for the state variable

B budget limit

B, econometric model coefficient matrix

C solute concentration

de) finite element approximation for the solute concentration within element e

Ci unknown solute concentration at node i

'1< unit monitoring cost

c, econometric model coefficient vector

Ct state variable vector containing pollutant concentrations

D mechanical dispersion coefficient

[D] global advection-dispersion matrix

D(c) element advection-dispersion matrix

D* molecular diffusion coefficient

Dh hydrodynamic dispersion coefficient

Dm solute molecular diffusion coefficient

F global source/sink matrix

F(e) element source/sink matrix

F, econometric model coefficient matrix

Vll



Gt feedback coefficient matrix

gt feedback coefficient matrix

h piezometric head

Hg total mercury concentration

I identity matrix

Ig grain size index

J cost-to-go function

K hydraulic conductivity

Kd distribution coefficient

x, Ricatti matrix

M solute source/sink

N number of remediation time periods

n porosity

Nm number of monitoring nodes

Pt econometric model coefficient vector

q flow source/sink

qadv advective flux

qdif diffusive flux

qdis dispersive flux

qT total flux

ro efficiency criterion

R; finite element residual at node i

Vlll



S aquifer storativity

T aquifer transmissivity tensor

Tr trace of a matrix

u, control vector at stage t

V average ground water flow velocity

v ground water flow velocity

Wt econometric model coefficient vector

Wt penalty matrix

x space location

Z(x) value of a variable at space location x

Z* cokriging estimator for variable Z

a dispersivity

aL longitudinal dispersivity

aT transversal dispersivity

<Pt feedback control model transition coefficient

¢ finite element basis function

r matrix of cokriging coefficients

Y variogram model

Yij cross-variogram model

2: econometric model coefficient matrix

'fit feedback control model transition matrix

A feedback model coefficient matrix

ix



A solute decay coefficient

~ cokriging coefficient

At econometric model coefficient vector

J..! Lagrange multiplier

/It vector of random disturbances

llt feedback control model transition coefficient

Pb bulk density of the porous medium

ri variance of estimation

o econometric model coefficient matrix

0t feedback control model transition coefficient

8t feedback control model transition coefficient

1" tortuosity of the porous medium
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OPTIMAL WELL NETWORK DESIGN FOR SUBSURFACE REMEDIATION

AND POLLUTANT CONTAINMENT

1. INTRODUCTION

1.1. Background:

Ground water remediation and aquifer restoration effectiveness is contingent upon

the level of technical and technological expertise available. The extent and limits of

remediation are, however, dependent additionally on the existing regulations,

environmental protection goals, and economic factors such as the costs associated with the

removal and treatment of pollutants. Given the high costs associated with remediation

works due to the complexities of the subsurface conditions, high level of priority should be

given to the design and planning of remediation strategies. Advances and progress in the

domain of remediation design methodologies and accurate understanding of the phenomena

governing subsurface flows and contaminant transport are as important as the enhancement

of remediation techniques and practices. As the goal of ground water remediation is to

restore the water quality to its pre-contamination condition, which is almost practically

impossible, remediation efforts become a compromise given the existing regulations, the

cost effectiveness of the cleanup, and the availability of information.

1.2. Statement Of The Problem:

Ground water contamination has become a serious problem in various parts of the

state and the nation. A contaminated aquifer becomes a health hazard and a source of

pollution that contributes to further degradation of the ground water quality in its vicinity.



Thus, rational and appropriate methods for aquifer remediation and pollutant containment

are urgently needed to limit the progressive spreading of pollutants and prevent further

contamination.

To correctly address the problem of subsurface pollution, it is essential to closely

study the distribution and variability of the physical properties of the subsurface

environment as well as understand the chemical and biological processes affecting the

movement and fate of the contaminant. This project proposes a methodology for

increasing the efficiency of remediation efforts using econometric methods.

1.3. Research Objectives:

The main objective of this research is to design an optimal plan to address the

contamination problem in the subsurface environment. Toward the fulfillment of this

objective, two main tasks are identified: (1) To develop an analytical method that

systematically designs an optimal remediation network aiming to achieve a maximum,

economically feasible, level of subsurface cleanup as well as prevent the migration and

spreading of pollutants; and (2) to formulate a remediation strategy as a feedback control

problem to determine optimal pumping and injection rates throughout the remediation

horizon. This strategy is coupled with an optimal monitoring program so as to supply the

control algorithm with accurate estimates of the state variables (e.g., pollutant

concentrations and flow parameters) yielding a reliable description of the state of the

ground water system.
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2. MONITORING AND SITE CHARACTERIZATION

2.1. Introduction:

The success of any remediation technique depends highly on the site

characterization, including the knowledge of the physical properties of the contaminated

site, the phenomena affecting the movement and fate of the pollutants, and the accurate

estimation of the parameters governing the contaminant transport and the ground water

hydraulics. In this regard, monitoring constitutes the basic tool for acquiring information

on different aspects of ground water flow and contaminant transport. The changes

occurring within the ground water system, such as pollutant spreading and migration, are

not obviously seen or detected given the aquifer physical structure. As a result, observation

systems are needed for the purpose of increasing our knowledge about the subsurface

environment and ameliorate our estimation of the governing parameters. Within the

context of ground water remediation efforts, monitoring is considered as an essential tool

for determining and analyzing the state of the quality of the gound water so as to obtain the

necessary information for control decisions and management plans. Monitoring is also an

important follow-up tool for assessing the effectiveness of remediation measures once they

are applied.
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2.2. Review of the Literature:

A number of studies have addressed the problem of monitoring network design.

The design criteria and constraints are generally dictated by the specificities of the

addressed problem as well as the pre-set objectives of the monitoring program. Showalter

(1985) discussed how the objectives of a groundwater quality monitoring network are

developed and how they are implemented in the design process. Hsueh and Rajagopal

(1988) developed a model for groundwater quality sampling design with an emphasis on

prevention of population exposure to contaminants. Most of the optimization techniques

which have been employed to approach the problem of network design either maximize or

minimize a given objective function while accounting for some other constraints. Among

the proposed methodologies, a number of them consider the minimization of the variance

ofthe monitored parameter estimates. Carrera et at. (1984) applied the kriging method to

determine the optimal locations of sampling sites for the estimation of fluoride

concentrations in groundwater. Rouhani (1985) proceeded by minimizing the variance of

estimation using a variance-reduction algorithm; sampling sites which provide the

maximum reduction in the variance of estimation are added to the monitoring network each

at a time. Loaiciga (1989) defined the network optimization problem for the estimation of

chloride concentrations in groundwater as a mixed-integer programming model. Woldt and

Bcgardi (1992) used a modified variance-reduction algorithm combined with a multi-

criteria decision making using composite programming for designing ground water quality

monitoring networks. McKinney and Loucks (1992) presented and algorithm for selecting
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new monitoring locations so as to minimize the simulation model prediction variance.

Loaiciga et at. (1992) reported a comprehensive literature review on groundwater quality

monitoring network design, in which two main approaches were identified: the

hydrogeological approach and the statistical approach. Unlike the latter, the former is fully

based on qualitative and quantitative hydrogeological information (e.g., Everett, 1980).

Quinlan et al. (1993) have examined the difficult problem of ground water monitoring in

karstic aquifers.

The D-optimality approach, a parameter estimation criterion by which one

minimizes the area of any l-o; joint confidence region around the parameter estimates, has

been frequently used in the domain of network design (Casman et al., 1988; Nishikawa and

Yeh, 1989; and Kettunen et al., 1989). Knopman and Voss (1987, 1988b) examined the

effect of change in solute concentration on parameter estimation and sampling design.

They also addressed the problem of discrimination among solute transport models and how

a sampling strategy affects model discrimination (Knopman and Voss, 1988a). Meyer and

Brill (I988) used a Monte Carlo simulation of contaminant transport coupled with an

optimization model for the design of a groundwater monitoring network with the goal of

maximizing the probability of detection of a contaminant Management and monitoring of

ground water has been also treated as discrete time optimal control problems (Makinde-

Odusola and Marino, 1989; and Andricevic, 1990).
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2.3. Procedure:

The sampling network design presented is based on the geostatistical method of

cokriging which will be briefly outlined here. A more detailed theoretical development on

the use of geostatistics in the domain of network design can be found in Ben-Jemaa et at.

(I 994). For a comprehensive description of the cokriging method the reader is referred to

Joumel and Huijbregts (1978), Myers (I982), and De Marsily (I 986).

Geostatistics has been widely applied to hydrological problems. Aboufirassi and

Marino (I984) used cokriging to construct maps of aquifer transmissivity. Cokriging has

been also used to assess stream water quality (Jager et al., 1990; Seo et al., 1990a, 1990b).

Ahmed and De Marsily (I987) compared a number of geostatistical methods for the

estimation of aquifer transmissivity. Carrera et af. (1984) employed kriging for optimal

sampling design of groundwater quality. Shamsi et al. (1988) used universal kriging for

the design of a raingauging network.

Kriging and cokriging are estimation techniques via linear interpolation, providing

best linear unbiased estimators known as IIBLUE". The estimator consists of a linear

combination of available observations. Equation (I) is the expression for the cokriging

estimator; the kriging estimator is given by the special case in which a single variable is

considered.

M Ni

Z~(xo) = LL At.zi(Xk)
i=I k=I

j = 1, ... ,M (1)
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in which L; *(xo) = the cokriging estimator of variable Zj at space location Xo; ~/ = the

cokriging coefficient representing the contribution to the estimation of Zj by the observation

point of Z, taken at location Xk; M = the total number of regionalized variables used in

cokriging; and N = the total number of observation points available for variable Zj and used

in the estimation. The above cokriging estimator Z* could be a given contaminant

concentration at location Xo, while, if M=2, then Z] could represent the contaminant

concentration and Z2 could represent the hydraulic conductivity measured at N] and N2

locations, respectively. The unbiasedness ofthe above estimator can be expressed in terms

of the cokriging coefficients as:

NI

L A~i I for each i (2a)
k=t

and

N;

L k 0 for i =;t. j (2b)Ail
k=I

By minimizing the variance of the error of estimation:

(3)

or, in the case of estimating the mean value over a block V, Zv:

(4)

and introducing the variogram and cross-variograrn notation:
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a system of equations known as the cokriging equations is obtained (Myers 1982)

N
~ -() -:q,vL.. Y x, - xi. 1 k + 11 = Y
k=J

k' = 1, ... , N (taking N, = N for all i's)

and

NL r, = J
k=I

in which

[

Y II (x - Y)
y(x - y);::: :

Y Ml (x - Y)

Y lM(~ - Y)J
Y ,1M/x - Y)

- x .V [Y ~( : . . Y ~:~;J
Y < - • • •

-. \>" ~

Xk'V ~'<'VY Ml ••• Y AIM

are matrices of variogram and cross-variogram models;

[

!-tIl
- .!-t;::: .

!-tMl . :~J
is a matrix of Lagrange multipliers;
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(7b)

(Sa)
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(10)

is a matrix of cokriging coefficients, Yiix-y) denotes the cross-variogram of variables Zi and

Li at space locations x andy, respectively, 1 is the identity matrix, and yXV denotes the mean

value of y(h) when one extremity of the vector h is fixed at point x and the other extremity

varies to describe the estimation block V. lV can be written as:

xV
Y

J
= IV] IvY (x - y)dy (8)

By solving the cokriging system of equations (7), the cumulative variance of

estimation, consisting of the sum of the individual estimation variances of all the cokriged

variables (Myers, 1984), can be calculated by:

(9)

in which Tr denotes the trace of the matrix and Yvv is given by:

1
= -2 Iv Iv y(x-y)dxdy

IVI (10)

It is important to note that the cokriging system of equations as well as the

estimation variance, expressed in terms of the varia gram and cross-variogram models,

depend only on the distances between sampling points, hence on the geometry of the

9



sampling network. This is an important feature that makes cokriging a suitable tool in the

domain of network design where the goal is to find the best layout of the sampling network.

2.4. Monitoring Model Development

Given the fact that estimates of pollutant concentrations are very important inputs

for remediation models, a plausible sampling network is one that provides accurate

parameter estimates with low variance of the error of estimation. The total monitoring cost

is also an important factor in the sampling network design. To increase monitoring

efficiency, a network design yielding a low monitoring cost is preferred. The optimization

of a sampling network is therefore a multiobjective problem. There exists a tradeoff

between the two objectives described above, namely monitoring cost reduction and

estimation variance minimization. To proceed with the network optimization, two

optimization models are presented: the first model consists of minimizing the variance of

estimation subject to a given budget constraint (Ben-Jemaa et al. 1994), and the second

model consists of minimizing the total monitoring cost and assessing the significance of

any decrease in the variance of estimation produced by additional monitoring expenditures.

In the case of the variance minimization approach (model one), a monitoring

budget limit will be set as the model constraint and the optimization model will be written

as:

(11)
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subject to the unbiasedness of the estimation:

(12)

and to the resource availability:

(13)

in which Nm ::::: the total number of sampling sites; ck :::::the unit monitoring cost at space

location k; and B = the budget limit From the cokriging equations (7), one can see that

values of the cokriging coefficients depend on the estimation domain as well as the

sampling locations (x). Noting that variogram and cross-variogram models are also

dependent on the sampling locations, the matrix product between rand y in the objective

function (11) makes the latter nonlinear.

When using the cost minimization approach (model two), a given value of the

variance of estimation that could be considered as a reasonable limit for the estimation

accuracy level, can be used as the model constraint A more comprehensive approach

would be to impose a constraint on the additional information gain per unit increase in

monitoring cost Thus, the model constraint will consist of a lower limit for the rate of

decrease in the estimation variance per unit cost added so as to maintain an economically

efficient design. The optimization model can then be formulated as:

11



Nm
Minimize .L c,

k=I

(14)

subject to the efficiency criterion:

(15)

and to the unbiasedness of the estimator:

Nm.L r. = 1
k=I

(16)

2.5. Monitoring Model Application

The presented sampling design is applied for the design of a monitoring network to

assess the distribution and extent of mercury contamination in the sediments of Clear Lake,

California (Ben-Jemaa et ai., 1995). Mercury contamination of the lake originated from

the Sulphur Bank Mercury Mine located on the western shore of the lake. Observed data

points from Suchanek et al. (1993) are used for variogram and cross-variogram

calculations. Collected data points consist of observations of total mercury (Hg) in the

sediments and the sediment grain size index (rg). The grain size index describes the particle

size distribution and is calculated by assigning a weighing factor for each particle size range

as follows: 0 for clay range, 1 for silt range, 2 for sand range, and 3 for gravel range. The

grain size index is obtained by multiplying each of the above weighting factors by the

corresponding percentages found for each of the four particle size ranges. Figure 1 shows

12
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Figure 1. Map of Clear Lake, California
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the locations of the observation points within the lake. The data set used in the analysis

consists of 35 pairs of average values of Hg and Ig observations taken from several sample

replicates. The study by Suchanek et at. (1993) shows a considerably low within-site

variability (between replicates) as compared to the relatively high between-site variability

(between samples taken at different sites).

Experimental variograms are calculated from observed data points using a discrete

form of the variogram. Given that mercury data was found to be lognormal, its variogram

analysis is carried out in terms of 10gHg. Analytical functions for the experimental models

are then selected from among commonly used variogram models (Journel and Huijbregts,

1978) via a nonlinear least squares fitting technique (Yost et al., 1989). Unlike regular

fitting techniques, the variogram fitting technique has a weighting procedure which is

proportional to the number of observations per distance class and inversely proportional to

the mean class distance. A distance class consists of a group of data pairs which are

separated by distances belonging to the same distance range interval a priori defined. The

calculated experimental variograms for 10gHg and Ig and their corresponding spherical

estimated variograms (Yl and Y2) are shown in Figures 2 and 3, respectively, and expressed

as:

Y I (h) (
h

= 0.22 + 4.03 x 1.5 x 22 - 05 x (~)'J (17)
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y ,(h) ~ 0.015 + 03 x [1.5 x 1: - 05 x c:rJ (18)

Figure 4 shows the experimental cross-vanogram between the two variables and its

spherical estimated cross-variogram (1'12) given by:

y ,,(h) ~ 0.05 + 0.53 x (15 x ;0 - 0.5 x (:orJ (19)

With the purpose of designing an optimal sampling network to observe the mercury

contamination in the middle and lower sections of the lake, a grid of 41 nodes is

superimposed on the considered region (Figure 5). The grid consists of square elements

with a mesh size of 1 km. The considered region is taken as the estimation block (V) on

which the cokriging variance of estimation has to be minimized.

By solving the nonlinear optimization model (Equations 14-16 ) with the above

variogram models as inputs, the resulting optimal solution obtained using the variance

minimization approach with a budget limit allowing 10 sampling sites yielded a variance of

estimation of 1.89. To assess, however, the amount of additional information gained for

each additional unit of sampling expenditure, the cost minimization approach (Equations

17-19) was used and a tradeoff curve relating the variance of estimation to the allocated

monitoring budget is constructed (Figure 6). By setting an efficiency ratio (ro), the network

designer can optimize the sampling design while taking into account the level of economic

efficiency desired. By examining the cost-variance minimization tradeoff curve (Figure 6),
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one can see that the variance of estimation decreases substantially in the beginning.

However, as the allocated monitoring budget becomes higher, the contribution of each

additional sampling expenditure to the variance of estimation decrease becomes smaller,

hence, the sampling network becomes less and less efficient. It is important to note that

both models will yield exactly the same solution every time the budget limit is reached.

However, in the case of a large budget, the cost minimization approach (model two) will

yield a more efficient design, even though the first approach may give a lower variance of

estimation by violating the efficiency criterion.

2.6. Network Design Sensitivity:

The sampling design model is mainly expressed in tenus of the adopted variogram

models. Thus, the goal of this section is to assess the sensitivity of the sampling network

design solution to the type of variogram model used in the simulation. As the cokriging

system of equations involves two variogram models, one for each variable, and a cross-

variogram, it is more convenient for conducting this sensitivity analysis to consider a

univariate case involving only one variogram model and study its effect on the sampling

design solution. For this reason, the special univariate case of the optimization model

(Equations 14-16) is used. The optimization model can then be rewritten as:

Minimize
Ax' j.t

Nil<

~ X V vvL.... AkY), +)..l - Y (20)
k=I

subject to the unbiasedness condition:
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1 (21)

and to the budget constraint:

(22)

To study the effect of the adopted analytical variogram model, the experimental

variograrn for 10gHg is fitted with three different analytical models (Figure 7): a spherical

model Ys, as given in Equation 20, an exponential model YE, and a linear model YL, given

respectively by:

YE(h) = 5.45 - 5.51 x e(-O.074xhj (23)

Y .oo 0.63 + 0.19 x h (24)

By solving the sampling design problem usmg each of the above vanogram

models, the resulting sampling designs are shown in Table 1. The obtained sampling

networks corresponding to the different variogram models show very little difference in

their layouts. This result is in accordance with the argument presented by Rouhani and

Fiering (1986) that the ultimate estimation of variogram has little effect on the network

design. Even though a large number of the optimal monitoring sites are common for the

three cases, the variance of estimation changes considerably with the adopted model. It is

also important to note that lower values of the variance of estimation are not necessarily
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TABLE 1. Effect of the Analytical Variogram Model on the Sampling Design

Solution

Analytical Mean square Variance of

variogram model of residuals Optimal sampling sites estimation

(1) (2) (3) (4)

Spherical 20.3 1,3, 5, 7, 9, 19,24, 32, 37, 40 2.089

Exponential 20.6 1,3, 7, 9, 16,24,35,37,39,40 0.024

Linear 22.3 1, 3, 7, 9, 16,24, 32, 34, 39, 41 0.069
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associated with variogram models having lower mean square of residuals in the variogram

estimation. Thus, a design yielding a lower variance of estimation is not necessarily one in

which the selected variogram is the best fit to data, and therefore might be questionable.

To study the effect of different variogram parameters on the network design

solution, a spherical variogram is used and the sampling design problem is solved for

different values of each parameter while keeping the others constant. The parameters in

question are: the range, the nugget variance, and the spatial variance. Table 2 shows the

resulting sampling design results for different values of the range (a) using the following

spherical variogram model with a nugget variance and a spatial variance of 0.22 and 4.03,

respectively:

y(h) = 022 + 403 x (15 x : - 0.5 x (~rJ (25)

The obtained results show a slight variability in the final network layout as the range is

changed. However, one can clearly see the effect of the range on the variance of

estimation. As the range increases, the variance of estimation decreases. At small range

values, the variance of estimation decreases slowly. However, as the range becomes larger,

the variance of estimation decreases at a faster rate and then tends to stabilize for very large

values of the range (Figure 8). The above result can be explained by the fact that for larger

values of the range, the correlation between observations persists for longer distances,
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TABLE 2. Effect of the Range on the Sampling Design Solution

Range (km) Optimal sampling sites Variance of estimation

(1) (2) (3)

1, 3, 7, 9, 11, 14,22,24, 34, 40 3.52

5 2, 5, 7, 9, 14, 19, 25, 34, 36, 41 3.37

10 1,3, 5, ~ 9, 19,24,32, 3~40 3.17

15 1, 3, 5, 7, 9, 19,24,32, 37,40 2.68

20 1,3,5,7,9, 19,24,32,37,40 2.23

30 1,3,5, 7, 9, 19,24,32,37,40 1.64

40 1, 3, 5,~ 9, 19,2~ 3~ 37, 40 1.31

50 1, 3, 5, 7, 9, 19,24, 32, 37,40 1.10

60 1, 3, 5, 7, 9, 19,24, 32, 37, 40 0.96
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whereas, for the case of smaller values of the range the correlation approaches zero very

fast.

The sill of a variogram is the sum of the spatial variance and the nugget variance.

The spatial variance represents the variance of the variable in question and the nugget

variance is the discontinuity occurring at the origin which is mainly caused by

measurement errors and system micro-variabilities. Unlike the range, the variance of

estimation is found to increase proportionally with the nugget variance as well as the spatial

variance (Figures 9 and 10). The sampling network layout is again almost unaffected by

varying the nugget and spatial variances (Tables 3 and 4); however, their impact on the

variance of estimation is expected since they describe the variability of the variable in

question .

. 2.7. Summary and Conclusions:

The problem of selecting a sampling design is a multicriterion problem given its

contradicting objectives, namely: minimizing the sampling cost and increasing the

estimation accuracy or minimizing the variance of estimation. To deal with an

optimization problem of this nature, an efficiency criterion is introduced to asses the cost

effectiveness of additional resource allocations as compared to the additional information

gain. The obtained sampling network results show a clear tradeoff between minimizing the

allocated sampling budget and the information gain or variance reduction. As the total

sampling cost increases, the contribution of each additional cost unit to the estimation

variance reduction becomes smaller.
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TABLE 3. Effect of the Nugget Variance on the Sampling Design Solution

Nugget variance Optimal sampling sites Variance of estimation

(1) (2) (3)

0.00 1,3,5,7,9,11,14,19,34,41 1.87

0.05 1,3,5,7,9,11,14,19,34,41 l.92

0.10 1,3,5,7, 9, I~ 24, 32, 3~40 1.97

0.20 1,3, 5, 7, 9, 19,24, 32, 37,40 2.07

0.30 1,3, 5, 7, 9, 19,24, 32, 37,40 2.17

0.40 1,3,5,7,9, 19,24,32,37,40 2.27

0.60 1,3,5, 7, 9, 19,24,32,37,40 2.47

1.00 1, 3, 5, 7, 9, 19, 24, 32, 37, 40 2.87

1.50 1,3, 5, 7, 9, 19,24, 32, 37,40 3.37
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TABLE 4. Effect of the Spatial Variance on the Sampling Design Solution

Spatial variance Optimal sampling sites Variance of estimation

(1) (2) (3)

0.5 1,3, 5,7, ~ 1~24,32, 37,40 0.45

1.0 1,3,5,7,9, 19,24,32,37,40 0.68

1.5 1, 3, 5, ~ 9, 19, 2~ 3~ 3~ 40 0.92

2.0 1, 3, 5, 7, 9, 19,24, 32,37,40 1.14

3.0 1,3,5,7,9, 19,24,32,37,40 1.61

5.0 1, 3, 5, 7, 9, 19,24, 32, 37, 40 2.54

10.0 1,3,5, 7, 9, 19,24,32,37,40 4.85

15.0 1,3,5,7,9,19,24,32,37,40 7. I7
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The formulated sampling design methodology shows a minor sensitivity to the

variations in the model inputs, mainly the selected variogram models and their parameters,

when it comes to locating the sampling sites. The designer, however, should not be

deceived by this apparent advantage of the methodology and great care should be taken in

the variogram selection phase in order to adequately estimate the covariance structure of the

parameters in question. Unlike the stability of the method in assigning the locations of the

sampling sites, the resulting variance of estimation varies considerably with the input

parameters. The sensitivity of the variance of estimation is especially critical in the case

where the selected variogram models are used for estimation purposes.
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3. GROUND WATER REMEDIATION AND POLLUTANT CONTAINMENT

3.1. Introduction:

The goal of ground water remediation techniques is to remove contaminants from

the ground water. How well this objective is fulfilled by different techniques depends on

numerous factors, mainly, the technical and technological expertise, site characterization

and contaminant identification, and remediation and treatment costs. The determination of

an effective remediation technique may be somewhat subjective and depends on the

objectives as well as the physical and economical constraints. Besides the adopted

remediation technology, the effectiveness of any remedial action also depends on the

remediation plan and strategy.

3.2. Review of the Literature:

The problem of aquifer remediation and water quality management has been the

focus of numerous studies. As the general aim in any remediation effort is to improve the

ground water quality and decrease the contamination level, a number of proposed

remediation models consist of minimizing the pollutant concentrations and/or the cost of

the removal and treatment of the contaminated ground water.

Burn and McBean (1985) presented an optimization model for water quality

planning in an uncertain environment. The methodology aims to enhance information gain

from a screening model while considering the presence of uncertainties. Chance
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constrained programming was used with the objective of reflecting the probabilistic

violations of the water quality standards. Ranjithan et al. (1993) applied a neural network-

based screening approach to a ground water reclamation via pump and treat. Cardwell and

Ellis (1993) used a stochastic dynamic programming model for waste load allocation from

multiple point sources. Tiedman and Gorelick (1993) presented a methodology to contain

a contaminant plume migrating within an unconfined aquifer. The problem was formulated

using stochastic nonlinear programming to determine the optimal minimum-pumping

strategies for steady state hydraulic capture of the plume. Chang et al. (1992) used

constrained optimal control using differential dynamic programming to determine optimal

time-varying pumping rates in a ground water remediation problem. Similarly, Culver and

Shoemaker (1993) employed differential dynamic programming combined with a quasi-

Newton approximation for a pump and treat ground water remediation problem. Morgan et

al. (1993) presented a mixed integer chance constrained programming technique for aquifer

remediation design. By varying the degree of reliability, a trade-off curve between

maximum reliability and minimum pumping is sought.

Gorelick and Remson (1982) used a linear programming superposition technique to

manage several ground water pollutant sources so as to maximize waste disposal rates and

not violate the ground water quality standards. Gorelick et al. (1984) combined ground

water flow and contaminant transport simulations with nonlinear optimization to determine

optimal pumping and injection rates for ground water quality control. Wagner and

Gorelick (1989) examined the effect of uncertainty of the hydraulic conductivity on aquifer
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remediation strategies. Andricevic and Kitanidis (1990) used a discrete time optimal

control methodology for finding optimal pumping rates for aquifer remediation; the

methodology used accounts for and reduces parameter uncertainty. Optimal pumping rates

were sought via minimization of a performance index which encompasses the sum of the

remediation costs. Such costs include the costs of pumping and treatment plus a terminal

cost represented by a penalty for non-compliance with water quality standards. The

performance index, or cost function, was treated as a random variable and the minimization

of its expected value was adopted as the model's objective function. Ahlfeld et al. (1988a,

1988b) presented two optimization formulations for aquifer cleanup, a first approach

aiming to extract a maximum amount of pollutant over the remediation period, and a

second approach aiming to lower the contaminant concentration to a specified level. The

objective functions adopted consist of: first, minimizing the sum of pollutant concentration

at a specified set of nodes within the contaminated region, and second, minimizing the total

cost of pumping. Jones et al. (1987) presented an optimal control model for ground water

management using differential dynamic programming. Murray and Yakowitz (1979)

applied a modified differential dynamic programming to a multi-reservoir control problem.

Makinde-Odusola and Marino (1989) used the feedback method of control to determine

optimal pumping rates necessary to maintain the piezometric surface below a desired level.

Andricevic (1990) used optimal control methods to determine withdrawal rates so as to

satisfy a given water demand while keeping the piezometric heads close to some pre-

specified levels.
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This report presents a ground water remediation approach based on the econometric

method of feedback control coupled with finite-element flow and contaminant transport

simulations. The approach aims to determine the optimal control rules on the locations and

rates of pumping and injection so as to lower the contamination below some pre-specified

target level. The feedback control model used consists of a successive minimization of a

loss function describing the deviation of the state variables (pollutant concentrations) from

their targets.

3.3. Technical Methods For Ground Water Quality Control:

Analyzing different technical methods for controlling the ground water quality, two

broad categories can be identified: Source control methods, and ground water control

methods.

3.3.1. Source Control Methods: A natural course of action to minimize the pollution of

ground water is to control the source of the contamination. Any reduction in the number

of contamination sources and the amount of contaminant disposed, will result in less

ground water contamination. Hence, source control methods are preventive methods

(before the fact action) as compared to ground water control methods which are remedial

measures (after the fact action).

In order to have a successful source control strategy, thorough identification of the

sources, causes, and types of ground water pollutants should be made. Techniques for the

control of ground water pollution sources are site and pollutant specific. These control
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techniques are based on proper citing, design, construction, operation, and monitoring.

Ground water pollution sources are generally man-made or man-induced causes. Some of

the man-made sources are:

(a) Industrial pollution: caused by the dumping and disposal of industrial waste,

production residuals, leaks from pipelines and underground tanks, and accidental

spills of chemicals.

(b) Agricultural pollution: caused by the application to agricultural fields of plant

nutrients, fertilizers, pesticides, and animal waste. Unlike other types of pollution

sources, agricultural pollution of ground water is generally distributed on a wide

area and referred to as non-point source of pollution.

(c) Urban pollution: caused by municipal waste water effluents as well as dumping of

solid waste (landfills).

Other types of ground water pollution can be man-induced such as saltwater

intrusions due to over-exploitation of aquifers and artificial ground water recharge by

contaminated surface waters.

Controlling ground water pollution sources is a task that depends on the

contamination source in question and may range from sanitary landfills for waste disposal

to treatment plants for municipal and industrial wastewater. Point sources of pollution are

relatively easier and more practical to control and contain; in contrast, non-point sources,

mainly pollution from agricultural fields, are much more difficult to control. Nevertheless,

a number of methods are available for controlling and reducing the contamination from
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non-point sources such as the reduction of chemical leaching and deep percolation through

drainage and collection systems, efficient irrigation scheduling, improved agricultural

practices, and crop rotation.

3.3.2. Ground Water Control Methods: As mentioned earlier, groundwater control

methods are needed as corrective measures in the case of an already contaminated aquifer.

Groundwater control methods aiming to control and contain pollution can be divided into

two main categories:

(a) Restoration methods which proceed by a cleanup and removal of the contaminant

from the aquifer such as pump and treat techniques, in situ bioremediation, and

air stripping in the case of volatile compounds.

(b) Containment or isolation methods: Such techniques aim at the isolation of the

contaminated region in order to prevent further contamination due to the

migration and spreading of the pollutants into adjacent regions.

Most of the ground water control techniques proceed by controlling the hydraulics

and movement of water within the subsurface. Controlling the flow patterns can be

achieved by modifying the pumping or recharge rates and patterns. Techniques based on

the control of groundwater hydraulics are effective and practical as well as economical. In

contrast, other contaminant isolation methods using underground physical barriers can be

very costly to implement.
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3.4. Governing Equations:

The equations used to describe the ground water system and to predict its evolution

under the proposed remediation strategy are the basic ground water flow and transport

equations:

v- (T V h) = S ah - qat (25)

v= -K- Vh (26)

v- (D - V c) - v. rv c) - M= acat (27)

where T is the transmissivity tensor, 1z is the piezometric head, S is the storativity, q is a

flow source/sink term, v is the Darcy flow velocity, K is the hydraulic conductivity, D is the

hydrodynamic dispersion, M is a solute source/sink term, and c is the contaminant

concentration.

In the case of an isotropic medium, the four components of the hydrodynamic

dispersion coefficient tensor can be expressed as (Bear, 1979)

(28a)

v2 v2
D x Y D*»' =ar -+aL-+v v

(28b)

v v
(, ) x yD~)'=Dvx=\aL-aT --. v (28c)

in which
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l'x = the flow velocity component in the x-direction

lj,= the flow velocity component in the y-direction

I

V = [ v~+ v.~ ]2 == I v I (29)

ex L = the longitudinal dispersivity of the porous medium

ex r = the transversal dispersivity of the porous medium

D' = the molecular diffusion coefficient which can be expressed III terms of the

molecular diffusion and the tortuosity of the porous medium as

(30)

where

Dm = the solute molecular diffusion

'C = the tortuosity of the porous medium

The equation for solute transport III saturated porous medium (Equation 27)

expressed in Cartesian coordinates can be written as

(31)

in which

vx = the apparent ground water velocity

P b = the bulk density of the porous medium
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K d = the distribution coefficient

A = the solute decay coefficient (constant)

3.5. Phenomena Governing Contaminant Fate And Transport:

Spreading and migration of pollutants within the subsurface can be caused by a

number of phenomena. Solute movement and spreading in a porous medium is a

complex phenomenon and cannot be fully explained by water movement (spreading by

advection). By analyzing the solute transport at the microscopic level, it was found

that contaminant spreading within the ground water is also caused by the random

movement of molecules, such phenomenon is known as molecular diffusion.

Molecular diffusion enhances the spreading of pollutants both in the longitudinal and

transversal directions to the average ground water flow. The physical characteristics of

the porous medium force the flow to follow random and tortuous paths around the soil

particles depicting velocity variations at the microscopic level. This phenomenon is

known as mechanical dispersion. Mechanical dispersion coupled with molecular

diffusion give the entity known as hydrodynamic dispersion.

The advective component of the solute flux is given by

-t.: =CV (32)

in which

C = the pollutant concentration

V = the average flow velocity
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The dispersive flux is given by

«:=-D.VC

in which

D "'"the coefficient of mechanical dispersion

The flux due to molecular diffusion is given by

qdif = - Dd 1: • VC = D; • V C

in which

Dd = the coefficient of molecular diffusion

1: "'" the tortuosity of the porous medium.

The pollutant flux due to the sum of dispersion and diffusion phenomena can then be

(33)

(34)

written as

(35)
= -DheVC

where

Dh= the coefficient of hydrodynamic dispersion.

The total flux of pollutant by advection, dispersion, and diffusion combined can be

written as

qr =n (-D), eVC+CV)

with n representing the porosity of the porous medium.

(36)
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In addition to advection, molecular diffusion, and mechanical dispersion, other

important phenomena can affect the fate and transport of pollutant in ground water

such as adsorption, solute decay, biodegradation, and other chemical reactions.

Adsorption is the adhesion of the pollutant to the solid particles at the fluid-solid

interface. This adhesion or adsorption is often caused by molecular forces and

electrical attraction between the solid surface and the chemical molecules. Therefore,

adsorption is a function not only of the pollutant characteristics but also of those of the

aquifer solid matrix. Other factors can affect the chemical reactions between the

pollutant components and the soil particles such as the temperature and the pH of the

ground water.
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4. AQUIFER RE:MEDIA TION AS A CONTROL PROBLEM

4.1. Introduction:

The aim of this section is to transform the governing equation for solute

transport and express it in the form of a system equation for an econometric model in

order to formulate the remediation problem as a feedback control problem, Using a

finite element formulation, the solute transport equation has to be transformed to

conform to the following form:

Ct = At-l Ct-l + Bt-l UH + Ct-l + llH (37)

The above equation is a standard form for a state equation of econometric models in

which Cr is the state variable giving the pollutant concentration at stage t, u, is a control

vector, At and B, are coefficient matrices of known elements, c, is a coefficient vector,

and u, is a vector of random disturbances. An econometric system could be fully

controllable, and the method of feedback control can be applied (Figure II), where the

controls (inputs) are derived at ech optimization stage depending on the current states of

the system and the level of control achieved (outputs) toward reaching the target states.

In the case of ground water remediation problems, the situation is more complexe and

the ground water system cannot be fully controllable due to the natural random

disturbances and other uncotrollable inputs. Instead, the econometric system can be

treated as a partially controllable system, where in addition to the regular feedback
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Figure 11. Feedback Model Diagram
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inputs (controls) we have a set of random disturbances which act upon the system as

well. As a result, the system outputs will show some undesirable components, which

given will be taken into account at the next optimization stage trough the feedback

controllability (Figure 12).

4.2. Galerkin-Finite Elements Representation:

The Galerkin-finite element method, as a weighted residuals technique, uses an

approximate integral formulation to replace the original governing partial differential

equation for solute transport. To solve the transport equation, the method assumes a

trial solution (e) expressed as a linear combination of some shape functions (¢ ~e»)

n

e(e) (x, y, t) = I: {CrCt~ jC) (t) }
i=]

(38)

in which

tee) = the approximate solution within the element e

¢~e)= the basis functions for each node iwithin element e

Ci = the unknown solute concentrations at each node i within element e.

The above approximate solution C approaches the actual solution C as the number of

nodal points used in the finite element mesh (n) approaches infinity.

By substituting the approximate solution (Equation 38) in Equation 31, the

solute transport partial differential equation will not be satisfied exactly, and an error

(residual) occurs at every node in the problem domain. The contribution of element e

to the residual at node i is:
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{
aC(e) ",c(e) ",c(e)

R~e) = _ flfJ.~e)(x y z) D~e) __ +D(e) _O_+D(e) _0_
, 'V", -' :::....2 Y ~,2 2 a 2

V«) u..t v)' Z

vee) aC(e) pee) K(e) ac,{e) ( ~ pie) K(e) ~ )
__ "'_" b d ---'A c(e) + b d c(e)

n Ox n at n
(39)

ac(e) «" }
- -- - - dxdydzat n

Expressing the approximate solution in terms of the basis functions in the above

equation and rearranging terms gives:

{
ac(e) aC(e) aC(e) }

R(e) =- flf,j.,~e) D(e) __ +D(e) __ +D(e) -- dxdvdz
J 'V J X :::....2 Y ~J2 Z a 2 ;.r

V~l ~ ~ Z

{

(e) ac(e)}
+ Iff <t> ~e) V x dxdydz

v(,) n Ox

{ (

e) K(e) )}+ fIf <t> ~e) A c(e) + P b d c(e) dxdydz
v(.) n

{

(e) }
+fIf 4>~e) L dxdydz

v(.) n
(40)

Using matrix notation, the above equation can be written as
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'"'C0'1

+[F,:"]at
oc, FCe)
at "

in which:

3q> ~e) ap~") 3q>~c) 3q> ~e)

ax C!Y az rT
0

D~" 1
ax

[DC
e)]= fff . DCe)

ap}e)
apSe) 3q> Se) ap ~e)

y C!Yv(') 0ox C!Y az ap ~e)
az

l¢(ell1 vee) ap ee) ap (e)

+ fff : +>[_1 ... -" ]dXdYdz
v(,) '" (e ) 11 ax: ax

'I'll

l'"cell'1'1 Ce) Ce)

+fff : [/"'(l+Pbl~d J][¢~e) ...
V(,) '" (e ) r

'I'll

is an nxn element advection-dispersion matrix;

•
'1'1 Ce) (e)

[A(e)]= fff : [1 + P b ~d ] [¢~e) ...
V(d ~ Se) n

is an nxn element sorption matrix; and

{ (

(c) K(el J}F/") :::fff ¢ ~e) /... CCe) + P b d c(el dxdydz
v~) 11

is an nx I element source/sink matrix.
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O¢~e)
ax

O¢ ee)
_"- dxdydz
ay

3q> ~e}

az

(42)

(43)
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[
p(elK(e)]

The quantity 1+ bn(e)d represents the retardation factor.

In the case of a lumped element formulation, where the Dirac Delta function IS

substituted for the shape functions, the sorption matrix above will become:

[
Pee) K(e)] Vee) [1 OJ

[A(e)] = 1+ b d __ ".
nee) n ° 1

(45)

By combining the element matrices above, global matrices can be obtained as

[D]= ~ ~(e) ]
global expanded
(pxp) (n x n)

(46)

~1.)=t, [A(e) ]
r, ) expanded
\j' x P (n x n)

(47)

t!= t, {F(e) }
( xl) expanded
P (n xl)

(48)

Therefore, the weighted residual formulation for the solute transport equation can

be written as

= (F)
(1',,1)

(49)

or

{F} (50)
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4.3. Econometric Model Development:

In order to write the transformed transport equation above in the form of an

econometric model system equation, additional transformations are needed. For

this purpose, the following finite difference formulations are used:

(51)

c= (1- w)Ct +wCt+t,t (52)

Depending on the choice of the parameter w in the above formulation, different

cases can be identified:

w =0 forward difference

w =0.5 central difference (also known as Crank-Nicolson formulation)

w = 1 backward difference

By adopting the transformations (51) and (52), Equation (50) becomes

([A]+wM[Dl}{C}/ = ([A] + (1- w)At[Dl}{C}t_l
(53)

Using a forward difference formulation ( W =0) for the source/sink term, we get

(54)

Re-arranging terms in the above equation gives

{C}/ =([A]+ W At [Dl}-I ([A] + (1- w)At [D]){C}t_l
(55)

+ At([A]+wAt[D]f {F}H
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The above form of the transport equation can now be written in the form of a

system equation for an econometric model as

(56)

in which

0=([A]+ will [D])-l ([A] + (1- w)f.t[D])

8= L1t ([A]+ w L1t [D])-l

(57)

(58)

Posed in the form of a system equation for an econometric model, the

transport equation can be solved using econometric methods. At each stage in

time, the current states of the system (the pollutant concentration levels), {C}t' are

expressed as a function of the previous states, {C}t-l' and the controls (pumping or

injections) undertaken at the previous stage, {F}_l' The feedback method of

control will be adopted to determine the optimal controls at each time step. The

solution algorithm is detailed in subsequent sections.

4.4. Feedback Control Model

Using the above modified form (Equation 56) of the solute transport equation,

the ground water remediation problem can be posed as a feedback control problem

(Chow, 1981; and Kendrick, 1981). The objective function consists of a successive

minimization of a loss function containing the squared deviations of the state variables

from their prescribed target values to be reached by the end of the control process, and

can be written as
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(59)

in which N is the number of time periods, c, is a vector containing the state variables

(i.e., the pollutant concentrations at time t), at is a vector containing the target values of

the state variables, and K, is a penalty matrix for deviating from the target at. The

minimization of the objective function in a feedback control problem is subject to a

constraint of the form (56), where the state variable is expressed as a function of its

previous value and of a control vector containing the undertaken decisions. In the case

of groundwater remediation problems, the state variable can be taken as the pollutant

concentration, whereas the control vector will contain information on the pumping and

recharge rates and their locations. It is obvious that the contamination level at each

stage will be directly dependent on the remedial decisions embedded in the control

vector and on the state of the system on the previous stage. The optimization model

can be written as

N

Minimize J = L ~t - at) x, (='t - at)
u, 1=1

(60)

subject to the state equation:

(61)

For notation ease, the difference term between the states and their desired targets will

be represented by

(62)
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The remediation problem expressed as an optimization model and posed in its above

form (Equations 60-61) can be solved using the econometric method of feedback

control. The solution process-consists of a stage by stage optimization as described in

the solution algorithm below. The solution process starts at the end period (t = N) by

using the terminal conditions

(63)

(64)PN = WN

and proceeds backwards in time in a stage by stage optimization using a dynamic

programming approach. Equations (63) and (64) provide the terminal values at the end

period for a set of difference equations known as the Ricatti equation, to be defined in

the following section. These difference equations are used to transmit the cost or price

information from the last period backward in time; at the terminal period, they provide

information about the economic value (i.e., cost) of having the economic system at the

terminal state CN'

4.5. Feedback Control Solution Algorithm:

The feedback control problem as presented above is solved VIa a dynamic

programming algorithm as a successive minimization of the objective function, also

called the cost-to-go, at each stage. The basic idea of the algorithm is that at each given

point in time one needs to minimize the cost-to-go from that point to the end. This is

called the optimal cost-to-go noted as J* (Ct), where Ct is the state vector at time

55



period k and J* (C1) is the cost of going from the state Ct to the desired target for the

state at the terminal period of the remediation horizon.

The optimal control problem consists of finding the set of control vectors from

the start to the terminal period so as to minimize the cost-to-go function. The problem

can therefore be formulated as:

(65)

to minimize the cost-to-go:

(66)

subject to the system equation

(67)

and the initial conditions

(68)

where

C1 = the state vector (nx 1) at time period t

Ut = the control vector (m <I) at time period t

~ = nxn penalty matrix

WI = nx 1 vector

F; = nxm matrix
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A =m<m matrix

A/ =mxl vector

At = nxn coefficient matrix ,,~

B, = nxm coefficient matrix

Ct = nx 1 vector

The cost-to-go function as shown above (Equation 66) is written in its general quadratic

form which, in addition to the term expressing the deviation of the states form their

desired values, contains a similar term expressing the deviation of the controls from

their desired values and a cross term. Both of these additional terms can be omitted,

especially in a case where the controls which have to be determined are not required to

follow a pre-specified path. Nevertheless, these terms are of special importance in the

case of feedback control problems requiring the controls to match some given desired

values.

The quadratic cost-to-go function at any time period t can be rewritten as

(69)

in which

K, = nxn matrix known as the Ricatti matrix

Pt = n= Ivector

In order to derive the optimal feedback rules (i.e., find the optimal control vector), the

solution algorithm starts at the terminal time period (N) and works backward toward

the initial time period. The optimal cost-to-go at the terminal period can be written as
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working backward in time, the optimal cost-to-go in period N-l can be written as

using the system equation

(70)

(71)

(72)

and substituting the terminal cost-to-go by its value, the cost-to-go for period N-l can

be rewritten as

.() {I. 1 .J N -1 = min -2 CN-1 <DN_1CN-1 +-2 uN-J 0 N-I UN-1
UN_l

in which

<DN-l = A~_l K N AN-1 +WN-1
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(73)

(74)

(75)

(76)

(77)

(78)



(79)

Minimizing for UN-l in the cost-to-go equation (73), yields

(80)

solving for UN_1 in the above equation gives what is called the feedback rules for time

period N-l

(81)

with

(82)

(' )-1
gN-l = - eN-l e N-! (83)

The above matrices, G and g, are called the feedback matrices.

The cost-to-go for the period N-l is a function of the states (eN-l ) as well as the

controls (UN_1), it can be expressed exclusively as a function of the states by substituting

out the controls using the feedback rule (Equation 81). The cost-to-go will then be

(84)

where

(85)

(86)

The above two equations (85-86) are known as the Ricatti equations.

Similarly, the above results can be generalized and the feedback rules can be written for

any time period t as
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(87)

with

G = - (E>' )-1 'Y'
Itt (88)

( ,)-1gt=- €It 8t (89)

and the cost-to-go as

• 1, ,
J (t) =-Ct x, c, +PI c,

2
(90)

with the Ricatti equations

(91)

(92)

where

(93)

€It =B; Kt+l B, +At (94)

(95)

(96)

(97)

(98)

It is important to express the feedback matrices and the Ricatti equations in

terms of the original matrices of the feedback control problems (i.e, A, B, and c)

instead of the intermediate matrices above. This can be achieved by substituting the
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intermediate expressions (Equations 93-98) into the feedback matrices and the Ricatti

equations (91-92), yielding the following form of the feedback rule

u, =G, C1 +gt

with the feedback matrices

(99)

c, =-[B~ Kt+1 BI +AI II[~'+B; Kt+1 At ]

s, =-[B; s.; s, +AI ]-1 [B; (s.; c1 +PI+l) +A1 ]
and the Ricatti equations

KI = A; KI+I AI +W;

(100)

(101)

(102)

(103)

4.6. Solution Summary:

In summary, the feedback control problem is solved by following the steps

below:

1. Start at the terminal period using the terminal conditions KN and PN

2. Integrate the Ricatti equations back in time and compute K, and Pt for all time

periods.

3. With K, and Pt known, calculate the feedback matrices Gt and gr .
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4. Substitute the feedback matrices in the feedback rule with the initial values of

the states (Co) to calculate the controls Uo .

5. Substitute Uo and Co-in the state equation to calculate the states for the next

period (C1).

6. Use the calculated values of the states C1 in the feedback rule to compute U1 '

Similarly, the computations continue until all the values of the states and

control are determined.
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