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Head Internal Relative Clauses, Quantifier Float, the 

Definiteness Effect and the Mathematics of Determiners  
S.-Y. Kuroda 

University of California, San Diego 

 
In memory of Tanya Reinhart 

 

 
Keenan's account of the DEFINITENESS EFFECT associated with the English there-construction based 

on the notion of INTERSECTIVE DETERMINER is well-known. In Part 1 of this paper, I will consider a 

similar kind of effect in Japanese constructions. In particular, I shall show that a very general form 

of Quantifier Float and the Head Internal Relative Clause, two phenomena particularly prominent 

in Japanese syntax, allow us to extend the idea of the Definiteness Effect to predicates with more 

than one argument. I will then show in Part 2 that this idea provides an empirical motivation for 

extending Keenan's idea of intersective determiners to 2-dimensional (transitive) spaces. Part 2 thus 

concerns a mathematical extension of the classical mathematical theory of determiners to 2-

dimensional spaces with its empirical grounding in Japanese syntax. Part 3 generalizes the 

mathematical theory introduced in Part 2 to n-dimensional spaces in general, without any empirical 

concern.  

   Part 1, Part 2 and Part 3 can in principle be read independently. Part 1 primarily concerns 

Japanese and is empirical and descriptive. The reader who is not particularly interested in 

mathematics may wish to read only Part 1. Those who are interested in the "mathematics of 

language" but not particularly in details of Japanese syntax may wish to skim through Part 1 and 

start careful reading from Part 2. On the other hand, those who are only interested in mathematics 

and do not care about, or wish not to be bothered by, empirical facts may wish to read only Part 3. 

Due to the intended relative independence of the three Parts, the reader who wishes to read through 

the paper from Part 1 through Part 3 may encounter some redundancy through the paper. 

   Part 1, sections 1-5, is a slightly revised version of the first five sections of Kuroda (2007). I wish 

to express my gratitude to the CSLI Publications for granting me a permission to reproduce this 

portion in this paper. 

 

 
1.  Part I:  Existential Sentences and the Definiteness Effect in Japanese 
 
1.1 Preliminaries 
 
The definiteness effect of the English there construction is well known.1  
 
(1) Definiteness effect. Post-copula DPs in there sentences are indefinite. 

 
The contrast between a and b, and between c and d in (2) illustrates this generalization: 
 

                                                 
1 This is an expanded version of the paper I read at the 16th Japanese/Korean Linguistics Conference held in Kyoto in 
October, 2006 and published in the Proceedings of the Conference, Takubo (2007), under the title "HIRC, QF and the 
Definiteness Effect."  
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(2) a. There are three apples that I bought at the market on the table. 
  b. *There are the three apples that I bought at the market on the table 
  c. There are lots of apples that I bought at the market on the table 
  d. *There are most of/all the apples that I bought yesterday on the table 
 

The term 'indefinite' is used in (1) without any formal definition in mind for the convenience of 
stating the generalization. Commonly, following Milsark (1974), the technical terms WEAK and 
STRONG are defined in terms of the observed definiteness effect: 
 
(3) Definition 1. Weak and strong determiners (English)  

The determiners that can modify post copula DPs in there sentences are 

by definition WEAK; those that cannot are STRONG. 

 
We have some examples of weak and strong determiners in English in (4) and (5): 
  
(4) Weak determiners: three, a lot of, some, many, no,   ….. 
 
(5) Strong determiners: the, the three, all, most, ….. 
 
Edward Keenan gave a formal characterization of weak determiners: 
 
(6) Determiners are weak iff they are intersective. (Keenan 1987) 
 
The definition of INTERSECTIVE is given as follows in (7): 
 
(7) Definition 2. Intersective determiners  

 A determiner D is INTERSECTIVE iff D(A)(P) = D(A ∩ P)(E). 
 

Take A as a common noun like student, P as one place predicate like be diligent. Let D be the 
determiner three. Then, D(A) in the left hand side of the formula in (7) reads 'three students'; 
combine it with P be diligent, then, D(A)(P) reads as 'three students are diligent'. In the right hand 
side, A ∩ P stands for 'students who are diligent'; the symbol E is the predicate exist and stands 
for anything that exists. Thus, the right hand side of the formula reads 'three students who are 
diligent exist' or 'three diligent students exist'. Definition 2 says that the determiner three is by 
definition intersective if and only if the first equivalence in  (8) holds: 
 
(8) Informal illustration of intersective: 

 a.  [Three (students)] are diligent <=> [Three (diligent students)] exist  
 b.  [Every (student)] is diligent  <≠> [every (diligent student )] exists   

 
The equivalence (8)a holds, hence three is an intersective determiner. In contrast, the determiner 
every is not intersective, since the corresponding equivalence does not hold as shown in (8)b. If 
the left hand side is true, the right hand side is also true, but even if the left hand side is not true, 
the right hand side is still true, thus the equivalence fails.  
   Keenan thus has given a formal account of the definiteness effect. Assertion (6) may be 
reformulated as follows: 

 
(9) A there sentence is well-formed iff the post-copula DP has an intersective determiner. 
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About the definiteness effect, Keenan in fact obtained a much more general result than (9): a 
formal characterization of the type of noun phrases, simple as well as complex, that can occupy 
the post-copula position of the there construction. Assertion (9) concerns with simple DPs and is 
only a part, but the basic part, of Keenan's account of the definiteness effect. For our present 
purposes (9) suffices. 
   A mathematical theory of determiners, whose scope goes much beyond the definiteness issue, 
has been developed by Keenan in last 15 years or so. It has revealed much about interesting 
formal properties of determiners in general and of intersective determiners in particular. What 
strikes me as remarkable about this theory is that not only does it provide empirically adequate 
accounts of generalizations obtained in natural language studies, it also concerns a highly 
interesting and significant structure in its own right as an object of mathematics. I believe 
Keenan's work is one of the greatest achievements in formal linguistics in recent years. See 
Keenan (1987, 2002) among others. 
   It is significant that there is a grammatical effect in natural language, the definiteness effect, 
that relates grammar to mathematics: the there construction, so to speak, embodies a concept 
rooted in mathematics such as intersective determiner. But the definiteness effect, as we have 
introduced above, is defined in terms of the there construction, an English particular structure. Is 
this state of affairs to be understood as a peculiar feature of English, and perhaps of some other 
few languages where we can find a direct counterpart to the there construction? I would rather 
like to test the hypothesis that it is a common feature of natural languages, sanctioned by 
universal grammar, that they contain a construction which embodies intersective determiners, that 
is, which is licensed by intersective determiners.  
   And we might let ourselves drift in more fanciful imagination and suppose that human language 
has ways to have contacts with mathematical reality, as it does with mental and physical reality. 
Universal grammar might also be determined by how it interacts with this reality. We might 
hypothesize that along with A-P (Articulatory-Perceptual) and C-P (Conceptual-Intentional) 
Interface Conditions there could be another type of interface conditions, say, F-M (formal-
mathematical) Interface Conditions, that mediate between language and mathematical reality. The 
definiteness effect in the usual sense defined  in terms of English grammar must then be 
interpreted as an instance of an F-M interface condition that is actualized in English, and we 
might expect that a definiteness effect in a certain generalized sense be formulated in terms of 
universal grammar free of reference to constructions in some particular languages. Whether 
and/or how we can understand mathematical reality intelligibly would be, and would remain as, 
one of the most puzzling problems. Nonetheless, we might put the above thought in a form of a 
thesis: 

 
(10) Thesis of mathematico-linguistic Platonism: 

 Human language interfaces with Mathematical Reality. A definiteness effect 
 formulated in a certain generalized and universal form is an instance of a 
 Formal-Mathematical Interface Condition in universal grammar. 
 

This thesis could be interpreted as taking a position for linguistic Platonism, but it should not be 
meant as taking a simplistic form of realism according to which E-languages in Chomsky's sense 
are entitled to existence in Platonic reality.2 

                                                 
2 I assume that mathematics is concerned with a reality which transcends nature, the reality science is concerned with, 
and in this sense it is Platonic. But I would not maintain here anything about this Platonic reality beyond the fact that it 
imposes conditions on nature; in particular, I would not commit myself to any propositions that might imply the 
EXISTENCE of any particular ENTITIES in a Platonic world, be it language or other abstract objects.  For the Platonist 
view that takes natural languages to be abstract objects, see Katz (1981, 1984), Langendoen and Postal (1984, 1985) 
and Katz and Postal (1991). For a succinct exposition of a Platonist position from a different perspective, see Koster 
(2006). 
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   Be that as it may, we must now set out to search for an English-independent definition of 
"existential sentences" where the "definiteness effect" holds in analogy to (9). But before doing 
so, let us first look back to English and introduce a couple of terms in preparation for our 
exploration outside English.   

 
1.2  Sentence types in English 
 
1.2.1  The plain sentence S 
First of all, for now we restrict our consideration to sentences with a one- place (one-argument) 
predicate. 
 
(11) PLAIN SENTENCE: 

Let D be a determiner, A a common noun and P a one-place predicate; we call a 
sentence of the following form a plain sentence: 
Syntax:         S = [[D A]DP P]CP 
Semantics:  <S> = [D(A)](P)  

 
(12) Examples of plain sentences: 
  a.  Three students are diligent 

  b.  Most students are diligent 
 

1.2.2    The there transform 
t
S 

Next, let us agree to call sentences of the following form there transforms: 
 
(13) There transforms: 

 Syntax:         
t
S = [there be [D[A [that P]CP] ]DP] 

Semantics:  <
t
S> = [D(A ∩ P)](E) 

 
To relate there transforms to plain sentences, we have the following statement:  
 
(14) A plain sentence S and its there transform 

t
S are equivalent (

t
S paraphrases S) if 

and only if D is intersective. 
   
Indeed, if D is not intersective, a there transform is ungrammatical, according to assertion (9), 
hence the equivalence fails. On the other hand, if D is intersective, the plain sentence is 
equivalent to the corresponding there transform. These facts are exemplified by (15) and (16) 
below: 
 
(15) most (of the) students are diligent <≠> *there are most (of the) students who are diligent 
  
(16) three students are working <=> there are 3 students who are working 

 three students are available <=> there are three students available 
three students are diligent <=> there are three students who are diligent 

 three students are tall <=> there are three students who are tall 
 

Some of the sentences like those on the left hand side of <=> with individual level predicates may 
be judged awkward in English, but for the sake of space I ignore this aspect of complication and 
assume that they are grammatical without further comment. 
   Let us summarize: The initial definiteness effect, informally formulated, states that the D in the 
there transform defined in (13) must be indefinite, but Keenan asserts that indefinite can be 



S.-Y. Kuroda 

 

 

130

replaced by a formally defined term intersective. Statement (14), then, says something very close 
to the original definiteness effect. However, it is, on the one hand, stronger than the definiteness 
effect: if D is intersective, (14) not only implies that the there transform is grammatical but also 
states that it is equivalent to the plain sentence. On the other hand, (14) is weaker than the 
definiteness effect in another respect, because it does not say that the there transform is 
ungrammatical if D is not intersective; it only states that the there transform cannot be equivalent 
to the plain sentence.  

 
1.2.3 The existential transform ^S 
Let us go back to the syntax of the there transform in (13); the existential predicate (there) is/are 
precedes the post-copula noun phrase. If we put the existential predicate after the noun phrase, we 
get sentence forms with the canonical word order without expletive there as exemplified below in 
(17). 
 
(17) most (of the) diligent students are 
 
(18) three students who are working are  
 
These forms are hardly acceptable in English, but we could substitute exist for are. Then, we 
would get better acceptability: 
 
(19) most (of the) diligent students exist 
 
(20) three students who are working exist  
 
Let us agree to call the sentence form illustrated by (17)-(20) the existential transform of S, with 
the notation ^S: 
  
(21) EXISTENTIAL TRANSFORMS: 

 Syntax:         ^S = D(A∩P)be/exist 
 Semantics:  <^S> = [D(A∩P)](E) 
 

The semantics of the existential transform is the same as that of the there transform: <^S> = <
t
S>. 

Hence, if D is intersective, by the definition of intersective, ^S paraphrases 
t
S, and hence it does 

S, too. On the other hand, if D is not intersective, 
t
S is not grammatical, and it is senseless to ask 

if ^S paraphrases 
t
S or not. But we can, and must ask if 

^
S paraphrases S or not; as a matter of 

fact, ^S does not paraphrase S: (19) does not imply (12)b. Thus, we can make the same statement 
for ^S as for 

t
S: 

 
(22) The Plain Sentence S and its existential transform 

^
S are equivalent (

^
S 

paraphrases S) if and only if D is intersective.  
 
1.3 In search of an English-independent definition of the definiteness effect 
 
We are now in a position to leave English behind. First of all, let us agree that the concept plain 
sentence can be used beyond English in tact. Now, we wish to extend the idea of the definiteness 
effect beyond English and we do this by turning statement (14) into a definition: 
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(23) Definition 3:  The generalized definiteness effect 
A construction with a one-place predicate has the DEFINITENESS EFFECT if it 
satisfies the following condition: it paraphrases the corresponding plain sentence 
if and only if the determiner D associated with the subject is intersective.  

 
And on the basis of this definition, let us define existential sentence: 
  
(24) Definition 4:  Existential sentence 

A sentence consisting of a determiner D, a common noun A and a one-place 
predicate P is EXISTENTIAL if it has the definiteness effect. 

 
According to this definition, both the there transform and the existential transform are existential 
sentences in English. Note, however, that the above two definitions do not imply that an 
existential sentence is ungrammatical if D is not intersective, as is the case with the there 
transform.  

  
1.4 Sentence types and determiners in Japanese 
 
We are now going to examine Japanese sentences. But before doing so, let me make one 
disclaimer. Certain determiners are subject to partitive and non-partitive interpretations. For 
example, consider the following three sentence forms with the determiner san-nin 'three persons': 
 
(25) a. san-nin no       gakusei ga    asoko de               hataraite-iru 

    three-CLS GEN student NOM there  at                working are 
 b. gakusei ga  san-nin              asoko de               hataraite-iru 
 c. gakusei ga                            asoko de san-nin  hataraite-iru 
    'three (of the) students are working there' 

 
In (25)a the determiner san-nin is inside a DP, while it floats in (25)b and (25)c. In all of these 
forms this determiner can be interpreted either as a partitive or not a partitive, as the translations 
indicate, perhaps with different degrees of preference to one or the other interpretation. Whether 
we should take these sentences as ambiguous between these two readings or simply as vague 
about these readings is a moot question. For the sake of space, let us ignore this issue and agree to 
disregard partitive readings in the examples that follow.  
 
1.4.1 The plain sentence 
The definition of plain sentence is the same as before, which I repeat: 
 
(26) PLAIN SENTENCE 

 Syntax:         S = [[D A (ga)]DP P]CP 

 Semantics:  <S> = [D(A)](P)    
 
Examples follow. 
(27) a. san-nin  no      gakusei  ga    kinben-da 

  three-CLS GEN students NOM diligent-are 
  'three (of the) students are diligent' 
 

 b. hotondo no gakusei ga      kinben-da  
  almost  GEN student NOM diligent-are 
   'most (of the) students are diligent' 
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 c. san-nin  no      gakusei  ga     hataraite-iru   
  three-CLS GEN students NOM working-are 
  'three (of the) students are working' 
 

 d. hotondo no gakusei ga     hataraite-iru 
  almost  GEN student NOM working-are 
  'most (of the) students are working' 

 
Sentences with individual level predicates and indefinite subjects like (27)a may sound awkward, 
but again for the sake of space, I ignore this issue here without further comment.  

 
1.4.2 The Q-float plain sentence 
In Japanese most determiners, in particular, numerals, can float. We have Q-float plain sentences: 
 
(28) Q-FLOAT PLAIN SENTENCE 

 Syntax:   
f
S = [[A-ga]DP [D P]]CP 

 Semantics:   <
f
S> = <S> = [(DA)](P) 

 
I assume without argument here that the "floating" determiner in a Q-float plain sentence is an 
adverb adjoined to the verb phrase. The semantics of the Q-float plain sentence is the same as that 
of the plain sentence. Q-float keeps meaning invariant. 
 
(29) a. san-nin no gakusei ga kinben-da  ( = (27)a) 
  <=> gakusei ga san-nin kinben-da 

 'students are, three of them, all diligent' 
 

 b. hotondo no gakusei ga     kinben-da ( = (27)b) 
 <=>  gakusei ga hotondo kinbenda 
  'students are, most of them, diligent' 

 
We conclude: 
 
(30) 

f
S  paraphrases S. 

 
(31) The Q-float Plain Sentence does not have the definiteness effect. 
 
1.4.3  The existential transform 
1.4.3.1  THE HE (head-external) existential transform  ^S 
Now observe the following examples. Sentences that follow <=> or <≠> are the plain sentences 
corresponding to those that precede them and illustrate HE existential transforms. Inserting koko 
ni/de 'here' may help process these examples, but here must be understood as referring to the 
entire model/universe, not to a particular location in the model, one place 'here' as opposed to 
another place 'there'.  
 
(32) a. san-nin    no    kinben-na  gakusei ga  (koko-ni) iru  

   <=> san-nin no gakusei ga kinben da  
 three-CLS GEN diligent-be student NOM (here-at) are  
  'three students that are diligent are (here)' 
   <=> 'three students are diligent'  
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 b. hotondo no  kinben-na gakusei(-tati) ga (koko-ni) iru   
   <≠>  hotondo no gakusei(-tati) ga kinben da 
 almost  GEN diligent-are student(PL) NOM (here-at) are  
 'most of the diligent students are (here)'  
   <≠> 'most of the students are diligent' 
 

These examples illustrate the fact that the construction ....ga aru/iru shows the definiteness effect, 
that is to say, if D is not intersective, ^S does not paraphrase S; indeed, ^S (may not be ill-formed 
but) is a tautology or contradiction, modulo existential presupposition, and may sound odd. If D is 
intersective, ^S is well-formed and paraphrases S. Hence this construction is existential. We agree 
to called this construction the HEAD EXTERNAL (HE) EXISTENTIAL TRANSFORM: in the 
construction the subject of the main verb aru/iru is modified by the head external relative clause 
derived from the corresponding plain sentence: 
 
(33) HE EXISTENTIAL TRANSFORM 

 Syntax:   ^S = [[D[[e]
^
P]CPA]D']DP (ga) aru/iru]CP , 

where [[e]
^
P]CP is a head-external relative clause, whose head is A and 

[e] is an empty subject coindexed with A. 
   

 Semantics: <^S> = [D[[P]A]]]aru/iru  =  D(A ∩ P)(E)  
 
The determiner D modifies the complex noun phrase, not just common noun A. It follows that the 
HE existential transform ^S is equivalent to the plain  sentence  S  iff D  is  intersective,  since  
the  condition D(A)(P) = D(A ∩ P)(E) is exactly the one that defines the intersective determiner. 
Thus, we have the following observation: 
 
(34)  The HE existential transform has the definiteness effect. 
 
Put it another way, according to our definition of existential sentence: 
 
(35)  The HE existential transform is an existential sentence. 

 
1.4.3.2 The HI (Head Internal) existential transform 
Next let us substitute head internal relative clauses for head external relative clauses in existential 
transforms. Again, the sentences that follow <=> are the plain sentences that correspond to those 
forms that precede them. In this case existential transforms are equivalent to the corresponding 
plain sentences whether the determiners contained in them are intersective or not:  
 
(36) a. san-nin no       gakusei  ga     kinben-na   no      ga     iru 

 three-CLS GEN students NOM diligent-are COMP NOM are 
   <=> san-nin  no gakusei ga kinben-da 
 'Three students that are diligent are/exist' 
   <=> 'three students are diligent' 
 b. san-nin no       gakusei ga      hataraite-iru no      ga    iru   
 three-CLS GEN students NOM working-are COMP NOM are 
   <=> san-nin    no    gakusei  ga hataraite-iru 
 'three students that are working are/exist'              
   <=> 'three students are working'  
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 c. hotondo no  gakusei ga    hataraite-iru  no     ga (koko-ni)   iru  
 most     GEN student NOM working-are COMP NOM (here-at) are 
   <=> hotondo  no gakusei ga hataraite-iru 
 'most of the students, who are working, are/exist (here)' 
   <=> 'most of the students are working' 

 
Let us call the construction illustrated by these examples the HI (Head Internal) existential 
transform: 
 
(37) HEAD INTERNAL EXISTENTIAL TRANSFORM 
 Syntax:          ⊕S = [[[DA]DPP]CP]DP ga aru/iru, 

where [[[DA]DPP]CP]DP is a head-internal relative clause with DA being 
its semantic head. 

 Semantics:  <⊕S> = [[DA]DPP]CP & proe ga aru/iru, 
where proe is an e-type pronoun coindexed with [DA]DP.  

 
Whether the determiner is intersective or not, the HI existential transform paraphrases the 
associated plain sentence; thus, it does not have the definiteness effect and is not an existential 
sentence. We have the following observation: 
 
(38)  The HI existential transform is not existential.  
 

1.4.3.3 The HI (head internal) existential transform with a FQ 
Let us now consider the following examples.  
 
(39) a. gakusei ga    kinben-na  no     ga      san-nin    iru 

 student NOM diligent-be COMP NOM three-CLS are 
  <=> san-nin  no gakusei ga kinben-da 

 'Students who are diligent are/exist three in number' 
  <=> 'three students are diligent' 
 b. gakusei ga      hataraite-iru no ga    san-nin    iru   
  students NOM work-are  COMP NOM three-CLS are 
  `<=> san-nin  no gakusei ga hataraite-iru 
  'students who are working are/exist three in number'               
  <=> 'three students are working' 
 
 c. gakusei ga   hataraite-iru  no     ga      hotondo (koko-ni) iru  
  student NOM working-are COMP NOM most      (here)       are 
  <≠> hotondo no gakusei ga hataraite-iru  
  'students who are working are/exist (here), most of them' 
  (= 'most of the students who are working are/exist (here)') 
  <≠> 'most of the students are working' 
 
These examples are similar to HI existential transforms in that the subjects are HIRCs, but the 
determiners are outside of HIRC and are adjoined to the matrix existential verb. At the first sight 
D might appear to float from (that is, be associated with) the embedded subject, but it does not. 
Instead, it is associated with the matrix subject, which is a HIRC. This difference is crucial; it 
means that D must be associated with the E-type pronoun pro in the semantics given above for 
the HI existential transform. Thus, we have the following syntax and semantics for the HI 
existential transform with a FQ: 
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(40) HEAD INTERNAL EXISTENTIAL TRANSFORM WITH a FQ 
 Syntax:         

f⊕S = [[[A]DPP]CP]DP ga D aru/iru, 
 where [[A]DPP]CP]DP is a HIRC with A its semantic head. 
 Semantics:  <

f⊕S> = [[A]DPP]CP & D(proe)(be),  
 where proe is an e-type pronoun coindexed with [A]DP. 

 
Note that the E-type pronoun proe here does not have the same denotation as A, but rather it 
denotes those A's that satisfy the condition defined by the HIRC. Take (39)c above, for example. 
The semantics of this sentence would look like as follows:  
 
(41) students are working and [most of them] are (here). 
 
Here them is meant to refer, not to 'students' but 'those students who are working'. Hence meaning 
is not kept invariant unless the determiner is intersective. We can confirm this situation from the 
above examples and we have the following observation: 
 
(42) 

f⊕S has the definiteness effect. 
 
(43) 

f⊕S is an existential sentence. 
 
1.5 Summary 
 
Let us summarize the observations we had above.  
 
(44) Sentence types (English): 
 

Plain sentence:   S =  [[D A]DP P]CP 
There transform:   

t
S = [there be [D[A [that P]CP] ]DP]  

Existential transform:  ^S = [[D[A [that P]CP]]DP be/exist] 
 
(45) Sentence types (Japanese): 
 
 Plain sentence:    S = [[D A (ga)]DP P]CP 

 Q float plain sentence:   
f
S = [[A-ga]DP [D P]CP  

 HE Existential transform:  ^S = [[D[[e]
^
P]CPA]D']DP (ga) aru/iru]CP 

 HI Existential transform :  ⊕S = [[[DA]DPP]CP]DP ga aru/iru 
 HI Existential transform with a FQ: 

f⊕S = [[[A]DPP]CP]DP ga D aru/iru 
 
In the following tables (46) and (47) <=> and <≠> mean that the forms in the first column are 
equivalent to and not equivalent to S, respectively.  
 
(46) The definiteness effect (English): 
 
 Determiner Intersective Non-intersective Def Effect 
  S       
  t

S <=>  *     +DF 
  ^S <=>   <≠>     +DF 
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(47) The definiteness effect (Japanese): 
 

 Determiner Intersective Non-intersective Def Effect 
  S       
  f

S <=> <=>    -DF 
  ^S <=> <≠>    +DF 
  ⊕S <=> <=>      -DF 
  f⊕S <=> <≠>    +DF 

 

Let us conclude. To begin with, the HE existential transform exists both in English and in 
Japanese, with the definiteness effect.  The English there transform is peculiar in that it has a 
stronger form of the definiteness effect. Not only is it the case that the there transform is 
equivalent to the plain sentence if and only if D is intersective, but also it is well-formed only if D 
is intersective. This is the original, stronger form of the definiteness effect.  
   English, on the other hand, lacks HIRC as well as a general form of quantifier float. HIRC 
keeps the function of determiners invariant, and hence yields an existential transform without the 
definiteness effect, i.e., ⊕S, in Japanese. I am here using the term "existential transform" for ⊕S, 
but this sentence is not "existential" in the sense I defined this term in (24).  
   Now, note the difference between the HI existential transform ⊕S and the HI existential 
transform with a QF, i.e.,

 f⊕S. The latter form has the definiteness effect. This form is of a 
particular interest for us, since it leads us to the extension of the theory of determiners I am going 
to pursue in the next section. I withhold further comment on this form here. For now, let me 
continue by making a comment on the term quantifier float. 
   I employ here the term quantifier float as a descriptive term, informally referring to a 
phenomenon, not to any exactly defined grammatical process. A number of delicate issues are 
involved with this phenomenon: the distinction between partitive and non-partitive readings of 
determiners mentioned above at the beginning of section 4; the distinction between genuinely 
adverbial "floating" quantifiers and in some sense genuinely floating "floating" quantifiers. 
Besides, there is an issue of quantifiers that only look like "floating." A comprehensive treatment 
of the phenomenon of "quantifier float" is thus beyond the scope of this paper. However, 
although I have not worked out any detail, my feeling is that only intersective determiners should 
be taken as capable of being genuinely adverbial. If this hypothesis holds and if we agree to 
understand floating quantifiers in the definitions of all the constructions prefixed with a 
superscript f in the above table as genuinely adverbial, then

 f⊕S, and even
 f
S, too, should turn out 

to have the definiteness effect in the strong form, i.e., they are grammatical if and only if D is 
intersective, just like the English there transform. We could claim, then, that it would bring 
Japanese to the same status as English with respect to the fact that the mathematical concept of 
intersective is embodied in sentence structures of natural language, by the there transform in 
English, and the constructions with "floating" adverbial quantifiers in Japanese. 
   But I have to leave these matters aside for now. We do not make any distinction among 
"floating" determiners as to whether they are in fact floating and originate in an argument 
position in some sense or genuinely adverbial. This supposition suffices for our claim that

 f⊕S 
satisfies the definiteness effect in the generalized sense defined in (23). I would now like to 
proceed to another claim concerning HIRC, and demonstrate that it can contribute to providing 
empirical motivation for a significant generalization of Keenan's mathematical theory to a new 
direction. 

 

1.6  Binary determiners (determiners in 2-dimensional spaces) 
 

I now wish to extend our study to sentences with transitive predicates. Observe the following 
examples in (48). (48)a is a plain sentence S with a transitive verb, oi-atumete-iru 'to chase and 
gather, herd' with both the subject and the object accompanied by intersective determiners. A 
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sentence with multiple determiners is in general subject to more than one interpretation, but in 
what follows we are interested only in the group reading. The choice of the predicate oi-atumete-
iru 'herd' is thus deliberate; the semantics of the predicate excludes distributive readings. We also 
exclude possible partitive readings of indefinite determiners; go-hiki no inu, for example, is to be 
interpreted as 'five dogs,' excluding the possible reading 'five of the'.  
   Since the verb has two arguments, we can derive two HERC from S, with the subject and the 
object, respectively, as heads. So, we can construct two HE EXISTENTIAL TRANSFORMS, ^

1
S and 

^
2
S, as shown in (48)b and c. (48)d may sound somewhat, or maybe considerably, awkward, as 

two quantifiers in the plain sentence S are forced to float, but I would take it acceptable. (48)e 
illustrates a structure impossible in English: ⊕S, a HI EXISTENTIAL TRANSFORM. Finally, we have 
(48)f,

 f⊕S a HI EXISTENTIAL TRANSFORM WITH FLOATING QUANTIFIERS, an example instrumental 
to my argument below, where both determiners associated with the two arguments of the original 
plain sentence are floating outside the HIRC. Again, this sentence is unusual, but I would accept 
it and would take it grammatical. Note that the HIRCs in (48)e and f are both meant to have split 
heads, go hiki no inu and sanzyu-too no usi, as indicated by the translation given to (48)e and f.  

 
(48) a. S go-hiki  no    inu  ga    sanzyut-too no    usi o     oi-atumete-iru 
 five-CLF GEM dog NOM 30-CLF GEN  cow ACC chase-gather-are 
 'five dogs are herding thirty cows' 

 
 b. ^

1
S sanzyut-too no usi  o   oi-atumete-iru    go-hiki no    inu ga     iru 

     30-CLF    GEN cow ACC chase-gather-are 5-CLF GEN dog NOM are 
     'there are five dogs that are herding thirty cows' 
 

 c. ^
2
S go-hiki no  inu  ga    oi-atumete-iru  sanzyut-too no usi ga     iru 

     5-CLF GEN dog NOM chase-gather-are 30-CLF GEN cow NOM are 
     'there are thirty cows that five dogs are herding'  
 

 d. fS  inu    ga    usi   o      go-hiki ga sanzyut-too o     oi-atumete-iru 
        dogs NOM cow ACC 5-CLF NOM thirty-CLF   ACC chase-gather-are  
     'dogs are herding cows, five and thirty in number, respectively' 
 

 e. ⊕S go-hiki no inu ga  sanzyut-too no usi o oi-atumete-iru no ga iru 
     5-CL GEN dog NM 30-CF GN cow AC chase-gather-are CMP NM are 
     '5 dogs are herding thirty cows and they all exist' 
 

 f. 
f⊕S inu ga   usi   o oi-atumete-iru no  ga  5-hiki to sanzyut-too iru 

     dog NM cow AC herding-are CMP NM 5-CLF and thirty-CLF  be 
     'dogs are herding cows, and there are, 5 and 30, respectively' 
 

Displayed in (49) below is the same set of examples with non-intersective determiners, daibubun 
'most' and zenbu 'all', substituting for intersective determiners go-hiki and zyut-too, respectively. 
 
(49) Examples with non-intersective determiners: 
 a. S daibubun no  inu ga     zenbu  no  usi   o     oi-atumete-iru 

      most       GEN dog NOM all       GEN cow ACC herd-are 
       'most of the dogs are herding all of the cows' 
 

 b. ^
1
S zenbu no   usi   o     oi-atumete-iru daibubun no inu   ga     iru 

      all      GEN cow ACC herd-are           most      GEN dog NOM are 
      'most of the dogs that are herding all of the cows exist' 
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 c. ^
2
S daibubun no inu ga    oi-atumete-iru zenbu no  usi   ga     iru 

       most       GEN dog NOM herd-are          all     GEN cow NOM are 
      'all the cows that most of the dogs are herding exist'  
 

 d. 
 f
S inu ga     usi    o     daibubun ga  zenbu o      oi-atumete-iru 

      dog NOM cow ACC most        NOM all     ACC  herding-are 
       'dogs, most of them, are herding cows, all of them' 
 

 e. ⊕S daibubun no  inu ga     zenbu no  usi   o oi-atumete-iru no ga iru 
      most     GEN dog NOM all   GEN cow ACC herding-are CMP NOM are 
      'most of the dogs are herding all of the cows and they both exist' 
 

 f. 
f⊕S inu ga     usi   o    oi-atumete-iru no ga    daibubun to   zenbu iru 

      dog NOM cow ACC herding-are CMP NOM most        and all      are 
      'dogs are herding cows and most of the dogs and all of the cows exist' 
 

Let us extend the definition (23) of definiteness effect to these sentence constructions with 
transitive verbs as follows: 
 
(50) Definition 3'. The generalized definiteness effect 

A construction with a two-place predicate has the DEFINITENESS EFFECT if it 
satisfies the following condition: it paraphrases the corresponding plain sentence 
if and only if the determiners D associated with the subject and the object are 
both intersective.  

 
Then, we get the following result concerning the definiteness effect.  
 
(51) Summary. Japanese transitive sentence constructions 1: 

 
 D Intersective Non-intersective Definiteness Effect 

S        
fS <=>  <=>   -DF 
^

1
S <=>  <≠>   +DF 

^
2
S <=>  <≠>   +DF 

⊕S  <=>  <=>   -DF 
f⊕S  <=>  <≠>   +DF 

 
If we compare this result about the transitive constructions, (51), with the earlier result about the 
intransitive constructions, (47), we attained basically the same result, provided that we ignore the 
superscripted prefixes 

1
 and 

2
. Thus, if we extend the definition (24) of existential sentence 

directly to transitive sentences at this point, we get two sets of existential sentences, and would 
get the impression we are in the same situation as with intransitive sentences, as shown in (52). 
   But it is yet premature for us to draw such a conclusion. With transitive sentences, we have two 
arguments as independent parameters. We can, and we must, substitute a non-intersective 
determiner for an intersective one for one argument, leaving the other determiner invariant, and 
try to see what effects we get. We obtain the set of sentences in (53) below by substituting a non-
intersective determiner for an intersective one in subject position. 
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(52) Summary. Japanese transitive sentence constructions 2: 
 
 D Intersective Non-intersective Definiteness Effect 

S        
f
S <=>  <=>   -DF 
............................................................................................................................................ .............. 

^
1
S <=>  <≠>   +DF 

^
2
S <=>  <≠>   +DF 

............................................................................................................................................ .............. 

⊕S  <=>  <=>   - DF 
f⊕S  <=>  <≠>   +DF 

 
(53) Examples with partially intersective determiners: 
 a. S daibubun no  inu ga    sanzyut-too no   usi  o     oi-atumete-iru 

      most      GEN dog NOM thirty-CLF GEN cow ACC herding-are 
      'most of the dogs are herding thirty cows' 
 

 b. ^
1
S sanzyut-too no   usi   o      oi-atumete-iru daibubun no inu ga iru 

      thirty-CLF  GEN  cow ACC  herding-are    most   GEN   dog NOM are 
      'most of the dogs that are herding thirty cows exist' 
 

 c. ^
2
S daibubun no inu ga  oi-atumete-iru sanzyut-too no  usi ga      iru 

      most       GEN dog NOM herding-are thirty-CLF GEN cow NOM are 
      'there are thirty cows that most of the dogs are herding'  
 

 d. 
f
S inu ga      usi o      daibubun ga sanzyut-too o oi-atumete-iru 

      dog NOM cow ACC most    NOM thirty-CLF ACC herding-are 
      'dogs, most of them, are herding cows, thirty of them' 
 

 e. ⊕S daibubun no inu ga    30-too  no   usi o oi-atumete-iru no ga iru 
       most     GEN dog NOM 30-CLF GEN cow ACC herd-are CMP NOM be 
      'most of the dogs are herding thirty cows and they both exist' 
 

 f. 
f⊕S inu ga     usi   o oi-atumete iru no ga daibubun to sanzyut-too iru 

      dog NOM cow ACC herding-are CMP NOM most and thirty-CLF are  
      'dogs are herding cows and most of the dogs and 30 of the cows exist' 
 

With sentences like those in (53) we get the result summarized in the following table (54). The 
heading "intersective" at the second column means that both arguments are associated with 
intersective determiners; the heading at the third column "∂

2
-intersective" means that the second 

argument, i.e., object position, is associated with an intersective determiner. An entry <=> in the 
third column means that an intersective determiner in object position entails that the sentence 
form in the first column of the same row is equivalent to, that is, paraphrases, the plain sentence 
form S; and an entry <≠> in the same column means that we have no such entailment. Notice that 
we have now no definiteness effect for ^

2
S. 
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(54) Summary. Japanese transitive sentence constructions 3: 
 
 D Intersective ∂

2
-intersective Definiteness Effect 

S  
^

1
S <=> <≠>  +DF 

^
2
S <=> <=>  - DF 

⊕S  <=> <=>  - DF 
f
S <=> <=>  - DF 
f⊕S  <=> <≠>  +DF 

 
By substituting a non-intersective determiner for an intersective one at object position, instead of 
subject position, we get a similar result, symmetric with respect to the permutation of superscripts 
1 
and 

2
. Combining this predicted result with (54) above, we can now draw the following final 

conclusion for the transitive structure as below in table (58). We redefine the term EXISTENTIAL, 
its derivatives and DEFINITENESS EFFECT as follows: 
 
(55) Definition 5:  Existential sentence 

A construction built on a transitive predicate is EXISTENTIAL by definition in case 
it is equivalent to the plain sentence iff both determiners associated with the 
subject and object are intersective. 

 
(56) Definition 6:  Partial existential sentence 

A construction built on a transitive predicate is PARTIALLY EXISTENTIAL by 
definition in case it is equivalent to the plain sentence iff the determiner 
associated with one of its argument is intersective; more specifically, it is ∂

1 

existential (∂
2
 existential) if it is equivalent to the plain sentence in case its 

subject (object) has an intersective determiner. 
 
(57) Definition 7:  Definiteness effect 

A sentence construction with a transitive predicate has the DEFINITENESS EFFECT 

(and is EXISTENTIAL by definition) if it satisfies the following condition: it is 
equivalent to the corresponding plain sentence iff both determiners that are 
associated with the subject and the object are intersective. 

 
(58)  Japanese transitive sentence constructions 3 
 
 D Intersective    ∂

1
-Intersective ∂

2
-Intersective non-Intersective Existentiality 

 S  <=>   <=>    <=> <=>  non-existential 
 ^

1
S  <=>          <=>    <≠> <≠>  ∂

1-
existential 

 ^
2
S  <=>   <≠>    <=>  <≠>  ∂

2
-existential 

 ⊕S   <=>   <=>    <=> <=>  non-existential 
 f

S  <=>   <=>    <=> <=>  non-existential 
 f⊕S  <=>   <≠>   <≠>  <≠>  existential 

 
According to (58) only the HI existential transform with FQs,

 f⊕S, has the definiteness effect and 
is existential: 
   
(59) The HI existential transform with FQs,

 f⊕S, has the definiteness effect and by definition 
 is existential. 
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2.  PART II:  An Extension of Keenan's Mathematical Theory of Intersective 
Determiners to Two Dimensional Spaces 

 
   I would now like to discuss how our findings about Japanese determiners relate to Keenan’s 
mathematical theory of determiners. We are going to extend the notion of determiners to "higher 
dimensions." Let us agree to use the term "unary determiner" for the determiner in the commonly 
understood sense. We are going to discuss binary determiners below, and, more generally, n-ary 
determiners in Part III. 

 
2.1  Introduction: the theory of unary determiners 
 
   In this section I summarize the concepts and results from the formal theory of determiners. A 
unary determiner is defined as a function that maps common nouns A to functions from the set of 
one-place predicates P to the truth values {0, 1}. We agree to denote truth and falsehood by 1 and 
0, respectively: 

 
(60)  D: A → (P → {0,1}) 
   (i.e., D is an entity of type <<e, t>, <<e, t>, t>> ) 

 

According to this definition, D(A)(P) takes the value 1 or 0, depending on whether it is true or 

false. 

 
Definition 1.  A determiner is called conservative if it satisfies the following condition:  
 
(61)  D(A)(P) = D(A)(A∩P).  
   (Barwise & Cooper 1981, Keenan 1981, 2002) 

 
Assertion 1.  (Barwise & Cooper): Determiners of human languages are conservative.  
 
This is an empirical assertion. It can be illustrated by the following examples, where the a-
sentences are logically equivalent to the corresponding b-sentences: 
 
(62) a. subete no gakusei ga    kinben-da 
 all    GEN student NOM diligent-are 
 ‘all students are diligent’ 

 
 b. subete no gakusei ga   gakusei de kinben-da 
 all    GEN student NOM student and diligent-are 
 ‘all students are students and diligent’ 
 
(63) a. san-nin    no gakusei  ga    hataraite-iru 
 three CLF GEN student NOM working-are 
 ‘three students are working’ 

 
 b. san-nin   no   gakusei ga    gakusei-de hataraite-iru 
 three CLF GEN student NOM student and working-are 
 ‘three students are students and working’ 
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Keenan characterizes those determiners that can occupy the post-copula position of the there 
construction in English (weak determiners) as INTERSECTIVE. (Keenan 1987, 2002) An 
INTERSECTIVE DETERMINER is defined as follows: 
 
Definition 2.  A determiner D is intersective if it satisfies the following condition: 
 
(64)  D(A)(P) = D(A∩P)(E). 
 

For example (exactly) three, is weak and intersective: (65) is grammatical and (66) and (67) are 

equivalent and shows that three satisfies (64). 

 
(65)    there are three students who are working 
 
(66)   three students are working 
 
(67)   three students who are working exist.  
 

In contrast, (68) below is ungrammatical and (69) and (70) are not equivalent: 

 
(68) *there are almost all students who are working 
 
(69)   almost all students are working 
 
(70)   almost all students who are working exist 
 

almost all is not weak or intersective.  

   We can easily confirm that the following proposition holds:  

 
Proposition 1. Intersective determiners are conservative. 
  

For, if D is intersective we have the following equations: 

 
(71) D(A)(A∩P) = D(A∩ (A∩P))(E) = D(A∩P)(E) = D(A)(P). 

 

From the definitions of intersective and conservative determiners, one can also easily confirm the 

following propositions:  

 
Proposition 2.  D is intersective iff the following condition holds: 
 
(72) If A∩P = A'∩P', then D(A)(P) = D(A')(P'). 
 
Proposition 3.  D is conservative iff the following condition holds: 
 
(73) If A∩P = A∩P', then D(A)(P) = D(A)(P'). 

 

Conditions (72) and (73) would serve to make intersective and conservative appear as a 

conceptual minimal pair. We could use these conditions as definitions of intersective and 

conservative instead of Definition 1 and Definition 2, respectively. In fact, for extending the 

concept of intersective determiners from unary determiners to determiners of higher dimensions, 
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the definition based on (72) can for some cases serve as a better anchor for such an extension. So 

let me repeat Proposition 2 as a second version of the definition of intersective determiners: 

 

Definition 2'.  D is intersective iff the following condition holds: 

 
(74) If A∩P = A'∩P', then D(A)(P) = D(A')(P'). 
 

   Now, let Int be the set of intersective determiners. The following theorem is important for 

understanding the significance of the concept of intersective determiner: 

 
Theorem 1. (Keenan) Int is isomorphic to P(P(E)), the set of sets of subsets of E.  

The isomorphism is given by ι:D → {X: D(X)(E) = 1}. 
 
Proof: Let D ≠ D'; take A, A', X, X' such that D(A)(X) ≠ D'(A')(X'). Since D and D' is 
intersective, we have  
 
 D(A)(X) = D(A∩X)(E) ≠ D'(A')(X') = D'(A'∩X')(E), 
 D(A∩X)(E) ≠ D'(A'∩X')(E). 
 
It follows that ι(D) ≠ ι(D'); ι is one-to-one.  
   Conversely, take a set X of subsets of E and define a determiner D as follows: D(X)(E) = 1 if X 
∈ X and = 0 if X ∉ X; more generally, for any pair X, Y ⊂ E, let D(X)(Y) = 1 if X ∩ Y ∈ X  and 
= 0 if ∉ X. Then, D is an intersective determiner. Hence, ι is an isomorphism.  
 
As a matter of fact, "isomorphic" in the theorem should not mean simply "one-to-one onto", but 
more deeply "isomorphic with respect to boolean algebra. But I leave this matter aside in this 
paper; cf: Keenan (2002).  
   By way of example, take D = (exactly) three. Then, 

  
 ι(D) = {X: D(X)(E) = 1} = {X: |X| = 3}.  
 

That is, ι(D) is the set of those subsets of E that consist of exactly three elements of E. Thus, we 
could interpret this as signifying that the determiner three serves, via ι, as (a name for) a higher 
order predicate for these subsets, characterizing them by the property that they consist of 3 
elements. Furthermore, again by way of example, let X be the set of skyscrapers of roof-top 
height more than 400m; there exist three of them as of the time this line is written. We might say 
that the manner that skyscrapers of height more than 400 meters exist in the world is three-wise. 
Thus, in general, one might say that an intersective determiner D describes the manner of 
existence, in the world E, of the entities denoted by the predicate X, in case D(X)(E) = 1. More 
generally, if D(A)(X) = D(A∩X)(E) = 1, one might say that the manner A's (i.e., entities 
predicated of A) are distributed among X's is D-wise. This is a cognitive significance of the 
definition given in (64) and Theorem 1.  
   We might also note in this context that in general (that is, unless E is very small) there are 
formally just much too much more intersective determiners available than a natural language can 
exploit them resourcefully, just in the same way that there are just much too many predicates 
formally available as elements of P(E) for a natural language to exploit them; the cardinality of 
the set of intersective determiners is 2 to the power of 2 to the power of |E| while the cardinality 
of the set of predicates is already 2 to the power of |E|. There are also some cognitively crucial 
differences between these two cases. Entities of a certain quite arbitrary subset of E could be 
conceived of by means of a derived predicate expression such as skyscrapers of height more than 
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400m, or for that matter, skyscrapers of height more than 264m. Such would not be the case for 
determiners in natural languages. We are here facing the issue of open vs. closed grammatical 
categories. 

 
2.2   The intersective determiner and Japanese grammar 
 
I am going to demonstrate how the equivalence in (64), which distinguishes intersective from 
non-intersective determiners, manifests itself in the Japanese language.  
 
2.2.1  
Consider the following PLAIN SENTENCE: 
 
(75) san-nin    no    gakusei ga hataraite-iru 
 three-CLF GEN student  NOM work-are 
 'three students are working' 
 
We transform this plain sentence into THE HEAD-EXTERNAL (HE) EXISTENTIAL TRANSFORM: 
 
(76)   san-nin    no hataraite-iru gakusei ga    iru 
 three-CLF GEN work-are   student  NOM are  
  'three students that are working are/exist' 
 
The main predicate of (76) is the existential verb iru, and its subject is a noun phrase with the 
head external relative clause derived from (75).  

The semantics of (75) and (76) can be expressed by the following forms: 
 
(77)  (3)(gakusei)(hataraite-iru) 
 
(78)  (3)(gakusei∩hataraite-iru)(iru)  
 
The Japanese sentences (75) and (76) have the same truth values. We have the following 
equivalence: 
 
(79)  (3)(gakusei)(hataraite-iru) ⇔ (3)(gakusei∩hataraite-iru)(iru). 

 
This equivalence illustrates the equivalence in (64) and shows that that the determiner san-nin 
'three persons' is intersective.  
   In contrast, if we substitute hotondo 'almost all' for san-nin 'three' in (75) and (76), we get a pair 
of non-equivalent sentences: 
 
(80)  hotondo no gakusei ga hataraite-iru 
 almost   GEN student NOM work-are  
 'almost all students are working' 
 
(81)  hotondo no hataraite-iru gakusei ga iru  
 almost   GEN work-are   student NOM are 
 'almost all students who are working are/exist' 

 
The semantics of (80) and (81) can be expressed by the following forms: 
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(82)  (hotondo)(gakusei)(hataraite-iru) 
 
(83)  (hotondo)(gakusei∩hataraite-iru)(iru)  
 
(81), under the existential presupposition of working students, must be taken tautologically true, 
provided that we can agree to ignore an implausible pragmatic implicature that "but not the small 
number of the rest do not exist", which would have the effect of making the statement a 
contradiction. (80), on the other hand, is not a tautology or a contradiction; (80) and (81) are not 
synonymous. We have the non-equivalence of (82) and (83); the determiner hotondo is not 
intersective: 
 
(84)  (hotondo)(gakusei)(hataraite-iru)  
   ⇐⁄⇒ (hotondo)(gakusei∩hataraite-iru)(iru). 
 
2.2.2  
The subjects of (76) and (81) are noun phrases with head external relative clauses (HERC) 
derived from (75) and (80), respectively. Replace these subjects with the head internal relative 
clauses (HIRC) derived from (69) and (80), respectively, and we get the following sentences: 

 
(85)  san-nin     no   gakusei ga   hataraite-iru  no     ga iru 
 three-CLF GEN student NOM work-are     COMP NOM are  
 'three students are working: they exist' 
 
(86)  hotondo no  gakusei ga  hataraite-iru  no    ga iru  
 almost  GEN student NOM working-are CMP NOM are 
 'almost all students are working: they are/exist' 
 
   We call this form of construction the HI EXISTENTIAL TRANSFORM. Here, the main predicates 
are iru ‘exist’. Note that both (85) and (86) are equivalent to the corresponding plain sentences,  
(75) and (80), respectively. The HI EXISTENTIAL TRANSFORM does not serve to distinguish 
intersective vs. non-intersective determiners. Hence, this form is outside of our present interest. 
 
2.2.3  
However, we can derive a construction that would interest us from the HI existential transform. 
Let us “float” the determiner out of the HIRC and put it directly to the left of the main existential 
predicate. We call the construction we thus obtain the HI EXISTENTIAL TRANSFORM WITH QF 

(QUANTIFIER FLOAT). We derive the following HI existential transform with QF from (85) and 
(86): 
 
(87) gakusei ga    hataraite-iru  no    ga    san-nin   iru  
 student NOM working -are CMP NOM three-CLF are  
 'students are working: they are/exist three in number' 

 
(88) gakusei ga    hataraite-iru  no    ga    hotondo (zenbu) iru  
 student NOM working -are CMP NOM almost   (all)       are  
 'students are working: they are/exist, almost all of them' 

(I suggest to insert zenbu in (88) above to enhance acceptability.) 
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   Let us engage ourselves in maneuvering the formalism of these expressions. First we consider 
(87). We may take the determiner san-nin 'three-CLF' as a VP adverbial adjoined to the main verb 
iru. Let us prepose this adverbial to the left: 
 
(89) (san-nin)(gakusei ga hataraite-iru no)(iru) 
 
Now, we have a form that looks closer to D(X)(E), where D = san-nin and E = iru. In order to 
interpret (89) in terms of the form D(X)(E), we must take gakusei ga hataraite-iru no as an 
expression of an argument. This HIRC has the same denotation as the noun phrase with a HERC 
hataraite-iru gakusei. Hence, gakusei ga hataraite-iru no taken as an argument can   be coded in 
the same way as we code hataraite-iru gakusei, i.e., X = A ∩ P, where A = gakusei and P = 
hataraite-iru. We can conclude, then, that the semantics of (87) can be expressed by (78). In fact, 
we see that (75) and (87) are logically synonymous and hence can confirm the equivalence of 
(77) and (78). This equivalence thus also serves as an illustration of (64), the defining 
equivalence for intersective determiners.  
   Next, we consider (88). We get (90) below, as we got (89) for (87) above: 

 
(90)  (hotondo)(gakusei ga hataraite-iru no)(iru). 
 
By the same consideration as above, we can conclude that the semantics of (88) can be expressed 
by (83). In contrast to the above case, however, we see that (80) and (88) are not logically 
equivalent and confirm that (82) and (83) are not equivalent; hotondo is not intersective.  
 
2.2.4  

To sum up, both the HE existential transform and the HI existential transform with QF may be 

considered as embodiments of the right hand side D(A∩P)(E) of the equation (64) in Japanese. 

The equivalence between the plain sentence, on the one hand, and the HE existential transform or 

the HI transform with QF, on the other, can serve for testing if the determiner involved is 

intersective or not. In contrast, the HI existential transform without QF cannot serve for this 

purpose, since it is equivalent to the corresponding plain sentence, whether the determiner 

involved is intersective or not.  
 
2.3  Binary determiners 
 
After this preparation, we are now in a position to shift our attention to the constructions with 
transitive predicates and we attempt to extend Keenan's theory of determiners to 2- and higher 
dimensional spaces. Consider an English sentence of the form: 

 
(91)   S = (D1A1) P (D2A2), 

 
where D1 and D2 are determiners, A1 and A2 are nouns and P is a transitive verb.  Take, for 
example:  
 
(92)  5-hiki no   inu  ga     30-too no    usi o otte-iru 
 5-CLF GEN dog NOM 30-CLF GEN cow driveing-are 
 'five dogs are driving (away) 30-cows' 

 

Let us conceive of the pair of nouns A = (A1, A2) as the 2-dimensional argument of the transitive 
verb P, and the pair D = (D1, D2) as the 2-dimensional determiner modifying this argument. Then, 
we can represent the semantics of S by the same formula as before with the intransitive sentence: 
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(93)  <S> = D(A)(P). 
 

P is a subset of two-dimensional Cartesian product E
2
 = E×E. A = (A1, A2) is an ordered pair of 

subsets A1 and A2 of E; D(A) can be interpreted as a function that maps P to a truth value 1 (true) 

or 0 (false), and hence D as a function that maps A to such a function. 

 
(94)  D: A → (P → {0,1}). 
 
We can express the semantics of sentence (92) as in (95): 
 
(95)  D(A)(P) = (5, 30)(inu, usi)(otte-iru). 

 

But two remarks are in order here. First of all, sentences with two determiners like (92) are 

subject to more than one construal depending on how two determiners interact scope-wise; 5 may 

take wider scope than 30: for each of the five dogs, there are thirty cows, not necessarily the same 

ones, that it is driving away; or 30 may take scope over 5: for each of the 30 cows there are five 

dogs, not necessarily same ones, that drive it away. there are also two symmetric possible 

readings, collective and group readings. Five dogs altogether are driving 30 cows away, (i) each 

dog driving away one or more cows, but not necessarily all 30 (collective reading), or (ii) five 

dogs are each driving all of the cows (group reading).  

Let us agree that (5, 30) in (95) is meant to express a collective reading. In general, we 

introduce the following convention: 

 
(96) Given two ordinary determiners D1 and D2, we agree to let (D1, D2) stand for the 

binary determiner defined by D1 and D2 with a collective reading. 
 

In broader terms, we must assume that D is a function δ(D1, D2) determined by two variables, D1 

and D2. For example, we might define δ>(D1, D2) as a 2-dimensional determiner defined by D1 

taking wide scope over D2. More generally, for that matter, D in (94) may not necessarily be 

dependent on unary determiners quantifying the subject and object nouns, that is, may not be 

reducible to the form D = δ(D1, D2). For the moment, however, we are concerned only with the 

collective reading.  

 
2.4   Binary εεεε-intersective determiners 
 
At this point, let us consider how the concept of intersective determiner may be extended to 
binary determiners. The unary intersective determiner is defined in terms of the equivalence (64). 
Given D(A)(P) we took the intersection A∩P in (64). But in the present case, we cannot directly 
intersect A and P; P is a subset of the 2-dimensional space E

2
 =

  
E×E, but A = (A1, A2) is a pair of 

subsets of E. But we can first take the Cartesian product of A1 and A2 and intersect it with P and 
denote this set by P|A (P cut by A) : 
  
(97)  P|A = (A1 ×A2) ∩P.  
 
This is the set of pairs (x, y) related by P, under the condition that x and y are restricted to 
elements of A1 and A2, respectively. Project this set onto the first and the second components of 
E

2
, respectively: 
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(98) n prj1P|A  = prj1((A1  × A2) ∩P)  
  = {x: ∃y such that (x, y) ∈ (A1  × A2) ∩P)} 
 
(99)  prj2P|A  = prj2((A1  × A2) ∩P)  
  = {y: ∃x such that (x, y) ∈ (A1  × A2) ∩P)}. 
 
Recall the above example (92) of dogs driving away cows. Then, prj1P|A is the set of those 5 
dogs that are driving away some cows and prj2P|A is the set of those 30 cows that are being 
driven away by some of the 5 dogs. 

We might consider (prj1P|A, prj2P|A) as a binary argument obtained from the binary 
argument A by "intersecting" it with a binary predicate P; it would be an analog to the 
intersection A∩P in the Keenan equation, but we would rather call it A cut by P and use the 
notation A|P: 

 
Definition 3. An argument A cut by a predicate P is defined as follows: A|P = (prj1P|A, prj2P|A). 

 
That is to say, A|P = (prj1((A1  × A2)∩P), prj2((A1  × A2)∩P)). For the sake of convenience, we 
may also write (A|P)i = prjiP|A, i = 1, 2; hence we have A|P = ((A|P)1, (A|P)2). We could now 
extend the definition of unary intersective determiner to the case of binary determiners by the 
following formula. Anticipating that we extend the concept of intersective determiners in more 
than one way, we call this extension ε-intersective: 
 
Definition 4. A binary determiner is ε-intersective iff  
 
(100) D(A)(P) = D(A|P)(E

2
).  

 
Consider again (92), where D = (5, 30) with the collective reading and see if D qualifies as ε-
intersective according to this definition. The right hand side of  (100) is  given as follows: 
 
(101) (5, 30)(A|P)(E

2
) = (5, 30)(prj1P|A, prj2P|A)(E

2
). 

 
In fact, we have 
 
(102) (5, 30)(prj1P|A, prj2P|A)(E

2
) = 1 iff #prj1P|A = 5 and #prj2P|A = 30 

    where # means "the cardinality of" 
 
Hence (101) holds; the example illustrates the fact that (5, 30) is ε-intersective.  
   Indeed, we have the following theorem. This theorem licenses our definition of ε-intersective as 
a natural extension of the concept of INTERSECTIVE to binary determiners: 

 
Theorem 2. Let D1 and D2 be two unary conservative determiners. Then, the binary 

determiner D = (D1, D2) with the collective reading is ε-intersective iff 
D1 and D2 are intersective.  

 
Proof. Assume D1 and D2  are intersective.  
 D(A)(P) = 1 
  iff D1(A1)(prj1P|A) = 1 and D2(A2)(prj2P|A) = 1  
     (Def. of the collective reading) 
 iff D1(A1∩prj1P|A)(E) = 1 and D2(A2∩prj2P|A)(E) 
     (D1 and D2 are intersective) 
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 iff D1(prj1P|A)(E) = 1 and D2(prj2P|A)(E) = 1 
       (prj1P|A ⊂A1, prj2P|A ⊂A2) 
 iff D1(prj1P|A∩prj1P|A)(E) = 1 and D2(prj2P|A∩prj2P|A)(E) = 1 
 iff D1(prj1P|A)(prj1P|A) = 1 and D2(prj2P|A)(prj2P|A) = 1  
       (D1 and D2 are intersective) 
 iff D1(prj1P|A)(prj1E|(prj1P|A, prj2P|A)) = 1  
  and D2(prj2P|A)(prj2E|(prj1P|A, prj2P|A)) = 1 
 iff D(prj1P|A, prj2P|A)(E) = 1  (Def. of the collective reading) 
     
Conversely, assume that D = (D1, D2) is ε-intersective.  
 Let A1 and P1 be subsets of E, and let A = (A1, E) and P = P1×E.  
 D(A)(P) = (D1, D2)(A1, E)(P1×E)  
  = (D1, D2)(prj1(P1×E)|(A1, E), prj2(P1×E)|(A1, E))(E×E) 
    (D is  ε-intersective by assumption) 
  = (D1, D2)(P1∩A1, E)(E×E) 
Now, by the definition  of the collective reading,  
 (D1, D2)(A1, E)(P1×E) = 1  
  iff D1(A1)(prj1((P1×E) ∩ (A1×E))) = 1  
   and D2(E)(prj2((P1×E) ∩ (A1×E))) = 1 
  iff D1(A1)(P1∩A1) = 1 and D2(E)(E) = 1 
  iff D1(A1)(P1) = 1  (D1 is conservative) 
   (D1, D2)(P1∩A1, E)(E×E) = 1 
  iff D1(P1∩A1)(prj1((E×E) ∩ (P1∩A1×E)) = 1 
   and (D2)(E)(prj2((E×E) ∩ (P1∩A1×E)) = 1 
  iff D1(P1∩A1)(P1∩A1) = 1 and D2(E)(E) = 1 
  iff D1(P1∩A1)((P1∩A1) ∩E) = 1 and D2(E)(E) = 1. 
  iff D1(P1∩A1)(E) = 1 and D2(E)(E) = 1  
     (D1 is conservative). 
Hence,   D1(A1)(P1) = 1 iff D1(P1∩A1)(E) = 1. 
Similarly,   D2(A2)(P2) = 1 iff D2(P2∩A2)(E) = 1,  
   where A2 and P2 are arbitrary subsets of E.  
Hence D1 and D2 are intersective.     QED. 
 
We have seen above by inspection that (92) provides an instance for  illustrating the assertion of 
this theorem for the case where both D1 and D2 are intersective. If D1 and/or D2 are not 
intersective, D is not ε-intersective.  The equation (100) D(A)(P) = D(A|P)(E

2
) should fail for any 

of the following sentences:  
 
(103) 5-hiki no   inu ga     daibubun     no    usi   o      otte-iru 

  5-CLF GEN dog NOM most-of-the GEN cow ACC driving-are 
  'five dogs are driving most of the cows' 

 
(104) hotondo   no   inu ga     30-too no    usi   o    otte-iru 

  almost-all GEN dog NOM 30-clf  GEN cow ACC driving-are 
   'almost all the dogs are driving 30 cows'. 
 
(105) hotondo   no   inu  ga    daibubun     no    usi   o      otte-iru 

  almost-all GEN dog NOM most-of-the GEN cow ACC driving-are 
   'almost all the dogs are driving most of the cows'  

 
Let us confirm this prediction with (103). We have 
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(106) D(A|P)(E
2
)  

  = (5, d)(A|P)(E
2
)  

  = (5, d)(prj1P|A, prj2P|A)(E
2
) 

     where prj1P|A = dogs that are driving cows,  
      prj2P|A = cows driven by dogs 
      and d stands for daibubun 'most of the'. 
 
By the definition of the collective reading,  
 
(107) D(A|P)(E

2
) = 1 iff 

  5(prj1P|A)(prj1[E
2
∩ (prj1P|A×prj2P|A)]) = 5(prj1P|A)( prj1P|A) = 1 

   and d(prj2P|A)(prj2[E
2
∩ (prj1P|A×prj2P|A)]) = d(prj2P|A)( prj2P|A) = 1 

 
Now, 5(prj1P|A)( prj1P|A) = 1 means that the number of dogs that are driving cows is 5, and 
d(prj2P|A)( prj2P|A) = 1 means 'most of the cows that are being driven by dogs are cows that are 
being driven by dogs'. On the other hand, D(A)(P) means (103), i.e., 'five dogs are driving most 
of the cows'. These two are obviously different. Hence (100) D(A)(P) = D(A|P)(E

2
) fails.  

 
2.5   The εεεε-intersective binary determiner and Japanese grammar 
 
2.5.1  
Let us recall that, in the case of unary determiners, Japanese grammar gives evidence for the 
equation D(A)(P) = D(A∩P)(E) by the semantic equivalence of two sentence constructions; the 
plain sentence on the one hand and either the HE existential transform or the HI existential 
transform with QF, on the other. The previous examples of these constructions are repeated 
below:  

 
(108) san-nin no gakusei ga hataraite iru   (=(75)) 
 
(109) san-nin no hataraite-iru gakusei ga iru   (= (76)) 
 
(110) gakusei ga      hataraite-iru no ga    san-nin    iru  (= (87)) 
  
These three sentences are logically equivalent to each other. In contrast, if we substitute hotondo 
'almost' for san-nin we obtain sentences that are not equivalent to the corresponding plain 
sentence; neither (81) nor (86) is equivalent to (80).  
   For the binary case, the theorem we have proved above states that the collective reading of a 
binary determiner derived from unary intersective determiners provides an ε-intersective 
determiner. In conformity with this theorem, we have indeed seen that (5, 30) is an ε-intersective 
determiner; we did this by directly inspecting that the meaning of (92) matches with what the 
right hand side of the equation (100) signifies. We would wonder, however, whether Japanese 
grammar provides us with a direct witness to the defining equation (100) for ε-intersectivity for 
binary determiners, as we have seen it does for the defining equation (64) for the intersectivity of 
unary determiners; that is, whether Japanese grammar provides a construction (i) whose syntax 
mirrors more or less transparently the right hand side of equation (100), i.e., D(A|P)(E

2
) and (ii) 

which is logically equivalent to the corresponding plain sentence if and only if D is ε-intersective. 
 
2.5.2 
There are two HE existential transforms corresponding to a plain transitive sentence construction; 
the head may be either the subject or the object of the original sentence. From (92) we can derive 
the following two HE transforms: 
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(111) 5-hiki no  [30-too no    usi   o    otte-iru      inu] ga   iru 
  5-CLF GEN 30-CLF GEN cow ACC driving-are dog NOM  are 
  'five dogs that are driving 30 cows are/exist' 
 

(112) 30-too no   [5-hiki no  inu ga      otte-iru       usi]  ga  iru  
 30-CLF GEN 5-CLF GEN dog NOM driving-are cow NOM  are 
 '30 cows that five dogs are driving are/exist' 
 
However, neither of these sentence constructions could serve for providing evidence for ε-
intersectivity for binary determiners. There are two points to note. First of all, it would be 
difficult, or perhaps, impossible, to argue that the semantics of these constructions could be 
expressed in the form D(A|P)(E

2
), the right hand side of the defining equation in Definition 4. 

But, this point turns out to be irrelevant any way. Thus, secondly, these sentences, (111) and 
(112), are indeed equivalent to the plain sentence (92). However, even if we substitute a non-
intersective determiner for one of the intersective determiners in (111) and (112), we still get a 
sentence that is equivalent to the corresponding plain sentence, an unwelcome result for our 
purpose. Observe the following sentence where daibubun 'most of the' substitutes for 30 in (111): 

 
(113) 5-hiki no  [daibubun    no    usi   o      otte-iru      inu] ga      iru 

 5-CLF GEN most-of-the GEN cow ACC driving-are dog NOM are 
 'five dogs that are driving most of the cows are/exist' 
 

This sentence is equivalent to (103), which I repeat here: 
 
(114) 5-hiki no   inu ga     daibubun     no    usi   o      otte-iru 

 5-CLF GEN dog NOM most-of-the GEN cow ACC driving-are 
 'five dogs that are driving most of the cows are/exist' 
 

But (5, daibubun) cannot be ε-intersective, due to Theorem 2. A similar situation obtains with 
(112). 
   The HI existential transform does not serve for our purpose, either; for, this construction is 
logically equivalent to the corresponding plain sentence no matter what determiners they have for 
subject and object.  Observe the following forms:  
 
(115) 5-hiki no   inu ga    30-too no    usi   o     otte-iru     no   ga    iru 
 5-CLF  GEN dog NOM 30-CLF GEN cow ACC driving-are CMP NOM are 
 'five dogs are driving (away) 30 cows: they are/exist' 
 
(116) 5-hiki no   inu ga    daibubun no    usi   o     otte-iru     no   ga    iru 
 5-CLF  GEN dog NOM most GEN cow ACC driving-are CMP NOM are 
 'five dogs are driving (away) most of the cows: the dogs and cows are/exist' 
 
(117) hotondo no   inu ga    30-too no    usi   o     otte-iru     no   ga    iru 
 almost  GEN dog NOM 30-CLF GEN cow ACC driving-are CMP NOM are 
 'almost all the dogs are driving (away) 30 cows: the dogs and the cows  are/exist' 
 
(118) hotondo no   inu ga    daibibun no    usi   o     otte-iru     no   ga    iru 
 almost  GEN dog NOM  most GEN cow ACC driving-are CMP NOM are 
 'almost all the dogs are driving (away) most of the cows: the dogs and the cows  are/exist' 
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   A remark may be in order for the intended interpretation of these sentences. The head internal 
relative clauses in them involve “split heads.”  The “semantic head” of the head internal relative 
clause in (115) is the subject and the object of the clause conjoined together and they together 
function as the subject of the main verb aru ‘be’. The they in the translation given to (115) means 
‘5 dogs that are driving cows and 30 cows that are driven by dogs.’ Similarly for (116), (117), 
(118).  
   The crucial fact for us at this point is that the HI existential transform keeps semantics 
invariant; (115), (116), (117) and (118) are equivalent to the plain sentences (92), (103), (104) 
and (105), respectively. But in order to find a construction that simulates ε-intersectivity, we are 
looking for a transform that keeps meaning invariant only if the two involved determiners are 
both intersective. Thus again an unwelcome result.  

  

2.5.3   
Happily, however, the HI EXISTENTIAL TRANSFORM WITH FLOATING QUANTIFIERS is a 
construction we are looking for. First of all, this construction is equivalent to the plain sentence if 
both determiners are intersective, but it is not if either one or both determiners are not 
intersective.  Observe the following sentence: 
 
(119) inu ga      usi o        otte-iru     no    ga 5-hiki to 30-too iru 
   dog NOM cow ACC driving-are CMP NOM 5-CLF  and 30-CLF are 

 'dogs are driving (away) cows: they exit, five and thirty in number’ 
 
This sentence is equivalent to the plain sentence (92).  In contrast, if we substitute daibubun 

‘most of the’ for 30-too in the above sentence, we get a sentence form of dubious grammaticality:  
 
(120) inu ga      usi o        otte-iru     no    ga 5-hiki to daibubun iru 
 dog NOM cow ACC driving-are CMP NOM 5-CLF  and most-of-them are 
 
One might judge the acceptability to improve if we insert sorezore ‘respectively’ before 5-hiki; a 
formulaic translation could be given as below: 
 
(121) inu ga      usi o  otte-iru  no ga sorezore 5-hiki to daibubun iru 
 ‘dogs are driving cows; they exist, (the dogs) 5 in number and (the cows) most of them, 

respectively’ 
 
Note, however, the they above should mean ‘the dogs that are driving cows and the cows that are 
being driven by dogs’, not just ‘dogs and cows’ and, crucially, most (of them) should mean ‘most 
of those cows that are being driven by dogs’, not ‘most of the cows’. Hence, (121) is not 
equivalent to (114), whether it is judged grammatical or not. For similar reasons, the following 
forms, even if they are judged grammatical, are not equivalent to (115) and (116), either:  
 
(122) inu ga      usi o        otte-iru     no    ga hotondo to 30-too iru 
 dog NOM cow ACC driving-are CMP NOM almost  and 30-CLF are 
 
(123) inu ga      usi o        otte-iru     no    ga hotondo to daibubun iru 
 dog NOM cow ACC driving-are CMP NOM almost  and 30-CLF are 
 

   Secondly, I claim that the semantics of (119) can naturally be expressed in the form D(A|P)(E
2
), 

the right hand side of equation (100). As we did with a floating quantifier in (87), we may 
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consider the floating determiners in (119) as adjuncts to the main verb iru.  Let us prepose the 

determiners in (119) to the left as we did in (89): 

 
(124) (5-hiki to 30-too)(inu ga  usi o otte-iru no ga)(iru) 
 
As split heads of the HI relative clause inu ga  usi o otte-iru no,  inu and usi denote those dogs 
and cows that satisfy the relation P = X DRIVES Y. In order to get the set of pairs of A1 dog and A2 
cow that satisfy this relation, first, take the intersection (A1×A2)∩P and project this intersection 
onto the first and the second axes, respectively. We get (125) as a representation of a two-
dimensional argument:  
 
(125) (prj1[(A1×A2)∩P], prj2[(A1×A2)∩P]).  
  

Thus, the semantics of (119) can be given as follows: 
 
(126) (5, 30)(prj1[(DOG×COW)∩DRIVE], prj2[(DOG×COW)∩DRIVE])(E×E) 

 = (5, 30)((DOG, COW)|DRIVE)(E
2
). 

 

   To sum up, Japanese grammar provides an embodiment of the defining equation for ε-
intersectivity (100) in the form of the equivalence between the plain sentence and the HI 

existential transform with QF:  

 
(127)  D is ε-intersective if and only if the following equivalence holds:  

  The plain sentence ⇔ the HI existential transform with QF 

    

This equivalence is illustrated by the following equivalence between (92) and (119): 

 
(128) 5-hiki no inu  ga 30-too no usi o otte-iru  ⇔ 
   inu ga usi o otte-iru no ga 5-hiki to 30-too iru 

 

2.6  A further development of the mathematics of binary determiners  

 

The following definition is an extension to binary determiners of the second version of the 

definition of intersective determiners for unary determiners (Definition 2').  

 
Definition 5. A binary determiner D is ι-intersective iff the following condition holds:  
 
(129) For any binary arguments A and A' and binary predicates P and P', if A|P = A'|P', 

then D(A, P) = D(A', P').  
 

The following theorem is an extension of Proposition 2: 
 
Theorem 3. A binary determiner D is ε-intersective iff D is ι-intersective. 
 

Proof. Assume D is ε-intersective. Let A and A' binary arguments and P and P' binary predicates, 

and assume A|P = A'|P'. We want to show D(A, P) = D(A', A'). Since D is ε-intersective, we have 

 

  D(A, P) = D(A|P, E
2
), D(A', P') = D(A'|P', E

2
). 
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Since A|P = A'|P' by assumption, we have D(A|P) = D(A'|P'). 

   Conversely, assume D is ι-intersective. But, then, since we have   

  A|P = (A|P)|E   

  D(A, P) = D(A|P, E)  

   D is ε-intersective. QED. 

 

To proceed, let me introduce some definitions:  

 
Definition 6. Let P be a binary predicate.  rec(P) = prj1P×prj2P. 
 
Definition 7. A binary predicate P is rectangular if P = recP.  
 
Definition 8. Let µ be a function from the set of binary arguments A into the set of binary 

predicates P defined by  

    µ(A1, A2) = A1×A2. 

 

We have another characterization of ι-intersective (and ε-intersective) determiners. 

 
Theorem 4. A binary determiner D is ι-intersective iff the following condition holds: 
  
(130) For any binary arguments A and A' and binary predicates P and P', if rec(P|A) = 

rec(P'|A'), then D(A, P) = D(A', P'). 
 

Proof. rec(P|A) = prj1P|A× prj2P|A = prj1P∩(A1×A2) × prj2P∩(A1×A2)  

     rec(P'|A') = prj1P'|A'× prj2P'|A' = prj1P'∩(A'1×A'2) × prj2P'∩(A'1×A'2). 

Hence,  prj1P|A× prj2P|A = prj1P'|A'× prj2P'|A'  

   <=> prj1P∩(A1×A2) = prj1P'∩(A'1×A'2) 

     & prj2P∩(A1×A2) = prj2P'∩(A'1×A'2). 

   <=> (prj1P∩(A1×A2), prj2P∩(A1×A2)) 

     =( prj1P'∩(A'1×A'2), prj2P'∩(A'1×A'2)) 

   <=> A|P = A'|P' 

Hence,   (129) <=> (130). QED.  

 
Theorem 5. The set of ε-intersective determiners Int

εεεε is isomorphic to the set Rec of sets of 
rectangular subsets of E

2
.  

 
Proof. Let D be an ε-intersective determiners  and let  

 ρ(D) = {X: X = µ(A|P) such that D(A, P) = D(A|P, E) = 1}.  

 (i) ρ is one-to-one from Int
εεεε to Rec.  

For: First of all, note that µ is one-to-one and if µ(A|P) = µ(A'|P'), then A|P = A'|P'. Hence, if 

D(A|P, E) ≠ 1 and µ(A|P) = µ(A'|P'), D(A'|P', E) = D(A|P, E) ≠ 1. Thus, we can conclude that if 

D(A|P, E) = 1, µ(A|P) ∈ ρ(D) and if D(A|P, E) ≠ 1, µ(A|P) ∉ ρ(D). 

Now, assume D ≠ D', and take (A, P) and (A', P') such that D(A, P) ≠ D'(A', P'). Then, D(A|P, 

E) ≠ D'(A'|P', E); assume D(A|P, E) = 1 and D'(A'|P', E) ≠1. Then, µ(A|P) ∈ ρ(D) and µ(A|P) ∉ 

ρ(D), hence  ρ(D) ≠ ρ(D'). ρ is one-to-one. 

(ii) ρ is onto. 

Take a set of rectangular predicates R. Define D:  

 D(A, P) = 1 iff A = ((prj1(P), prj2(P)) and P ∈ R.  
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Then,  ρ(D) = {X: X = µ(A|P) such that A = ((prj1(P), prj2(P)) and P ∈ R} 

               = {X: X = µ((prj1(P), prj2(P)), P ∈ R} = R. QED. 

 
Definition 9. A binary determiner D is µ-intersective if the following condition holds: 
(131) If for any binary arguments A and A' and binary predicates P and P', if P|A = P'|A' then 

D(A, P) = D(A', P').  
 
Theorem 6. If D is ι-intersective, D is µ-intersective. 
 

Proof. If P|A = P'|A', A|P = (prj1P|A, prj2P|A) = (prj1P|'A', prj2P'|A') = P'|A'. Then, if D is ι-

intersective, D(n, P) = D(A', P'). Hence, D is µ-intersective.  

 

The converse does not hold: 

 
Example 1. Consider the following two sentences: 
 
(132) sihuku ga                   8-nin      ayasii otoko o 5-nin kannsisite-ita 
 plainclothes NOM  8-CLF suspicious men ACC 5-CLF observe were              

 '8 plainclothes agents were observing 5 suspicious men' 

 
(133) keikan ga           8-nin issyoni   yakuza o 5-nin taihosita 
 policemen  NOM 8-CLF together yakuza ACC 5- CLF arrested 

 'eight policemen together arrested 5 yakuzas' 

 

Let us assume first that '8 plainclothes agents' and '8 policemen' denote the same sets of  men and 

so do '5 suspicious men' and '5 yakuzas'. Secondly, let us assume that (8-nin, 5-nin) is construed 

in (132) collectively as before and in fact assume that not every of the plainclothes men observed 

every suspicious men. On the other hand, we assume that the pair (8-nin, 5-nin) has a group 

reading in (133) and that all the eight policemen jointly arrested all the five yakuzas. We 

represent the collective reading by D = (8, 5) and the group reading by D' = (8*5).  

D' is  µ-intersective. Now, let A1 = plainclothes agents, A'1 = policeman, A2 = suspicious man 

A'2= yakuza, P = observe and P' = arrest. By assumption D'((A1, A2), P) = 0. We have A1|P = 

A'1|P' and A2|P = A'2|P' but D'((A1, A2), P) ≠ D'((A1, A2), P) = 1. Hence, D' is not ι-intersective.  

 

That the converse of Theorem 6 fails in fact follows from Theorem 5 and the following theorem: 

 
Theorem 7. The set Int

µµµµ
  of µ-intersective binary determiners is isomorphic to the set 

of sets of subsets of E
2
. 

 

Proof: Given a µ-intersective binary determiner D, let s(D) be defined as follows: 

 
(134)  s(D) = {X: D(E, E)(X) = 1}.  
 

   First we show that s is one-to-one from Int
µµµµ
  to  P(E

2
). Assume D  ≠ D' and D(A, P) ≠ D'(A, P). 

Without loss of generality, we can assume  that  D(A, P) = 1,  D'(A, P) ≠ 1.  As  P|A = (P|A)|(E, 

E)   and D is  µ-intersective, we have D(A, P) = D((E, E), P|A) = 1. Hence P|A ∈ s(D). Similarly, 

D'(A, P) = D'((E, E), P|A) ≠1, hence P|A ∉ s(D'). It follows that s(D) ≠ s(D'); s is one-to-one. 
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   Next, we show s is onto. Let X ⊂ P(E
2
). Let D be defined as follows. D(A, P) = 1 iff P|A ∈ X. 

Then,  

 

  s(D) = {X: D((E, E)(X)) = 1}  

   = {X: X|(E, E) ∈ X} 

   = {X: X ∈ X}  

   = X.       QED. 

 

Now, assume X ∈ s(D), i.e. D(E, E)(X) = 1. (E, E)|X = (prj1(X), prj2(X)). Consider rec(X) = 

prj1(X) × prj2(X). We have (E, E)|X = (E, E)|recX. Then, if D is ι-intersective, D((E, E), X) = 

D((E, E), recX) = 1. Hence recX ∈ s(D). Hence, we have  

 

Corollary 1.  If D is ι-intersective, s(D) is closed under rec, i.e., if X ∈ s(D), recX ∈ s(D).  

Corollary 2.  The set of ι-intersective determiners Int
ιιιι is a proper subset of Int

µµµµ. 

 

The reader would have noticed that the above argument virtually provides us with a second proof 

of Theorem 5.  

 

2.7  Partial intersective determiners 

 

2.7.1  

Consider now the following sentence: 

 
(135) hotondo   no   inu ga     30-too no    usi   o    otte-iru ( = (104)) 

 almost-all GEN dog NOM 30-clf  GEN cow ACC driving-are 
 'almost all the dogs are driving 30 cows'. 
 
The subject is quantified by a non-intersective determiner hotondo (zenbu) 'almost all'. (For the 

interest of space, I suppress zenbu at determiner position inside Noun Phrase without losing 

acceptability; I retain it only at floating position where acceptability seems to require it.) The HI 

existential transform with QF (136) below corresponding to this sentence is not logically 

equivalent to it.  

 
(136)  inu ga usi o otte-iru no ga hotondo zenbu to 30-too iru  

 

This fact illustrates the defining characteristic of the HI existential transform as an existential 

sentence. In contrast, an HE EXISTENTIAL TRANSFORMS with QF (137) below is equivalent to 

(136), with the intended collective reading of the two quantifiers: 

 
(137) hotonto no inu ga otte iru usi ga 30-too iru 
 

To recall, the equivalence of the plain sentence and its HI existential transform with QF when 

both subject and the object are quantified with intersective determiners provides an empirical 

evidence for the equation in (41) (repeated here): 

 

(100)  D(A)(P) = D(A|P)(E×E) 

 



      The Mathematics of Determniners 

 

 

 

 

 

157

We are now trying to determine the mathematical significance of the equivalence of (135) to the 

HE existential transform with QF (137). For this purpose I will manipulate the sentence form of 

(137). I first convert the HERC in (137) to a HIRC: 

 
(138) hotondo no inu ga usi o otte iru no ga 30-too iru 

 

Here the intended semantic head of the HIRC is the object usi. Next, we follow the standard 

semantic interpretation of HIRCs by means of e-type pronouns and we attempt to translate 

literally the semantic representation according to this interpretation back into Japanese:  

  
(139) hotondo no inu ga usi o otte-ite,  sore ga 30-too iru 

 

sore is intended to be coreferential with hotonto no inu ga otte iru usi 'cows that almost all the 

dogs are driving'. We then float the determiner hotondo and quantify the second occurence of usi 

by the relative clause inu ni owarete-iru 'that are being driven': 

 
(140)  inu ga hotondo zenbu usi o otte-ite, [inu ni owarete-iru] usi ga 30-too iru 
 

Taking the advantage of the fact that the determiner hotondo zenbu is conservative, we get the 

following form: 

  
(141) inu ga hotondo zenbu [usi o otte-iru] inu de, [inu ni owarete-iru] usi ga 30- too iru 

 

We again qualify usi redundantly by the relative clause inu ni owarete-iru: 

  
(142)  inu ga hotondo zenbu [inu ni owarete-iru usi o otte-iru] inu de, [inu ni owarete-iru usi] ga 

30-too iru 
 

(142) is a sentence that conjoins two intransitive sentences, that is, two one-argument sentences. 

The semantics of this sentence may be represented as follows: 

 
(143) (HOTONDO)(INU)(prj1(OTTE-IRU∩(INU×USI))  
 & (30)(prj2(OTTE-IRU∩(INU×USI)))(E) 

 

Now, we must refer to the following lemma: 

 

Lemma.  Let D1and D2 be unary conservative determiners and D = (D1, D2) be a 

binary determiner defined by the collective reading of D1and D2; let A = 

(A1, A2) and P = P1×P2. Then,  

 
(144) D(A)(P) = 1 iff D1(A1)(P1)  = 1 & (D2)(A2)(P2) = 1.  

 

Proof. By the definition of collective reading, we have 

 
(145) (D1, D2)(A1, A2)(P1×P2) = 1  
  iff D1(A1)(prj1(P∩ (A1×A2))) = 1  

  & D2(A2)(prj2(P∩ (A1×A2))) = 1 
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Since 

  
(146) prj1((P1×P2) ∩ (A1×A2) = P1∩A1  
  prj2((P1×P2) ∩ (A1×A2) = P2∩A2 ,  

we have 

 
(147) (D1, D2)(A1, A2)(P1×P2) = 1  
   iff D1(A1)(P1∩A1)  = 1 & (D2)(A2)(P2∩A2) = 1. 

 

Since D1 and D1 and D2 are conservative, we have 

 
(148) (D1, D2)(A1, A2)(P1×P2) = 1  
   iff D1(A1)(P1) = 1 & (D2)(A2)(P2) = 1  QED. 

 

Let us apply the equivalence (144) of this lemma to (143) from right to left; we get the following 

representation, which is equivalent to (143): 

 
(149) (HOTONDO, 30)(INU, prj2(OTTE-IRU∩(INU×USI)))(prj1(OTTE-IRU∩(INU×USI))×E). 
 

To conclude: The transformations from (137) to (142) keep the truth value invariant; hence, in 

particular, (137) is equivalent to (142). In addition, the representations (143) and (149) are 

equivalent. Thus, the equivalence of Japanese plain sentence (135) and its HE existential 

transform (137) can be represented by the equivalence of the following formula and (149):  

 
(150) (HOTONDO, 30)(inu, usi)(otte-iru) 

 

Now, we draw a generalization from the equivalence between (150)and (149) and formulate the 

following equivalence in a general form: 

 
(151) D(A)(P) = D((A1, prj2((A1  ̧A2)∩P)), prj1((A1¸ A2)∩P)¸E). 
 

Examples (135) and (138) have a non-intersective determiner at subject position and an 

intersective determiner at object position. Reversing this asymmetry to the opposite direction, we 

get a sentence like the following: 
 
(152) 5-hiki no   inu ga     daibubun     no    usi   o      otte-iru (=(103)) 

 5-CLF GEN dog NOM most-of-the GEN cow ACC driving-are 
 'five dogs are driving most of the cows' 
 

(153) daibubun     no    usi   o     otte-iru       inu ga     5-hiki iru  
 most-of-the GEN cow ACC driving-are dog NOM 5-CLF are 
 'dogs that are driving most of the cows are/exist five in number ' 

 

By the same argument as above mutatis mutandis we derive the equivalence between the 

following two formulas: 

 
(154) (5, DAIBUBUN)(INU, USI)(OTTE-IRU) 
 
(155) (5, DAIBUBUN)(prj1(OTTE-IRU∩(INU×USI)), USI)(E×prj2(OTTE-IRU∩(INU×USI))). 
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We draw a similar generalization from the equivalence between (154) and (155): 

 
(156) D(A)(P) = D(prj1((A1×A2)∩P), A2)(E×prj2((A1×A2)∩P)). 
 

In analogy to the concept of ε-intersectivity, we define partial ε-intersectivity by means of the 

equivalences (151) and (156). For the sake of concision I rewrite these equivalences by means of 

the abbreviated notation introduced above: 

 
Definition 10. A binary determiner D is partial ε-intersective if for any binary argument A and 

predicate P it satisfies either one of the following equivalences: 
  
(157) D(A)(P) = D((A1, (A|P)2)), (A|P)1×E). 
 
(158) D(A)(P) = D(((A|P)1, A2)), E×(A|P)2). 
 

The equivalences between the Japanese sentences (135) and (137) on the one hand and between 

(152) and (153) on the other are illustrative instances of (157) and (158), respectively. 

 

2.7.2  

The following definition and the theorem are analogues to Definition 5 and Theorem 3:  

 
Definition 11. A binary determiner D is partial ι-intersective iff either one of the following 

conditions holds: 
 

(159) For any binary arguments A and A' and binary predicates P and P',  if A1 = A'1 and A|P = 
A'|P'  then D(A)(P) = D(A')(P').  

 
(160) For any binary arguments A and A' and binary predicates P and P',  if A2 = A'2 and A|P = 

A'|P'  then D(A)(P) = D(A')(P').  
 

If we spell out the abbreviated notation, we have the following condition: 

 If A1 = A'1 (or A2 = A'2) and 

 prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')  

 prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P'), 

 then D(A)(P) = D(A')(P'). 

 
Theorem 8. A binary determiner D is partial ε-intersective iff D is partial ι-intersective. 
 

Proof.  Assume D is partial ε-intersective.  Let A1 = (A1, A2) and A' = (A'1, A'2) be binary 

arguments and P and P' be binary predicates.  Since D is partial ε-intersective, we assume without 

losing generality: 

 
(161) D(A)(P) = D((A1, prj2((A1×A2)∩P)), prj1((A1×A2)∩P)×E). 
 
(162) D(A')(P') = D((A'1, prj2((A'1×A'2)∩P')), prj1((A'1×A'2)∩P')×E). 
 

Assume  

  A1 = A'1 

  prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')   
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  prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P'). 

 

It follows that D(A, P) = D(A', A'). 

   To prove the converse, note first that trivially we have: 

 

  prj1(A1×prj2((A1×A2)∩P)) ⊃ prj1((A1×A2)∩P)) 

 

Hence we have  

 
(163)  prj1((A1×A2)∩P))  
  = prj1[A1×prj2((A1×A2)∩P)] ∩ prj1((A1×A2)∩P))  

  = prj1[(A1×prj2((A1×A2)∩P)] × prj1[prj1((A1×A2)∩P)×E] 

  = prj1[(A1×prj2((A1×A2)∩P) × (prj1((A1×A2)∩P)×E)] 

 

Similarly, 

  
(164) prj2((A1×A2)∩P) 
  = prj2[(A1×prj2((A1×A2)∩P) ∩ (prj1((A1×A2)∩P)×E)]  

 

Assume now D is partial ι-intersective. Then, from (163) and (164) we have  

   

  D(A)(P) = D((A1, prj2(A1×A2)), (prj1((A1×A2)∩P)×E)).  

 

That is, D is partial ε-intersective.     QED.  

 

Theorem 8  provides a good justification for the introduction of partial ε- and ι-intersectivity by 

means of Definition 10 and Definition 11.  

 

 

3. PART 3: The Mathematical Theory of Determiners in n-Dimensional Spaces 
 
3.1  General definitions, notations, conventions 
 
3.1.1  Basic symbols 
( )

n
,  <  >

n
  indicate  "n-tuple".    

X
n
 :  Cartesian product of n copies of X.  

∏i∈IXi: Cartesian product of Xi, i∈I. 
1 = {0, 1}, where 0 and 1 may be interpreted as "false" and "true," respectively. 
N = <1, 2, ..., n>: a naturally ordered subset {1, 2, …, n} of natural numbers.  
∏ = <I, J>: a partition of N, where I are J are (naturally ordered) subsets of N (I, J ⊂ N)  
       and I∩J = ø, I∪J = N.  
 
Remark 1. Without fear of confusion, ∏ is used ambiguously both as a sign for Cartesian product 
and as a general symbol for a partition.  
 
∏ < ∏': Given two partitions ∏ = <I, J> and ∏' = <I', J'>, ∏ < ∏' iff I ⊂ I' (and hence J' ⊂ J). 
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Notational conventions: 
 
(1) Where there is no fear of confusion in the context, we may let I and J stand for subsets of N as 
elements of partition <I, J> without specifically stating so.  
 
(2) Where there is no fear of confusion, letters h and k may be used as follows: h = |I|, k = |J|, 
where ∏ = <I, J> is a partition of N = {1, 2, ..., n}, h + k = n. 
 
3.1.2  Universe, predicates, arguments 
E: A non-empty set; a contextualized universe. 
E

N
 = ∏i ∈NEi, Ei = E: n-ary universe.  

 
I-subspace E

I
:
  
Given I ⊂ N, E

I
 = ∏ i ∈IEi. In particular, E

{i}
 = Ei. 

 
Remark 2. E

I  
is referred to as a subspace, but it is not to be considered as a subset of E

N
.  

If I = {i1, i2,.., ih},  I' = {i'1, i'2,.., i'h}, set-theoretically E
I
 ≅ Eh

 and E
I ≅ Eh

, but as subspaces of E, 
E

I'
 ≠ Eh

, unless I = I'. 
 
Predicates 
n-ary predicate or N-predicate (or, simply, predicate) P: P ⊂ E

N
. 

I-predicate P: P ⊂ E
I
. 

P⊥P': the join of I-predicate P and I'-predicate P'.  
 Given I, I' ⊂ N and I∩I' = ∅ and P ⊂ E

I 
, P ⊂ E

I'
,  

P⊥P'= {(xi)i ∈ I∪I': (xi)i ∈ I ∈ P, (xi')i'∈ I' ∈ P'}.  
 
In conformity with this definition of ⊥, given I ⊂ N and J ⊂ N, we have 
 E

I⊥E
J
 = E

I⋃J
, E

I 
= {(xi)i ∈ I : xi∈Ei} = ⊥i∈IEi, where Ei is the i-th component of E

N
.  

 
We may furthermore extend the use of ⊥ and write I∪I' = I⊥I', where I∪I' is considered as an 
ordered subset of N and I∩I' = ∅. Then, E

I⊥E
J 
= E

I⋃I'
 = E

I⊥I'
. 

 
Arguments 
n-ary argument A:  A = (Ai)i∈ N, Ai ⊂ Ei.   
I-argument AI:  Given I ⊂ N, AI = (Ai)i∈ I, Ai ⊂ Ei. 
AI ⊥ AJ the join of an I-argument AI and a J-argument AJ:  Given I, J ⊂ N and I∩J = ∅  
 and an I-argument AI = (Ai)i∈I and a J-argument AJ = (Ai)i∈J, AI ⊥ AJ = (Ai) i∈I∪J.  
 
PPPP N  = P(E

N
) : The set of n-ary predicates (n-place predicates) = the power set of E

N
. 

A A A A N = ∏ i ∈N [P(Ei)] = {A: A = (Ai), 1≤i≤n, Ai ⊂ Ei} (the set of n-ary arguments). 
 
Notational convention. Where there is no fear of confusion in the context, we may suppress the 
subscript N: AAAA = AAAAN and PPPP = PPPPN. We also let A and P generically stand for elements of AAAA and PPPP, 
respectively. 
 
The canonical embedding µ of AAAA to PPPP: 
 µ: AAAA → PPPP defined by µA = ∏Ai, where A = (Ai), 1≤i≤n.  
 
P|A, a predicate P cut by an argument A: P|A = µA∩P. P|A is a predicate: P|A ∈ PPPP. 
 
Example 1. n=1.  
PPPP {1}= P(E).  AAAA{1} = P(E). 
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There are two possible partitions: ∏1 = <{1}, ∅>, ∏2 = <∅, {1}>.  
µ: A → P(E). µA = A, A⊂E. (µ is the identity.)  
P|A = A∩P. 

 
Example 2. n = 2. 
PPPP {1, 2}= P(E

2
).  AAAA{1, 2} = [P(E), P(E)]. 

There are four possible partitions:  
∏1 = <{1, 2}, ∅>, ∏2 = <{1}, {2}>, ∏3 = <{2}, {1}>, ∏4 =  <∅, {1, 2}>. 
µ: A = [P(E), P(E)]→P(E

2
). µA = µ((A1, A2)) = A1×A2.  

P|A = (A1×A2) ∩P.  
 
3.1.3  Projections 

prjI(P) = {x: x = (xi) i∈I ∃x' = (x'i) 1≤i≤n , x' ∈ P and for i∈I, xi = x'i}.  

 

In particular, prj{i}(P) = prji(P). 

 We have prjI(P) ⊂ E
I
, prj{i}(P) ⊂ E

{i}
.  

 prjI(A, P):  prjI(A, P) = prjI(P|A) = prjI(µA∩P).  

  

Prj∏(P): Given a partition ∏= <I, J>, Prj∏(P) = Prj<I, J>(P) = prjI(P)⊥E
J
.  

  

Defined explicitly,  

Prj∏(P) = {x: x = (xi) 1≤i≤n ∃ x' = (x'i) 1≤i≤n, x' ∈ P and for i∈I, xi = x'i and for j∈J, xj ∈Ej}.  
Thus, Prj∏(P) is the projection of P to subspace E

I
 join the co-subspace E

J
 of E

I 
in E

N
.  

 

In particular, Prj<∅, N> (P) = E
N
;  Prj<N, ∅> (P) = prjN(P) = P. 

 

Prj∏(A, P): Given A ∈ AAAA and P ∈ PPPP, Prj∏(A, P) = Prj∏(P|A) = prjI(P|A)⊂E
J
. 

 

Remark 3.  prjI(P)⊂E
I
. But, prjI(P)⊄E

N
 unless I = N. In contrast, Prj∏(P)⊂E

N
.
 

  
Remark 4.  If for any i∈I and j∈J, i<j (i.e., if I is an initial section of N), then Prj∏(P) ≅ prjI(P) 
×∏JE ≅ prjI(P)×E

k
 ⊂ E

h
×E

k
.
 
 If I is not an initial section of N, one could still define a canonical 

isomorphism of Prj∏(P) into E
h
×E

k
 ⊂ E

n
, but the intended canonical embedding is much harder to 

define: Let I = {i1, i2, ..., ih} and J = {j1, j2, ..., jk} and let ƒ be a permutation of N such that ƒ(1, 2, 
..., n) = (i1, i2, ..., ih, j1, j2, ..., jk), and let φ = ƒ

-1
. Let x = (x

i
)i∈N and define a transformation φ of E

N
 

by φ(x) = (xφ(1), xφ(2), ...,xφ(n)). Then, φPrj∏(P) ≅ prjφ(I)P×E
k ⊂E

h
× E

k
.  

 
(A)I: Argument projection (restriction) to E

I
. Given an n-ary argument A = (Ai)1≤i≤n, (A)I = (A

 
i)i∈I. 

(P)I: Projecting PPPP to AAAA (Dissolving a predicate to an argument). Given a predicate P and I ⊂ N, 

(P)I = (prjiP)i∈I.   

A|P: an argument A cut by a predicate P. A|P = (P|A)N.  

 

Remark 5. (A|P)I = (P|A)I. 

 

Example 1. n = 1.  
prj{1} = ι (identity map). 
Prj<∅, {1}>(P) = ∅ ⊥ E = E. 
Prj<{1}, ∅>(P) = prj{1}(P)̣⊥ E

∅ 
= P.  
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Prj<∅, {1}>(A, P) = Prj<∅, {1}>(µA∩P) = E. 
Prj<{1}, ∅>(A, P) = Prj<{1}, ∅> (µA∩P) = A∩P. 

 
Example 2. n = 2.  
I = {1, 2}, {1}. {2}, ∅.  
prjI(P): 

prj{1, 2}(P) = P.  
prj{1}(P) = prj1(P) = {x: ∃(x, y) ∈P},  
prj{2}(P) = prj2(P) = {y: ∃(x, y) ∈P}. 
prj∅(P) = ∅. 

prjI(A, P): 
 prj{1}(A, P) = prj{1}(µA∩P) = prj{1}((A1 × A2)∩P). [the set of those A1s that do P some A2.] 
 prj{2}(A, P) = prj{2}(µA∩P) = prj{2}((A1×A2)∩P). [set of those A2's that are P-ed by some A1.] 
 
Π = <{1, 2}, {∅}>, <{1}, {2}>, <{2}, {1}>, <{∅}, {1,2}>. 
PrjΠ(P): 
 Prj<{1, 2}, ∅>(P) = prj{1, 2}(P) ⊥ E

∅
 = P ⊥ ∅ = P. 

 Prj<{1}, {2}>(P)  = prj{1}(P) ⊥ E
{2}

 = {(x, y): ∃(x, z) ∈P}.  
     [the set of x's that do P paired with any y.] 
 Prj<{2}, {1}>(P)  = prj{2}(P) ⊥ E

{1}
 = {(x, y): ∃(z, y) ∈P}.  

     [the set of those y's that are P-ed paired with any x.] 
 Prj<∅, {1, 2}>(P) = prj∅(P) ⊥ E

{1, 2}
 = ∅ ⊥ E

2
 = E

2
. 

     [2-dimensional existence predicate] 
 Prj<{1, 2}, ∅>(P|A) = prj{1, 2}(µA∩P) ⊥ E

∅
 = ι(µA∩P) ⊥ ∅ = µA∩P. 

 Prj<{1}, {2}>(P|A) = prj{1}(µA∩P) ⊥ E
{2}

 = {(x, y): ∃(x, z) ∈µA∩P }.  
     [the set of those A1s that P some A2 paired any y.] 
 Prj<{2}, {1}>(P|A) = prj{2}(µA∩P) ⊥ E

{1}
 = {(x, y): ∃(z, y) ∈µA∩P }.  

     [the set of those A2s that are P-ed by some A1 paired with any x.] 
 Prj<∅, {1, 2}>(P|A) = prj∅(µA∩P) ⊥ E

{1, 2}
 = ∅ ⊥ E

2
 = E

2
. 

 

3.1.4  Intersections  

3.1.4.1 

α∏(A, P) = (A)Ị ⊥ (P|A)J 

 

Explicitly put α∏(A, P) = (A'i)i∈N, where A'I = Ai for i∈I and A'j = prjj (P|A) = prjj(µA∩P) for j∈J. 
 
Proposition 1. In particular,  

α<∅ ̣, N> (A, P) = (P|A)N = A|P = (prjj(µ(A)∩P))i∈N  
α<Ṇ, ∅> (A, P) = A. 

 
Example 1. n = 1. 
 α<∅, {1}> (A, P) = ∅ ⊥ (µA∩P){I} = A∩P 
 α<{1,}, ∅> (A, P) = A ⊥ ∅ = A 

  
Example 2. n = 2. 
 α<{1, 2}, ∅>(A, P) = A ⊥ ∅ = A 
 α<{1}, {2}>(A, P) = A1 ⊥ (µA∩P){2} = (A1, prj2((A1×A2) ∩P)) 
 α<{2}, {1}>(A, P) = A2 ⊥ (µA∩P){1} = (prj1((A1×A2) ∩P), A2) 
 α<∅, {1, 2}>(A, P) = ∅ ⊥ (µA∩P){1, 2} = (prj1((A1×A2) ∩P), prj2((A1×A2) ∩P))   
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3.1.4.2 
ι∏(A, P) = (α∏(A, P), Prj∏(A, P)) = ((A)I ⊥ (P|A)J, prjI(P|A) ⊥ E

J
) 

 
Proposition 2. In particular, 

ι<∅, N>(A, P) = ((P|A)N, E
N
) = (A|P, E

N
); 

ι<N, ∅>(A, P) = (A, prjN(P|A))) = (A, P|A). 
 
Example 1. n= 1. 
 ι<∅, {1}>(A, P) = (A∩P, E) 
 ι<{1}, ∅>(A, P) = (A, A∩P) 
 
Example 2. n= 2. 
 ι<∅, {1, 2}>(A, P) = (prj1((A1×A2∩P), prj2((A1×A2∩P)), E

2
)  

 ι<{1}, {2}>(A, P) = ((A1, prj2((A1×A2) ∩P)), prj1((A1×A2) ∩P) × E)  
 ι<{2}, {1}>(A, P) = (prj1((A1×A2∩P), A2), E

 
× prj2((A1×A2∩P)) 

 ι<{1, 2}, ∅>(A, P) = (A, (A1×A2) ∩P) 
 
3.1.4.3 
µ∏(A, P) = µα∏(A, P)∩Prj∏(A, P). 
 
Proposition 3. µ∏(A, P) = prjI(P|A) ⊥ µ(P|A)J.  
 
Proof. µ∏(A, P) 
     = µ((A)I ⊥ (P|A)J) ∩ (prjI(P|A)⊥E

J
) 

     = (µ(A)I ∩ prjI(P|A)) ⊥ µ(A|P)J [cf: (P|A)J = (A|P)J] 
     = prjI(P|A)) ⊥ µ(P|A)J. [since µ(A)I ⊃ prjI(P|A)] 

 
Corollary. In particular,  

µ<∅, N>(A, P) = µ(P|A)N; 
µ<N, ∅>(A, P) = µ(P|A).  

 
Example 1. n= 1. 

µ<∅, {1}>(A, P) = A∩P 
µ<{1}, ∅>(A, P) = A∩(A∩P) = A∩P 
 

Example 2. n= 2. 
µ<∅, {1, 2}>A, P) = (prj1((A1×A2∩P), prj2(A1×A2∩P)) 
µ<{1}, {2}>(A, P) = (prj1((A1×A2∩P), prj2(A1×A2∩P))  
µ<{2}, {1}>(A, P) = (prj1((A1×A2∩P), prj2 (A1×A2∩P)) 
µ<{1, 2}, ∅>(A, P) = µA∩(µA∩P) = (A1×A2) ]∩P 
 

Remark 6.  
α∏(A, P)∈    AAAA. 
ι∏(A, P) ∈    AAAA×PPPP. 
µ∏(A, P)∈    PPPP. 

 

3.2  Determiners 

 

Definition 1. D is an n-ARY determiner iff D: AAAA×PPPP    → 1. 
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Definition 2. D is an n-DIMENSIONAL determiner iff D: PPPP×PPPP → 1. 

 

Remark 7. For n = 1, the two concepts collapse. 

 

Definition 3. An n-ary determiner is ∏-ε-intersective iff for any (A, P) ∈ AAAA×PPPP,  D(A, P) = 

D(ι∏(A, P)).  

 
Proposition 4. In particular,  

An n-ary determiner is <∅, N>-ε-intersective  
 iff for any (A, P)∈ AAAA×PPPP,  D(A, P) = D(A|P, E

N
). 

An n-ary determiner is <N, ∅>-ε-intersective  
 iff for any (A, P)∈ AAAA×PPPP, D(A, P) = D(A, P|A).  

 

Definition 4. An n-ary determiner D is ∏-ι-intersective iff the following condition holds:  

For any pair (A, P)∈ AAAA×PPPP, (A', P') ∈ AAAA×PPPP, if ι∏(A, P) = ι∏(A', P'), then D(A, P) = 

D(A', P').   

 
Proposition 5. In particular,  

An n-ary determiner is <∅, N>-ι-intersective iff the following condition holds: 
 For any (A, P)∈ AAAA×PPPP, (A', P')∈ AAAA×PPPP, if A|P = A'|P', then D(A, P) = D(A', P'). 
An n-ary determiner is < N, ∅>-ι-intersective iff the following condition holds: 
 For any (A, P)∈ AAAA×PPPP, (A', P')∈ AAAA×PPPP, if P|A = P'|A', then D(A, P) = D(A, P'). 

 

Definition 5. An n-ary determiner D is ∏-µ-intersective iff the following condition holds: 

For any pair (A, P)∈ AAAA×PPPP, (A', P')∈ AAAA×PPPP, if µ∏(A, P) = µ∏(A', P'), then D(A, P) = 

D(A', P').  

 
Proposition 6. In particular,  

An n-ary determiner is <∅, N>-µ-intersective iff the following condition holds:  
 for any (A, P)∈ AAAA×PPPP, (A', P')∈ AAAA×PPPP, if µ(A|P) = µ(A'|P'), then D(A, P) = D(A', P'). 
An n-ary determiner is < N, ∅>-µ-intersective iff the following condition holds:  
 for any (A, P)∈ AAAA×PPPP, (A', P')∈ AAAA×PPPP, if P|A = P'|A', then D(A, P) = D(A, P'). 
 

Proposition 7. An n-ary determiner D is ∏-µ-intersective iff the following condition holds: 

For any pair (A, P)∈ AAAA×PPPP, (A', P')∈ AAAA×PPPP, if prjI(P|A) = prjI(P'|A') & (P|A)J = (P'|A')J  

[i.e., prjj(P|A) =  prjj(P'|A') for j∈J], then D(A, P) = D(A', P').  

 

Proof. By Proposition 3,  

 µ∏(A, P) = prjI(P|A) ⊥ µ(P|A)J. 

Hence,  

 µ∏(A, P) = µ∏(A', P')  

 <=> prjI(P|A) ⊥ ( P|A)J = prjI(P'|A') ⊥ µ(P'|A')J 
 <=> prjI(P|A) = prjI(P'|A') & µ(P|A)J = µ(P'|A')J. QED. 

 

Definition 6. An n-dimensional determiner D is π-intersective iff the following condition holds: 

For any pair (P1, P2), (P'1,P'2) ∈ PPPP×PPPP, if P1∩P2=P'1∩ P'2, then D(P1, P2)=D(P'1, P'2). 
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Definition 7. An n-ary determiner D is conservative if the following condition holds: 

If P|A = P'|A, then D(A, P) = D(A, P'). 

 

Proposition 8. [Keenan's theorem] D is conservative iff for any (A,P)∈AAAA×PPPP, D(A,P)=D(A, P|A).  

 

Proof.   

ONLY IF:  P|A = µA∩P = µA∩ (µA∩P) = (µA∩P)|A. 

Hence D(A, P) =  D(A, (µA∩P)) = D(A, P|A). 

IF: Assume P|A = P'|A.        (1) 

D(A, P) = D(A, P|A)        by assumption 

             = D(A, P'|A).        by (1) 

D(A, P') = D(A, P'|A).        by assumption 

Hence,  D(A, P) = D(A, P').  QED. 

 

3.3  Sets of determiners 

 

Det = 1AAAA
×PPPP   (the set of n-ary determiners)

 

^
Det = 1PPPP

 ×PPPP   (the set of n-dimensional determiners)  

 

Con = the set of conservative determiners 

 

Int
ε
∏

  
= the set of ∏-ε-intersective determiners 

Int
ι
∏

 
  = the set of ∏-ι-intersective determiners 

Int
µ
∏

 
  = the set of ∏-µ-intersective determiners

 

Int
π
∏ = the set of ∏-π-intersective determiners 

 

Int
ε 
  = the class of ∏-ε-intersective determiners 

Int
ι
  = the class of ∏-ι-intersective determiners 

Int
µ
  = the class of ∏-µ-intersective determiners

 

 

Definition 8. Rectangularizer rec: For an n-ary predicate P, rec(P) = Πi∈Nprj iP. 

  

Definition 9. An n-ary predicate P is rectangular iff P = rec(P). 

 

Proposition 9. An n-ary predicate P is rectangular iff there is an n-ary argument A such that 

P=µ(A).  

 

The proposition follows directly from the definitions. 

 

Definition 10. 
^
µ:Det→

^
Det is defined as follows: For D, D ∈ Det and for (P, P'), P ∈ PPPP, P' ∈ PPPP, 

if P = rec(P), take A ∈ AAAA such that P = µ(A), and let 
^
µD(P, P') = 

^
µD(µ(A), P') = 

D(A, P'); otherwise, let A = (prji(rec(P∪P')))i∈N (i.e., A = (rec(P∪P'))N) and 

^µD(P, P') = D(A, P∩P').  

  

Proposition 10. 
^
µ is one-to-one from Det into 

^
Det.  
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Proof. If D ≠ D', take A, P such that D(A, P) ≠ D'(A, P). Then 
^
µD((µ(A), P) = D(A, P) ≠ D'(A, P) 

= 
^
µD'((µ(A), P). Hence 

^
µD ≠ 

^
µD'. 

 

Convention. We may take 
^
µ as a canonical embedding of Det into 

^
Det and we may regard a set 

Det' of n-ary determiners (i.e., Det' ⊂ Det) as a subet of 
^
Det.  In particular, we can write Det ⊂ 

^
Det instead of 

^
µDet ⊂ 

^
Det. 

  

3.4  Families of determiners  

 

Notation. Int ⊂ Int' if for any ∏, Int∏ ⊂ Int'∏.  

If Int or Int' are classes independent of ∏, like Con, we agree to understand Int ⊂ Int'∏ or Int∏ 

⊂ Int' to mean that for any ∏, Int ⊂ Int'∏ or Int∏ ⊂ Int', respectively.  

 

Proposition 11. Int
µ
 ⊂ Int

ι
.
 

 

The proposition follows directly from the definitions of µ- and ι-intersectivity.  

  

Proposition 12. Int
µ
<ø, N> = Int

ι
<ø, N>. 

 

Proof.  

  µ<ø,N>(A, P) = µ(P|A)N (Proposition 6). 

  ι <ø,N>(A, P) = (A|P, E
N
) (Proposition 5). 

Hence, µ<ø,N>(A, P) = µ<ø,N>(A', P') <=> µ(P|A)N = µ(P'|A')N <= > µ(A|P) = µ(A'|P'). 

  ι<ø,N>(A, P) = ι <ø,N>(A', P') <=> A|P = A'|P'. 

Hence, µ<ø,N>(A, P) = µ<ø,N>(A', P') <=> ι<ø,N>(A, P) = ι<ø,N>(A', P').  Hence the proposition.    

 

Theorem 1. For D ∈ Det, D ∈ Int
π  
if and only if the following condition holds:  

For any A, A' and P, P', if P|A = P'|A' then D(A, P) = D(A', P'). (1)  

  

Proof. D ∈ Intπ means, according to the above convention, ^µD∈Intπ.  

Hence, D ∈ Int
π
 iff  

  P1∩P2 = P1'∩P2' => ^µD(P1, P2) = ^µD(P1', P2').       (2) 

Now assume D∈Intπ and assume µ(A)∩P = µ(A')∩P'. Then, by (2), 

  ^µD(µ(A), P) = ^µD(µ(A'), P')         

and by the definition of ^µ,  

  D(A, P) = D(A', P').      .  

   Conversely, assume (1) and assume  

  P1∩P2 = P1'∩P2'.         (3) 

(i) Assume both P1 and P1' are rectangular, that is, for some A and A',  

 P1∩P2= µ(A)∩P2 and P1'∩P2'= µ(A')∩P2'.          (4) 

By the definition of ^µ,  

  ^µD(P1, P2) = D(A, P2), ^µD(P1', P2') = D(A', P2').     

On the other hand, by (3) and (4), 

  µ(A)∩P2 = µ(A')∩P2'           

Hence, by (1), 

  D(A, P) = D(A', P'). 
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(ii) Assume P1 is not rectangular, and P2 is. Then, by the definition of ^µ 

  ^µD(P1, P2) = D((rec(P1∪P2))N, P1∩P2).         (5) 

Now, since rec(P1∪P2) ⊃ P1∪P2, 

  P1∩P2 = rec(P1∪P2) ∩ (P1∩P2)          

      = µ(rec(P1∪P2))N∩(P1∩P2)          

By (3) and (4),  

  µ(rec(P1∪P2))N∩(P1∩P2) = µ(A')∩P2'. 

It follows by (1) 

  D((rec(P14P2))N, P1∩P2) = D(A', P2').           

Hence, by (4), (5),  

  ^µD(P1, P2) = ^µD(P1', P2') . 

(iii) Similarly for the case where P1 is rectangular and P2 is not. 

(iv) Assume both P1 and P2 are not rectangular. Then, we have 

  ^µD(P1, P2) = D((rec(P1∪P2))N, P1∩P2)            (5) 

and 

  ^µD(P1', P2') = D((rec(P1'∪P2'))N, P1'∩P2').       

As in (ii) above, we have 

  P1∩P2 = µ(rec(P1∪P2))N∩(P1∩P2)  

And by a similar process as in (ii), we get 

  P1'∩P2' = µ(rec(P1'∪P2'))N∩(P1'∩P2'), 

and by (3), 

  µ(rec(P1∪P2))N∩(P1∩P2) = µ(rec(P1'∪P2'))N∩(P1'∩P2').    

Hence, by (1), 

  D((rec(P1∪P2))N, P1∩P2) = D((rec(P1'∪P2'))N, P1'∩P2'), 

and by (4), (5), 

  ^µD(P1, P2) = ^µD(P1', P2'). QED. 

                  

Corollary.  Int
µ
<N,ø>

 
= Det∩Int

π
.  

 

Proof. From Proposition 6 we have 

 D ∈ Int
µ
<N,ø>

 
iff P|A = P'|A' => D(A, P) = D(A', P").  

Hence, the corollary follows from the theorem. QED.  

 

We know that the canonical embedding ^µ is one-to-one from Det into 
^
Det  (Proposition 10).   

 

Theorem 2. ^µ is an isomorphism onto Int
π
.   

 

Proof. Assume D ∈ Intπ. For any P1, P2 , since rec(P1∪P2) ∩ (P1∩P2) = P1∩P2, we have  

  D(rec(P1∪P2), P1∩P2) = D(P1, P2,).        (1) 

Define an n-ary determiner D(A, P) as follows:  

  
∨
D(A, P) = D(µ(A), P).   

We will see that the following equation holds and hence ^µ is a map onto Int
π
. 

  ^µ∨D = D.    

Indeed, if P is rectangular, for some A, P = µ(A) and by the definition of ^µ,    

  ^µ∨D(P1, P2) = 
∨
D(A, P2) = D(µ(A), P2) = D(P1, P2). 
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On the other hand, if P is not rectangular, 

  ^µ∨D(P1, P2) = 
∨
D((rec(P1∪P2))N, P1∩P2) 

             = D(µ(rec(P1∪P2))N, P1∩P2) 

             = D((rec(P1∪P2))N, P1∩P2)  

             = D(P1, P2)  by (1).  QED.  

 

This theorem means that we can restate the corollary of the preceding theorem in a stronger form: 

 

Corollary. Int
µ
<N,ø>

 
= Int

π
 

 

This corollary shows that the n-ary determiner D(A, P) have the same expressive power as the n-

dimensional determiner D(P, P') in spite of the fact that the range of the first argument A for the 

former appears to be more limited than that of the first argument P for the latter.    

 

Theorem 3. Int
ε  ⊂  

Con. 

 

Proof.  Assume D is ∏-ε-intersective: 

 D(A, P) = D(ι∏(A, P)) = D(α∏(A, P), Prj∏(A, P))      (1) 

We wish to show that D is conservative, that is, according to Theorem 1,  

 D(A, P) = D(A, P|A).         (2) 

Applying (1) with P|A in place of P,  

  D(A, P|A) = D(α∏(A, P|A), Prj∏(A, P|A)).      (3) 

Now, 

 α∏(A, P|A) = (Ai)I ⊥ ((P|A)|A)J = (A)I ⊥ (P|A)J = α∏(A, P).    (4) 

From (3), (4), 

  D(A, P|A) = D(α∏(A, P), Prj∏(A, P|A)).        (5) 

From (1) and (5), to show (2) is equivalent to showing 

  Prj∏(A, P) = Prj∏(A, P|A).        (6) 

But Prj∏(A, P) = prjI(P|A)⊥E
J
and Prj∏(A, P|A) = prjI((P|A)|A)⊥E

J 
= prjI((P|A)⊥E

J
. 

Hence (6).  QED.    

  

Theorem 4. Int
ι
<N,ø> = Con.  

 

Proof. Assume D is <N, ø>-ι-intersective, that is, 

  ι<N,ø>(A, P) = ι<N,ø>(A', P') => D(A, P) = D(A', P')      (1) 

But 

  ι<N,ø>(A, P) = (A, P|A), ι<N,ø>(A', P') = (A', P'|A').              (cf: Proposition 5)  

Hence, (1) amounts to  

  P|A = P'|A => D(A, P) = D(A, P').  QED. 

  

Theorem 5. Int
ε
 = Int

ι
  

 

Proof:   

ONLY IF: Assume D is ∏-ε-intersective. Assume  

  ι∏(A, P) = ι∏(A', P').          (1) 

We want to show 

  D(A, P) = D(A', P').         (2) 
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Since D is ∏-ε-intersective,  

  D(A, P) = D(ι∏(A, P)) 

  D(A', P') = D(ι∏(A', P')) 

But, then, from (1), we have (2).  

 

IF: Assume D is ∏-ι-intersective. 

 

Lemma.  ι∏ is idenpotent:  ι∏•ι∏ = ι∏. 

The proof of the lemma is given in Appendix 1. The lemma means for any A∈AAAA and P∈PPPP, 

  ι∏(A, P) = ι∏(ι∏(A, P)). 

Then, if D is ∏-ι-intersective,  

  D(A, P) = D(ι∏(A, P)).   

But this means that D is ∏-ε-intersective.  QED. 

 

Theorem 6. If  ∏ < ∏', then Int
ι
∏ ⊂ Int 

ι
∏'. 

 

Proof: 

 

Lemma.  If ∏ < ∏', then  

  ι∏'(A, P) = ι∏' (A', P') => ι∏(A, P) = ι∏(A', P').   

 

The proof of the lemma is given in the Appendix 1. Assume D(A, P) ∈ Int
ι
∏, and assume 

  ι∏'(A, P) = ι∏'(A', P').   

By Lemma 2,  

  ι∏(A, P) = ι∏(A', P')     

Then,  

  D(A, P) = D(A', P'),  by definition of Int
ι
∏. 

Hence D(A, P) ∈ Int
ι
∏', by definition of Int

ι
∏'.  QED.  

 

Theorem 7. If ∏ < ∏', Int
µ
∏ ⊂ Int

µ
∏'. 

 

Proof.  
 
Lemma 
 Assume Π = <I, J> < Π' = <I', J'>. Then, if 
  prjI'(P)⊥ µ(P)J' = prjI'(P')⊥ µ(P')J'  
 then 
  prjI(P)⊥ µ(P)J = prjI(P')⊥ µ(P')J.  
 

The proof of the lemma is given in Appendix 1. Now, assume         

  µ∏'(A, P) = µ∏'(A', P').         (1) 

Since  

  µ∏'(A, P) = prjI'(P|A)⊥µ(P|A)J'        (2) 

  µ∏'(A', P') = prjI'(P'|A')⊥µ(P'|A')J'       (3) 

  µ∏(A, P) = prjI(P|A)⊥µ(P|A)J        (4) 

  µ∏(A', P') = prjI(P'|A')⊥µ(P'|A')J,        (5) 
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by applying the lemma to P|A and P'|A', from (1) and (2)-(5) we have 

  µ∏(A, P) = µ∏(A', P').         (6) 

Now assume  

  D ∈ Int
µ
∏.             

Then, from (6) we have         

  D(A, P) = D(A', P').          (7) 

Hence, we see that (7) follows from (1), i.e., D ∈ Int
µ
∏'.  Q.E.D.   

 

From the above Propositions and Theorems we have established the following hierarchy of 

intersective determiners: 

 

Theorem 8. Hierarchy of Intersective determiners. Given∏ < ∏', we have the following 

relations among sets of determiners:  

 

            Int
ε
<N,ø>      Int

ε
∏'      Int

ε
∏      Int

ε
<ø, N> 

             ∥         ∥        ∥          ∥ 

  Det  ⊃  Con =  Int
ι
<N,ø>  ⊃...⊃  Int

ι
∏'  ⊃... ⊃  Int

ι
∏   ⊃...⊃  Int

ι
<ø, N>  

                ∪         ∪        ∪          ∥ 

 ^Det  ⊃  Int
π 
 ≅  Intµ<N,ø> ⊃...⊃  Int

µ
∏'  ⊃...⊃  Int

µ
∏   ⊃...⊃  Int

µ
<ø, N> 

 

                   Diagram 1 
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Appendix 1.  Proofs of Lemmas. 

 

Lemma to Theorem 5.  ι∏(A, P) = ι∏(ι∏(A, P)). 

 

Proof.  Let ∏ = <I, J>. 

  ι<I,J>(A, P) = (α<I,J>(A, P),  Prj<I,J>(A, P)).       (1) 

  α<I,J>(A, P) = ((A)I ⊥(P|A)J).        (2) 

Hence, 

  ι∏(ι∏(A, P))  

   = ι<I, J>(α<I, J>(A, P), Prj<I, J>(A, P)) 

   = ι<I,J>((A)I⊥(P|A)J, Prj<I, J>(A, P)).       (3) 

We substitute for A and P in the right hand side of (1) thus: 

  A  => (A)I ⊥(P|A)J 

  P  => Prj<I,J>(A, P) 

   = (α<I,J>((A)I ⊥(P|A)J, Prj<I, J>(A, P)), Prj<I, J>[(A)I ⊥(P|A)J, Prj<I,J>(A, P)]).  (4) 

Next, we execute the same substitution for (2):  

  α<I,J>((A)I⊥(P|A)J, Prj<I,J>(A, P))  

   = (((A)I⊥(P|A)J)I ⊥( Prj<I,J>(A, P)|[(A)I ⊥(P|A)J])J) 

   = ((A)I⊥([(prjI(P|A)⊥E
J
)| [(A)I ⊥(P|A)J ])J 

   = ((A)I⊥([(prjI(P|A)⊥E
J
)∩µ[(A)I ⊥(P|A)J])J 

   = ((A)I⊥([(prjI(P|A)∩µ(A)I]⊥E
J
∩(P|A)J])J 

   = ((A)I⊥((prjI(P|A)⊥(P|A)J)J 

   = (A)I⊥(P|A)J.         (5)    

Next, 

  Prj<I, J>[(A)I⊥(P|A)J, Prj<I,J>(A, P)] 

   = Prj<I, J>[µ((A)I⊥(P|A)J)∩Prj<I, J>(A, P)] 

   = Prj<I, J>[µ((A)I⊥(P|A)J)∩Prj<I,J>(P|A)]  

   = Prj<I, J>[µ((A)I⊥(P|A)J)∩(prjI(P|A)⊥E
J
)] 

   = Prj<I, J>[(µ(A)I∩prjI (P|A))⊥(µ(P|A)J∩E
J
)] 

   = (µ(A)I∩prjI (P|A))⊥E
J
.        (6) 

Since  

  prjI(P|A)⊂µ(A)I, 

we have 

  µ(A)I∩(prjI (P|A) = prjI(P|A).    

Hence,  

  (6) = prjI(P|A)⊥E
J
.         (7) 

From (4), (5) and (7),    

  ι∏(ι∏(A, P))  

   = ((A)I⊥(P|A)J, Prj<I, J>(A, P))        

   = ((A)I⊥(P|A)J, prjI(P|A)⊥E
J
) 

   = (α∏(A, P), Prj∏(A, P) 

   =  ι∏(A, P).           QED. 

 

Lemma to Theorem 6.  If ∏= <I, J> < ∏' = <I', J'>, then  

ι<I',J'> (A, P) = ι<I',J'> (A', P') => ι<I,J> (A, P) = ι<I,J> (A', P').   
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Proof.  Let I' = I∪K, I∩K = ø.  (Hence, J = J'4K, J'∩K = ø.) 

  ι<I', J'> (A, P) = (α<I',J'> (A, P), Prj<I',J'>(A, P)) 

  α<I',J'> (A, P) = ((A)I'⊥(P|A)J') = ((A)I⊥(A)K⊥(P|A)J')  

  Prj<I',J'>(A, P) = prjI'(P|A)⊥E
J'
. 

Hence,  

  ι<I', J'> (A, P) = ι<I', J'> (A', P')  

   <=> (A)I = (A)'I  

     (A)k = (A')K   

     (P|A)J' = (P'|A')J'  

     prjI'(P|A) = prjI'(P'|A'). 

Similarly, 

  ι<I, J> (A, P) = (α<I, J> (A, P), Prj<I, J> (A, P)) 

  α<I, J> (A, P) = (A)I⊥(P|A)J   

   = (A)I⊥(P|A)K⊥(P|A)J'  

  Prj<I,J>(A, P) = prjI(P|A)⊥E
J
. 

Hence, 

   ι<I, J> (A, P) = ι<I, J> (A', P')   

   <=> (A)I = (A)'I 

    (P|A)K = (P'|A')K  

    (P|A)J' = (P'|A') J'  

    prjI(P|A) = prjI(P'|A'). 

Hence, it suffices to show that if  

 (A)K = (A')K and prjI'(P|A) = prjI'(P'|A') 

then   

 (P|A)K = (P'|A')K and prjI(P|A) = prjI(P'|A'). 

Proof of (P|A)K = (P'|A')K: 

  y ∈ prjk(P|A)  

   <=> ∃x = (xi)i∈N: x∈P, xi∈Ai (i∈N) and y = xk 

    <=> ∃x = (xi)i∈N: (xi)i∈I'∈prjI'(P), x∈P, xi∈Ai (i∈N) and y = xk∈Ak 

   <=> ∃x = (xi)i∈N: (xi)i∈I'∈prjI'(P|A), x∈P, y = xk∈Ak. 

Since prjI'(P|A) = prjI'( P'|A') and (A)K = (A')K by assumption,  

   =>  ∃x = (xi)i∈N: (xi)i∈I'∈prjI'(P'|A'), y = xk∈A'k  

   <=>   y ∈ prjk(P'|A'). 

Hence, 

  prjk(P|A) ⊂ prjk(P'|A'). 

Symmetrically, 

  prjk(P|A) ⊃ prjk(P'|A').  

Hence,  

  prjk(P|A) = prjk(P'|A') 

  prjI(P|A) = prjI(P'|A') 

  prjI(P|A) 

   = prjIprjI'(P|A)  (since  I ⊂ I') 

   = prjIprjI'(P'|A') (since prjI'(P|A) = prjI'(P'|A') by assumption)  

   = prjI(P'|A').      QED. 

 
Lemma to Theorem 7. 
Assume  
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  Π = <I, J> < Π' = <I', J'>. Then, if 
  prjI'(P)⊥ µ(P)J' = prjI'(P')⊥ µ(P')J' (1) 
then 
  prjI(P)⊥ µ(P)J = prjI(P')⊥ µ(P')J. (2) 
 
Proof. 
First, we prove the following proposition (A): 
 
(A) If prjI(P) = prjI(P') and I ⊃ J, then  
  prjJ(P) = prjJ(P'). 
 
Proof of Proposition (A). 
Let I = I' ⊥ J. 
Assume x ∈ prjJ(P); by the definition of prj, we have  
  ∃z: z ∈ P, x = (z)J.      
Put y = (z)I. Then, by the assumption of the lemma,  
  y ∈ prjI(P) = prjI(P').  
Hence, 
  ∃z': z'∈P', y = (z')I 
Hence  
  y = (z)I = (z')I and hence x = (z)J = (z')J.  
That is, ∃z': z'∈P', x = (z')J,   
  x∈prjJ(P'),  
  prjJ(P) ⊂ prjJ(P'). 
Likewise, 
  prjJ(P') ⊂ prjJ(P). 
Hence, (A).    
Next, we prove the following proposition (B): 
 
(B) If prjI(P) = prjI(P'), then µ(P)I = µ(P')I. 
 
Indeed, if prjI(P) = prjI(P'), since I ⊃ {ι}, by (A), we have  
  prjiP = prjiP'.  
Then, 
  µ(P)I = µ(⊥i∈IprjiP) = µ(⊥i∈IprjiP') = µ(P')I.  
Hence (B). 
We return to the proof of the Lemma. 
Let K be such that I' = I 4 K, I ∩ K = ∅; J = K 4 J'. Assume (1). Then, we have 
  prjI'(P) = prjI'(P')        (3) 
  µ(P)J' = µ(P')J'. (4) 
By Proposition (A),   
  prjI(P) = prjI(P')  (5) 
  prjK(P) = prjK(P') (6) 
From (6) by Proposition (B),  
  µ(P)K = µ(P')K.  (7) 
Then, we have by (7) and (4) 
  µ(P')J = µ(P')K4J'  
   = µ(P')K⊥µ(P')J'    
     = µ(P)K ⊥µ(P')J'  
   = µ(P')J.              (8) 
By (5) and (8), we have (2).  QED. 
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Appendix 2.  Application 1:  n = 1. "Intransitive" determiners. 

 

PPPP
 
= P(E) : The set of predicates. 

AAAA = P(E) 

µ: AAAA → PPPP.  Identity map. 

 

Partitions:  

∏1 = <ø,{1}>   

∏2 = <{1},ø> 

 

Projections: 

Prj<ø, {1}>(P) = prjø(P)×E = E 

Prj<{1},ø>(P) = prj{1}(P)×∏i∈øE = P  

Prj<ø, {1}>(A, P) = prjø(A, P)×E = E 

Prj<{1},ø>(A, P) = prj{1}(A∩P)×∏i∈øE = A∩P  

 

Intersections: 

α<ø, {1}>(A, P) = {(A'i): A'i = Ai  for i∈ø and A'j = prjj(µA∩P) for j = 1} = A∩P  

α<{1},ø>(A, P) = {(A'i):  A'i = Ai  for i=1 and  A'j = prjj(µA∩P) for j∈ø} = A  

 

ι<ø, {1}>(A, P) = (α<ø, {1}>(A, P),  Prj<ø, {1}>(A, P)) = (A∩P, E) 

ι<{1},ø>(A, P) = (α<{1},ø>(A, P),  Prj<{1},ø>(A, P)) = (A, A∩P) 

 

µ<ø, {1}>(A, P) = µα<ø, {1}>(A, P) ∩ Prj<ø, {1}>(A, P) =  (A∩P)∩E = A∩P 

µ<{1},ø>(A, P) = µαι<{1},ø>(A, P) ∩ Prj
ι
<{1},ø>(A, P) = A∩P  

 
       Int

ε
<{1},ø> ⊃  Int

ε
<ø, {1}>  

          ∥        ∥ 
 Det  ⊃ Con = Int

ι
<{1},ø> ⊃  Int

ι
<ø, {1}>  

        ∪         ∥ 
 ^Det  ⊃ Int

π  ≅ Int
µ
<{1},ø> ⊃  Int

µ
<ø, {1}> 

 

      Diagram 1 for n = 1. 

 

Since ι<ø, {1}>(A, P) = (A∩P, E), ι<ø, {1}>(A, P) = ι<ø, {1}>(A', P') is equivalent to A∩P = A'∩P', and 

this in turn is equivalent to µ<{1},ø>(A, P) = µ<{1},ø>(A', P'). Hence, 

 

Proposition 13. Int
π 
= Int

ι
<ø,{1}>. 

 

With the above 2 propositions, the above Diagram 1 for n=1 is reduced to the following diagram:  

 
       Int

ε
<{1},ø> ⊃  Int

ε
<ø, {1}>  

          ∥        ∥ 
 Det  ⊃ Con = Int

ι
<{1},ø> ⊃  Int

ι
<ø, {1}>  

        ∪         ∥ 
 ^Det  ⊃ Int

π  ≅ Int
µ
<{1},ø> =  Int

µ
<ø, {1}> 

 

    A reduced Diagram 1 for n=1. 
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Now, we note that for n = 1, Det and 
^
Det are canonically isomorphic by identifying D ∈ Det and 

^D ∈ ^Det by D(A, P) = ^D(µA, P). Hence, we can identify Det and 
^
Det. 

 

Proposition 14.  For n = 1, Det = 
^
Det. 

 

It remains to see if Con = Int
ι
 <{1},ø > is a proper subset of Det = 

^
Det and if Int

ι
<ø, {1}> = Int

π ≅ 

Int
µ
<{1},ø> = Int

µ
<ø, {1}> is a proper subset of Con = Int

ι
 <{1},ø >. 

 

Proposition 15. Con = Int
ι
 <{1},ø > is a proper subset of Det = 

^
Det. 

 

Proof:  Let D(A, P) = 1 <=> |A∩P| << |P|, where << reads "proportionately sufficiently small 

number of," say |A∩P|/|P| < 1/10. (We may agree to read "rarely A is P" with the intended sense.)  

If D∈Con = Int
ι
 <{1},ø >, we have  

  D(A, P) = D(A, A∩P).  

But |A∩(A∩P)|= |A∩P| << |A∩P| cannot hold, a contradiction. QED.  

 

Proposition 16.  Int
ι
<ø, {1}> is a proper subset of Con = Int

ι
<{1},ø> . 

 

Proof:  Define D(A, P) by   

  D(A, P) = 1 <=> |A∩P| << |A|.   

Then,  

  A∩P = A∩P'  =>  D(A, P) = D(A, P'). 

Hence,  

   D∈Con.    
Next, assume  

  A∩P = A'∩P' and |A∩P| << |A|.   

From this it does not follow that   

  |A'∩P'| << |A'|.   

Hence,  

  D∉Intι<ø, {1}>.  

 

From Proposition 15 and Proposition 16 Diagram 1 for n=1 further reduces to the following 

diagram.  

 

     ^Det = Det  ⊋   Con = Int
ι
<{1},ø> ⊋ Int

ι
<ø, {1}>  

               || 

       Int
π 
= Int

µ
<{1},ø>  =  Int

µ
<ø, {1}> 

 

          Diagram 2.  

 

We can summarize the above result as follows: 

  

Theorem 9. For n = 1, there are three sets of intersective determiners, which we may call Det 

(determiners), Con (conservative determiners) and Int (intersective determiners): 

   Det ⊋ Con ⊋ Int.  

 (I.e., Det ⊃⊃⊃⊃ Con ⊃⊃⊃⊃ Int and Det ≠ Con ≠ Int.)  
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Appendix 3. Application 2: n = 2.  "Transitive" determiners. 

 

P P P P = P(E
2
) : The set of predicates. 

AAAA = [P(E)]
2: 
the set of argument pairs. 

µ: AAAA → PPPP.  µA = A1 % A2 

 

Partitions:  

∏1 = <ø,{1.2}>   

∏2 = <{1}.{2}> 

∏3 = <{2},{1}>      

∏4 = <{1, 2},ø> 

 

Projections: 

Prj<ø, {1, 2}>(A, P) = E
2
 

Prj<{1},{2}>(A, P) = prj1((A1×A2)∩P)×E  

Prj<{2},{1}>(A, P) = E×prj2((A1×A2)∩P)  

Prj<{1, 2},ø>(A, P) = (A1×A2)∩P 

 

Intersections: 

α<ø, {1, 2}>(A, P) = (prj1((A1×A2)3P), prj2((A1×A2)∩P)) 

α<{1},{2}>(A, P) = (A1, prj2((A1×A2)∩P)) 

α<{2},{1}>(A, P) = (prj1((A1×A2)∩P)), A2) 

α<{1, 2}, ø>(A, P) = (A1, A2)  

 

ι<ø, {1, 2}>(A, P) = (prj1((A1×A2)∩P), prj2((A1×A2)∩P)), E
2
) 

ι<{1},{2}>(A, P) = ((A1, prj2((A1×A2)∩P)), prj1((A1×A2)∩P)×E) 

ι<{2},{1}>(A, P) = ((prj2((A1×A2)∩P), A2), E×prj2((A1×A2)∩P)) 

ι<{1, 2},ø>(A, P) = ((A1, A2), (A1%A2)3P)) 

 

µ<ø,{1, 2}>(A, P) = prj1((A1×A2)∩P)×prj2((A1×A2)∩P)∩E
2
 

                        = prj1((A1×A2)∩P)×prj2((A1×A2)∩P) 

µ<{1},{2}>(A, P) = [A1×prj2((A1×A2)∩P)] ∩ [prj1((A1×A2)∩P)×E] 

                        = [A1∩prj1((A1×A2)∩P)] × [prj2((A1×A2)3P)3E] 

                        = [A1∩prj1((A1×A2)∩P)] × [prj2((A1×A2)3P)] 

       = prj1((A1×A2)∩P)×prj2((A1×A2)∩P) 

µ<{2},{1}>(A, P) = prj1((A1×A2))∩P)×p2((A1×A2)∩P) 

µ<{1, 2},ø>(A, P) = (A1×A2)∩P 

 

Conditions for intersective determiners 

Int
ι
<ø, {1, 2}> :  prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')  

    prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P')   

Int
ι
<{1}, {2}> : A1 = A'1,     

    prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')  

    prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P') 

Int
ι
<{2}, {1}> : A2 =A'2   

    prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')   
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    prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P')  

Int
ι
<{1, 2}, ø> : A1 = A'1, A2 = A'2 

    (A1×A2)∩P = (A'1×A'2)∩P' 

 

Int
ε
<ø, {1, 2}> :  D(A, P) = D((prj1((A1×A2)∩P), prj2((A1×A2)∩P)), E

2
) 

Int
ε
<{1}, {2}> : D(A, P) = D((A1, prj2((A1×A2)∩P)), prj1((A1×A2)∩)×E) 

Int
ε
<{2}, {1}> : D(A, P) = D((prj1((A1×A2)∩P), A2), E×prj2((A1×A2)∩P))  

Int
ε
<{1, 2}, ø> : D(A, P) = D((A1, A2), (A1%A2)∩P) 

Int
µ
<ø, {1, 2}> : prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')  

    prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P') 

Int
µ
<{1}, {2}> :  prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')  

    prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P') 

Int
µ
<{2}, {1}> : prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P')  

    prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P') 

Int
µ
<{1, 2}, ø> : (A1×A2) ∩P = (A'1×A'2) ∩P' 

 

From these conditions for Int
µ
, we have: 

 

Proposition 17. Int
µ
<ø, {1, 2}> = Int

µ
<{1}, {2}>  = Int

µ
<{2},{1}>  = Int

ι
<ø, {1, 2}> 

 

Due to this proposition, we have the following diagram for n = 2. 

 

          Int
ε
<{1, 2}, ø>    Int

ε
<{1}, {2}>   Int

ε
<ø, {1, 2}> 

              ∥          ∥        ∥ 

  Det  ⊃  Con =  Int
ι
<{1, 2}, ø>  ⊃  Int

ι
<{1}, {2}>  ⊃  Int

ι
<ø, {1, 2}>  

              ∪         ∪        ∥ 

  ^Det ⊃  Int
π
  ≅  Intµ<{1, 2}, ø>  ⊃  Int

µ
<{1}, {2}> =  Int

µ
<ø, {1, 2}> 

       

      Diagram 1 for n = 2: 

 

EXAMPLE 1. D(n, m) 

DEFINITION: D(n, m)(A, P) = 1  

                <=>  |prj1((A1×A2)∩P)| = n, |prj2((A1×A2)∩P)| = m.   

Interpretation: "D(n, m)(A, P)" = "n A1s collectively P mA2s." ("collectively" is understood to 

imply "not necessarily each one of the A1s Ps each one of the A2s.") 

For example, '5 dogs are driving 30 cows collectively'.  

 

ASSERTION. D(n, m)∈ Int
ι
<ø, {1, 2}> . 

 

Proof: D(n, m) ∈ Int
ε
<ø, {1, 2}>  

  iff   D(A, P) = D(prj1((A1×A2)∩P), prj2((A1×A2)∩P), E
2
) 

  iff   D(A, P) = 1  

     <=> D(prj1((A1×A2)∩P), prj2((A1×A2)∩P)), E
2
) = 1 

  iff   |prj1((A1∩A2)×P)| = n, |prj2((A1×A2)∩P)| = m    

     <=>  |prj1(prj1((A1×A2)∩P)×prj2((A1×A2)∩P)∩E
2
)|=n, 

                |prj2(prj1((A1×A2)3P)×prj2((A1×A2)∩P)∩E
2
)|=m 
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But   prj1(prj1((A1×A2)∩P×prj2((A1×A2)∩P)∩E
2
) = prj1((A1×A2)∩P 

Similarly,  

  prj2(prj1((A1×A2)∩P)×prj2((A1×A2)∩P)) = prj2((A1×A2)∩P).  QED. 

 

EXAMPLE 2. D(n*m) 

DEFINITION: D(n*m)(A, P) = 1  

    <=>  D(n, m)(A, P) = 1 &  

      prj1((A1×A2)∩P)×prj2((A1×A2)∩P) =(A1×A2)∩P. 

INTERPRETATION. "D(n*m)(A, P)" = "n A1s together P m A2s".  ("Together" is understood to imply 

"all n A1s P all m A2s.") 

For example, '5 dogs are (each) driving (the same) 30 cows'.  

 

ASSERTION 1. D(n*m)∉ Int
ε
<ø, {1, 2}> =. Int

µ
<{1}, {2}>.  

 

Proof:  Assume D(n*m)∈ Int
ε
<ø, {1, 2}> and derive a contradiction. By assumption,  

 D(n*m)(A, P) = D(n*m)(ι<ø,{1, 2}>(A, P))  

  = D(n*m)((prj1((A1×A2)∩P), prj2((A1×A2)∩P), E
2
) 

By definition of D(n*m), 

 D(n*m)(ι<ø, {1, 2}>(A, P)) = 1  

  iff  D(n, m)(ι<ø, {1, 2}>(A, P)) = 1 and  

   prj1[(prj1((A1×A2)∩P)×prj2((A1×A2)∩P))∩E
2
]
 

    ×prj2[(prj1((A1×A2)∩P)×prj2((A1×A2)∩P))∩E
2
]      (1) 

    =(prj1((A1×A2)∩P)×prj2((A1×A2)∩P))∩E
2
.     (2) 

Now,  

  prj1[([prj1((A1×A2)∩P)]×[prj2((A1×A2)∩P)]∩E
2
]= prj1((A1×A2)∩P)   

  prj2[([prj1((A1×A2)∩P]×[prj2((A1×A2)∩P)]∩E
2
]= prj2((A1×A2)∩P). 

Hence,  

 (1) = (2). 

Hence,  

 D(n*m)(ι<ø, {1, 2}>(A, P)) = 1 iff D(n, m)(ι<ø, {1, 2}>(A, P)) = 1.       (3) 

Since D(n*m)∈ Int
ε
<ø, {1, 2}>,  

we have from (3) 
  D(n*m)(A, P)= 1 iff D(n, m)(A, P) = 1.   

But certainly there can be A such that D(n*m)(A, P) ≠ D(n, m)(A, P), hence a contradiction.  QED. 

 

ASSERTION 2.  D(n*m)∈ Int
µ
<{1, 2}, ø>. 

 

Proof:  Assume  

 µ<{1, 2},ø>(A, P) = µ<{1, 2},ø>(A', P').   

Then, 

 (A1×A2)3P = (A'1×A'2)∩P'. 

Hence,  

 D(n*m)(A, P) = D(n*m)(A', P'). 

 

From EXAMPLE 2, Assertion 1 and Assertion 2, we have: 

 

Proposition 18. Int
µ
<{1, 2}, ø> ≠ Int

µ
<{1}, {2}> =

 
Int

ι
<ø, {1, 2}> =  Int

µ
<ø, {1, 2}>.
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ASSERTION 3.  D(n*m) ∉ Int
ι
<{1}, {2}>.

 

 

Proof:  Take A1, A2, and P such that  

 D(n*m)((A1, A2), P) = 1.
  

Then,  

 D(n, m)((A1, A2), P) = 1.  

Take P' such that  

 D(n, m)((A1, A2), P') = 1. 

On the other hand, 

 D(n*m)((A1, A2), P) =  0.
 

Then, by definition of
 
D(n, m),

 

 |prj1((A1×A2)∩P)|
 
= |prj1((A1×A2)∩P')| = n, 

 
|prj2((A1×A2)∩P)|

 
=

 
|prj2((A1×A2)∩P')| = m. 

It follows that  
 

prj1((A1×A2)∩P)
 
=

 
prj1((A1×A2)∩P') = n, 

 
prj2((A1×A2)∩P) =

 
prj2((A1×A2)∩P') = m. 

Then, if D(n*m)∈Int
ι
<{1},{2}>, we have

  

 D(n*m)((A1, A2), P) = D(n*m)((A1, A2), P'), a contradiction. 

 

From ASSERTION 3, we have 

 

Proposition 19.  Int
µ
<{1, 2}, ø> ⊄ Int

ι
<{1}, {2}> . 

 

EXAMPLE 3. D(M, m)(A, P)  

DEFINITION.  D(M, m)(A, P) = 1  

     <=> |prj1((A1×A2)∩P)| > 1/2|A1|, |prj2((A1×A2)∩P)| = m.  

INTERPRETATION: "most of the A1s collectively P m A2s." 

For example, 'most of the dogs are driving 30 cows collectively'. 

 

ASSERTION 1  D(M, m) ∈ Int
ε
<{1}, {2}> = Int

ι
<{1}, {2}> 

 

Proof:  

 D(M, m)(ι<{1},{2}>(A, P)) = D((A1, prj2((A1×A2)∩P)), prj{1}((A1×A2)∩P)×E). 

Put   

 B = (B1, B2) = (A1, prj2((A1×A2)∩P), Q = prj{1}((A1×A2)∩P)×E.  

Now,  

 (B1×B2)∩Q  

  = [A1×prj2((A1×A2)∩P)]∩[prj{1}((A1×A2)∩P)×E]  

  = [A1∩prj{1}((A1×A2)∩P)]×[prj{2}((A1×A2)∩P)∩E]. 

Hence,  

 prj1((B1×B2)∩Q) = A1∩prj{1}((A1×A2)∩P) = prj{1}((A1×A2)∩P) 

 prj2((B1×B2)∩Q) = prj2((A1×A2)∩P) 

 D(M, m)(ι<{1},{2}>(A, P)) = D(M, m)(B, Q) = 1  

    <=> |prj{1}((A1×A2)∩P)|> 1/2|B1|, |prj2((A1×A2)∩P)| = m. 

    <=> |prj{1}((A1×A2)∩P)|> 1/2|A1|, |prj2((A1×A2)∩P)| = m. 

    <=> D(A, P) = 1. 

 i.e.,  D(M, m)(A, P) = D(M, m)((ι<{1},{2}>(A, P)). 
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Hence,  

 D(M, m)∈ Int
ι
<{1},{2}> = Int

ε
<{1}, {2}>. QED. 

 

ASSERTION 2. D(M, m) ∉ Int
ε
<ø, {1, 2}> = Int

ι
<ø, {1, 2}>. 

 

Proof: Assume D(M,m) ∈ Int
ε
<ø,{1, 2}> and derive a contradiction. 

 D(M,m)(ι<ø, {1, 2}>(A, P)) 

.  = D(M,m)((prj{1}((A1×A2)∩P), prj{2}((A1×A2)∩P)), E
2
) 

 prj1(prj1(A1×A2)∩P)×prj2((A1×A2)∩P) = prj1((A1×A2)∩P) 

Hence, if D(M, m) ∈ Int
ε
<ø,{1, 2}>,  

 |prj1((A1×A2)∩P)∩E| = |prj1((A1×A2)∩P)| > 1/2 |prj1((A1×A2)∩P)|, 

a contradiction. 

 

From Assertions 1 and 2, we have: 

 

Proposition 20. Int
ι
<{1}, {2}> ≠ Int

ι
<ø, {1, 2}>. 

  

Corollary. Int
ι
<{1}, {2}> ⊋ Int

µ
<{1}, {2}>. 

 

For, since Int
µ
<{1}, {2}> =

 
Int

ι
<ø, {1, 2}> by Proposition 17, if Int

ι
<{1}, {2}> = Int

µ
<{1}, {2}>, then we have 

Int
ι
<{1}, {2}> = Int

ι
<ø, {1, 2}>, contradicting the proposition. 

 

EXAMPLE 4.  D(∃⊂n, m)(A, P) 

DEFINITION.  D(∃⊂n, m)(A, P) = 1 <=> |A1| = n, |prj{2}((A1×A2)∩P)| = m.  

Interpretation. "some of the n A1s P m A2s." 

For example, 'some of the 5 dogs are driving m cows'. 

 

ASSERTION 1.  D(∃⊂n, m) ∈ Int
ι
<{1}, {2}>. 

 

Proof:  

 ι<{1}, {2}>(A, P) = ι<{1}, {2}>(A', P')  

  iff A1 = A'1, 
   prj1((A1×A2)∩P) = prj1((A'1×A'2)∩P') 

   prj2((A1×A2)∩P) = prj2((A'1×A'2)∩P'). 

Then, if ι<{1}, {2}>(A, P) = ι<{1}, {2}>(A', P') 

   |A1| = |A'1|  

   |prj2((A1×A2)∩P)| = |prj2((A'1×A'2)∩P')| 

and hence, 

 D(∃⊂n, m)(A, P) = D(∃⊂n, m)(A', P').  

It follows that D(∃⊂n, m)∈Int
ι
<{1}, {2}>.  QED. 

 

ASSERTION 2.  D(∃⊂n, m) ∉ Int
µ
<{1, 2}, ø>. 

 

Proof: Assume µ<{1, 2}, ø>(A, P) = µ<{1, 2}, ø>(A', P'). 

Then, 

 (A1×A2)∩P = (A'1×A'2)∩P'.          (1) 
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There are A1, A2, A'1, A'2 such that (1) holds but not |A1| = |A2|.  

Hence, from µ<{1, 2}, ø>(A,P)=µ<{1, 2}, ø>(A',P') it does not follow that D(∃⊂n, m)(A,P)=D(∃⊂n, m)(A',P'). 

QED. 

 

We can conclude from Assertions 1 and 2.  

 

Proposition 21. Int
µ
<{1, 2}, ø> ⊅ Int

ι
<{1}, {2}> . 

 

Finally, from Propositions 19 and 21 we derive 

 

Proposition 22. Int
ι
<{1, 2}, ø> ⊋ Int

ι
<{1}, {2}> and Int

ι
<{1, 2}, ø> ⊋Int

µ
<{1, 2}, ø>.  

 

Proof: Since 

 Int
ι
<{1, 2}, ø> ⊃ Int

ι
<{1}, {2}>,   

if  

 Int
ι
<{1, 2}, ø> = Int

µ
<{1, 2}, ø>, 

we have 

 Int
µ
<{1, 2}, ø> ⊃ Int

ι
<{1}, {2}>, contradicting Proposition 19. 

Furthermore, since  

 Int
ι
<{1, 2}, ø> ⊃ Int

µ
<{1, 2}, ø>,  

if  

 Int
ι
<{1, 2}, ø> = Int

ι
<{1}, {2}>,  

we have 

  Int
ι
<{1}, {2}> ⊃ Int

µ
<{1, 2}, ø>, contradicting Proposition 21.  

Hence the proposition. 

 

Diagram 1 for n = 2 is now reduced as below in Diagram 3. 

 

                Int
ε
<{1, 2}, ø>    Int

ε
<{1},{2}>    Int

ε
<ø, {1, 2}> 

                ∥         ∥         ∥ 

  Det   ⊃  Con  =   Int
ι
<{1, 2}, ø>  ⊋   Int

ι
<{1}, {2}>  ⊋  Int

ι
<ø, {1, 2}>  

             ∪∦        ∪∦        ∥ 

  ^Det  ⊃  Int
π
   ≅   Int

µ
<{1, 2}, ø>   ⊋  Int

µ
<{1}, {2}>  =  Int

µ
<ø, {1, 2}> 

 

          Diagram 3. n = 2. 

 

In this diagram the case for ∏ = <{2}, {1}> is not included. Since we have symmetry between 

<{1}, {2}> and <{2}, {1}>, we can draw a symmetric diagram for <{2}, {1}>. To conclude, we 

can state the following theorem: 

 

Theorem 10. There are five binary sets of intersective determiners:  

 Con = Int
ι
<{1, 2}, ø> :     Conservative determiners  

 Int
π
 ≅ Intµ<{1, 2},ø>  :      Intersective set-determiners 

 Int
ι
<{1},{2}>  :      {1}-polarized partial intersective determiners 

 Int
µ
<{2},{1}> :      {2}-polarized partial intersective determiners 

 Int
µ
<{1}, {2}> = Int

µ
<ø,{1, 2}> = Int

ι
<ø, {1, 2}> : Intersective argument-determiners. 

 



      The Mathematics of Determniners 

 

 

 

 

 

183

References 

 
Barwise, Jon, and Robin Cooper. 1981. Generalized quantifiers and natural language. Linguistics  & Philosophy 4.159-

219. 

Keenan, Edward L. 1981. A boolean approach to semantics. In J. Groenendijk, T. Janssen and M. Stokhof (eds.), 

Formal Methods in the Study of Language. Amsterdam: Mathematisch Centrum. 343 - 379. 

Keenan, Edward L. 1987. A semantic definition of "indefinite NP", E. Reuland and A. ter Meulen eds. The 

representation of (in)definiteness. Cambridge, Mass: MIT Press. 286-319. 

Keenan, Edward. L. 2002. Some properties of natural language quantifiers. Linguistics and Philosophy 25.627–654. 

Kuroda, S.-Y. 2004. Intersective determiners. ms.  

Kuroda, S.-Y. To appear. HIRC, QF and the Definiteness Effect. In Yukinori Takubo ed. Japanese/Korean Linguistics 

10. Stanford: CSLI Publications. 

 

S.-Y. Kuroda 

Department of Linguistics 

University of California, San Diego 

sykuroda@ucsd.edu 

 




