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Abstract

Range expansion rates vary by species, habi-
tat, and time since initiation. These speeds are
a key issue in the analysis of biological invasions
and a wide variety of mathematical models address
them. Many such models may provide an ade-
quate estimate of invasion speeds, and hence, an
adequate qualitative fit to spread data. In general,
however, because of flexibility in choice of disper-
sal kernels, integrodifference equation (IDE) mod-
els are superior to reaction-diffusion (RD) models
when spread rates increase through time. Never-
theless, additional differences in model complexity
may arise through different approaches for deal-
ing with habitat, and temporal, variability. This
diversity of potential methodologies suggests the
need for quantitative model selection criteria, al-
though to our knowledge, IDE models have not
been compared to RD models with diffusion that
varies in space and time. To demonstrate our ap-
proach for choosing between a suite of spatially-
explicit models that vary in complexity, we use the
classic California sea otter range expansion data
and the Akaike Information Criterion, which bal-
ances fit and parsimony. Our results show that

the increasing speeds in the otter range expansion
overwhelmingly support an IDE model for charac-
terizing the entire data set. When focusing on
certain stages of the range expansion, however,
the more parsimonious reaction-diffusion model
can provide the best description. Thus, the ideal
spatial modeling framework can depend upon the
temporal scale of the question.

1. Introduction

The rate at which invading organisms spread
through new habitats is a key issue in the analysis
of biological invasions. Since the seminal works of
Fisher and Skellam (Fisher 1937; Skellam 1951)
reaction-diffusion equations have been widely used
to calculate these rates, which are often called in-
vasion speeds, or “wave speeds”. Thus, through
long familiarity, the reaction–diffusion framework
has become the workhorse of spatial ecology,
where continuous space is concerned. Reaction-
diffusion equations provide intuitive descriptions
of interacting individuals that also redistribute
themselves in space. Furthermore, when the in-
teraction term is simple, these models can be
solved analytically; most nonlinear forms, how-
ever, are intractable and must be solved numeri-
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cally. Nevertheless, in the last 10− 15 years, with
advances in desktop computing and mathematical
ecology, integrodifference equation (IDE) models
have proved similarly useful for analyzing spatio-
temporal data (Kot et al. 1996). To our knowl-
edge, however, these spatially-explicit modeling
frameworks have not both been used to analyze
the same data, and the results compared within
a rigorous statistical framework. Thus, rather
than rely on the popularity of reaction-diffusion
models, we also used IDE models to analyze the
classic data from the California sea otter (Enhydra
lutris) range expansion, and let the data and the
principle of parsimony dictate which has the most
support through the Akaike Information Criterion
(Burnham and Anderson 2002).

Although it is well-known that IDE models
can generate accelerating invasion fronts (Kot
et al. 1996), it is not obvious how they compare
to reaction–diffusion models with diffusion that
varies temporally. Casual inspection of the otter
recolonization of the California coast (see e.g., Lu-
bina and Levin 1988) suggests that spread rates
do indeed vary, a characteristic shared with data
from other invasions (Shigesada and Kawasaki
1997). Indeed, the otter data are rich in that
spread rates appear to vary in both space and
time, so that it is natural to ask, which model-
ing framework can best, and most parsimoniously,
reproduce these patterns? In particular, is the in-
crease in parameter number associated with treat-
ing habitats, and epochs, separately warranted?
And, finally, do the answers to these questions
change with the temporal scale of the question?
To address these questions, we created a suite
of RD and IDE models that vary in complexity
and used standard model identification techniques
(Burnham and Anderson 2002) to rank the mod-
els, using the sea otter data as arbiter. Because
the otter data share features with data from other
range expansions, our results are likely to be quite
general.

2. Background and Natural History

The California sea otter is a keystone species
(Estes et al. 1998) that was hunted to near extinc-
tion over most of its native range, including the
coasts of much of the North Pacific ocean (Kenyon
1969). In 1914, however, a remnant population of
otters was found at Point Sur, CA (Lubina and
Levin 1988). Following protection, the otters have
expanded their range with both northward and

southward fronts along the coast. Range expan-
sion occurs laterally along the coast because otters
generally occupy a narrow band of coastline out to
water depths ranging from 22m (Wendell 1994) to
40m (Laidre et al. 2001). Upon depletion of pre-
ferred prey within this band (Estes et al. 2003), ot-
ters switch to less favored prey (Ostfeld 1982), of-
ten altering community composition in the process
(Kvitek et al. 1992), and eventually relocate to un-
exploited feeding areas (Garshelis and Garshelis
1984; Wendell et al. 1986; Wendell 1994).

Otter population density can drive resource de-
pletion, and hence force range expansion, which
occurs gradually (Garshelis et al. 1984) or by
jumps of up to 127km for adults and 187km for
subadults (Jameson 1989). Thus, the time-scale of
range expansion is related, at least in part, to pop-
ulation increase. In California, otters usually have
a single pup after 4–6 months gestation, followed
by approximately 6 months post-natal dependency
(Riedman et al. 1994). Otter births occur year-
round, and although peak seasons have been noted
(Garshelis et al. 1984), they have also been found
insignificant (Riedman et al. 1994; Monson and
DeGrange 1995). Accounts of survival are simi-
larly variable (see e.g., Riedman et al. 1994; Mon-
nett and Rotterman 2000), as are reported popula-
tion growth rates. The maximum rate of increase
is estimated at 20% per year, although 5–6% is
more typical in California (Riedman et al. 1994).

3. Modeling Otter range expansion

Because otters reproduce year-round, but may
show seasonal peaks, it is not clear whether mod-
els of continuous or discrete reproduction are most
appropriate. Thus, to minimize the extent to
which our results are driven by the time–scale
of reproduction, we use the continuous logistic
growth equation in our continuous-time RD mod-
els and its integral in our discrete-time IDE mod-
els. Differences between the predictions of the
models should therefore primarily reflect differ-
ences in the way dispersal is modeled.

3.1. Population parameters

We estimated the instantaneous population
growth rate r = 0.056yr−1 of the logistic equation
by calculating the best-fit straight line through
log population size over the epoch for which it was
approximately linear (Fig. 1a) (Lubina and Levin
1988). This estimate is similar to those obtained
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Fig. 1.— Estimates of population parameters for the California sea otter. a) The instantaneous population
growth rate r. b) The carrying capacity K. See text for details of the estimation procedures.

by Riedman et al. (1994) (r = 0.05), Eberhardt
(1995) (r = 0.095) and Eberhardt and Schneider
(1994) (r = 0.049). To estimate carrying capacity
K = 7.54/km, we averaged the population density
during times for which the population density was
relatively constant (Fig. 1b). Note that during
these times, total population size and total range
increased, but density taken over the entire pop-
ulation varied little. Other research corroborates
the potential for sea otter habitat saturation in
both California (Laidre et al. 2001) and Washing-
ton State (Laidre et al. 2002).

3.2. Reaction-diffusion and integrodiffer-
ence equation models

To model reproduction and dispersal in con-
tinuous time, we used partial differential equation
models, usually referred to as reaction-diffusion
models in ecology (Murray 2002). Reaction-
diffusion equations of the form,

∂n(x, t)
∂t

=

reaction︷ ︸︸ ︷
f(n(x, t)) +

diffusion︷ ︸︸ ︷
D∇2n(x, t), (1)

have a long history in ecology (Holmes et al. 1994)
and with the addition of advection (Lubina and
Levin 1988) or diffusion coefficients that vary in
space, can be used to model populations that
spread at different rates in different directions. In
Eq. (1) n(x, t) is population density in space and
time, f(n) is a population growth function, D is
the diffusion constant, t is time and ∇2, known
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Fig. 2.— Range expansion of the California sea
otter between 1914 and 1986 in the northward
and southward directions, and total distance, from
their source at Point Sur, CA. Note the relatively
slow early expansion, followed by a relatively fast
later phase.

as the Laplacian, represents the second spatial
derivative. In what follows, for readability, we sup-
press the subscripts (x, t), except where necessary
for clarity.

As a model of spatial spread, Eq. (1) has sev-
eral desirable features. For example, with rel-
atively few parameters, it describes both local
population dynamics and neighborhood diffusion.
Nevertheless, some of the assumptions underlying
Eq. (1) may make it inappropriate for analyzing
some data. For example, continuous time implies
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year-round reproduction, which is obviously only
an approximation for seasonally reproducing ani-
mals. Additionally, the Laplacian implies that dis-
persal distances are normally distributed, which
is unlikely to be universally applicable. Thus, in
practice, using RD models requires these assump-
tions be satisfied, or alternatively, demonstrating
that Eq. (1) balances parsimony with an adequate
fit to the data better than more complex models
that relax these assumptions.

Indeed, although the reaction-diffusion frame-
work has proved useful in many applications (e.g.,
Fisher 1937; Skellam 1951), there are two rela-
tively common features of range expansions that
these models fail to capture. First, the beginning
of many invasions are marked by relatively slow
range expansion and then, following some thresh-
old crossing (see, e.g., Mack et al. 2000), pro-
ceed at increased rates (Shigesada and Kawasaki
1997, chap. 2). This pattern (Fig. 2) is in
contrast to the single, constant spread rate pre-
dicted by reaction-diffusion equations. Second,
and closely related to such non-constant spread
rates, many empirical distributions are leptokur-
tic, having thicker tails and narrower shoulders
than the normal distribution (Kot 2003). Nev-
ertheless, increasing the complexity of Eq. (1) so
that diffusion D(x, t) depends on both space and
time could reasonably account for both these fea-
tures of the data. Thus, although data from the
entire range expansion may violate the assump-
tions of a simple version of Eq. (1), by compar-
ing models of differing complexity, we can test the
importance of such violations, relative to the im-
portance of parsimony.

Additionally, because model identification pro-
cedures allow for comparison of models with dif-
fering numbers of parameters, we can simultane-
ously compare IDE models that also vary in com-
plexity. IDE models sometimes provide more ac-
curate predictions of invasion speeds, principally
because of the wide variety of dispersal kernels
they allow. For example, Kot et al. (1996) showed
that the fat-tailed square root exponential dis-
persal kernel fit Drosophila dispersal data better
than a suite of other forms. Such fat-tailed dis-
persal kernels generate increasing wave speeds in
IDE models. We therefore compare a range of
models in the reaction-diffusion partial differential
equation family, that vary in detail from simple
to complex, to integrodifference equations with a
comparable range of complexity in dispersal ker-

nels. This allows us to address the issue of tem-
poral variability in range expansion rates with a
single model description (IDE) or with diffusion
that varies in time (RD). Similarly, we address
the issue of spatial variability in spread rates by
using separate dispersal kernels (IDE) and diffu-
sion constants (RD) to analyze data from different
habitats.

The basic integrodifference equation is,

nt+1(x) =
∫ +∞

−∞
k(|x − y|)f(nt(y)) dy (2)

which is built around fundamentally different as-
sumptions than reaction–diffusion. Eq. (2) relates
the population size in the next time period, at any
location x, to population growth at each spatial lo-
cation y in the current time period and the prob-
ability of arriving at x from y. The first difference
between this model and Eq. (1) is that time is
discrete making this model appropriate for organ-
isms that reproduce in pulses. For example, nt(x)
is the population density at spatial location x in
year t, while nt+1(x) is density at x the following
year. Second, notice that k(|x − y|), the dispersal
kernel, can be any appropriate probability distri-
bution and that the probability of moving from y
to x depends only on the distance |x−y|. The pop-
ulation growth function, f(nt(y)), is analogous to
the reaction term in our reaction-diffusion equa-
tions.

The primary reason that Eq. (2) is an inter-
esting and successful innovation in mathematical
ecology is that different dispersal kernels make
very different predictions about the rate of spread
of organisms (Kot et al. 1996). Models with habi-
tat or time-dependent dispersal kernels vary in pa-
rameter number, however, again suggesting the
need for balance between model complexity and
fit. Thus, quantitative methods for balancing the
trade–off between flexibility and model complex-
ity (i.e., parameter number) are especially impor-
tant in pattern-rich data sets, such as the sea otter
range expansion data.

3.2.1. Generalized exponential dispersal kernel
for IDE models

In practice, we defined

z = |x − y|, (3)

so that k(z) in Eq. (2) is the normalized kernel,
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k(z) =
K(z)

||K(z)|| , (4)

where,

||f(x)|| =
∫ +∞

−∞
f(x)dx, (5)

and,

K(z) = e−α|z|β ; α,β ∈ $ ≥ 0. (6)

Eq. (6) describes a simple symmetric ker-
nel yielding identical dispersal in both directions.
Note that if β = 2, Eq. (6) is the normal kernel
used by the reaction diffusion model and that if
β < 1, Eq. (6) becomes a generalization of the
fat-tailed square root exponential kernel,

K(z) = e−
√

z , (7)

known to lead to accelerating wave fronts (Kot
et al. 1996) such as those apparent in the otter
data. Indeed, the maximum dispersal distances
cited above in §2 suggest some form of fat-tailed
dispersal kernel. Eq. (6) generalizes Eq. (7) in two
ways. First, rather than specify the square root as
the power (i.e., β = 1/2), we fit the spread rate to
find the power β. Second, we multiply this root by
a constant α > 0, which rescales z. Note that Eq.

(6) can generate a variety of spread rates, depend-
ing on α and β, but that whether the advantages
of eq. (6) over eq. (7) outweigh the increase in pa-
rameter number is an empirical question that will
be resolved by the AICC calculation described in
§4−4.1. Thus, by generalizing the square root ex-
ponential kernel described in Eq. (7), we allowed
the data to specify the form of the kernel, rather
than imposing an a priori shape.

Different choices of α and β in Eq. (6) modify
the shape of the dispersal kernel and hence, alter
the spread rate of the invasion. Indeed, the effects
of α and β are most transparent when we con-
sider their effects on population spread. Thus, to
demonstrate the effects of α and β on population
spread, we arbitrarily defined density n = 0.01 as
the leading edge of the wave, numerically solved
the model, and plotted invaded distance vs. time
(Fig. 3). Decreases in β primarily alter the rate of
change in the speed of the invasion wave. This can
be seen in the population spread by an increase in
the curvature of the distance vs. time curve (Fig.
3, dashed line). In contrast, increases in α pri-
marily rotate the entire curve downwards, hence
decreasing speeds, but have less effect on the rate
of change in the speeds (Fig. 3, dash-dot line).

3.3. Numerical solutions

We used Forward-Euler methods with Neu-
mann boundary conditions to numerically solve
the reaction-diffusion equations. We used Mat-
lab’s implementation of the fast fourier transform,
FFT , to convolve the integrals in the integrod-
ifference equations. Finally, we used Matlab’s
fminsearch, an implementation of the Nelder-
Meade simplex optimization algorithm (Press
et al. 2002), to minimize the log-likelihoods. In
both the RD and IDE modeling frameworks, we
discarded initial model solutions and fit observed
differences in the data to those predicted by the
models after the solutions approached their long-
time behavior. Our spatial discretization was
∆x = 0.01, while in the RD framework, our tem-
poral discretization was ∆t = 0.0001. To in-
crease flexibility, we multiplied the integer-valued
observed range extent increases by the constant
1.815, which allowed for fractional predicted range
increases, and hence smoother model predictions.
Note that this transform affects α and β in the
IDE results, but does not affect our estimates
of c and D in the RD results. We calculated
the constant speed of the advancing recoloniza-
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tion front generated with the RD model by it-
erating the model until a constant speed c was
approached, then solving the model for the du-
ration of the epoch of interest and calculating
c = distance/time. To calculate diffusion con-
stants, we rearranged the well-known relationship,

c = 2
√

rD, (8)

to obtain,

D =
1
r

( c

2

)2
. (9)

In the present case, speeds are in terms of km
yr and

diffusion constants in terms of km2

yr . Our initial
population distribution was x̃, the 11km remnant
population at Point Sur, CA (Lubina and Levin
1988).

4. The likelihood function and model
identification

Given data and a suite of models, model iden-
tification procedures use a likelihood function to
quantify the fit of each model to the data. Such
likelihood functions specify the stochastic distri-
bution of observations around the deterministic
expectation (i.e., the model prediction). Note that
because the cumulative otter range extents are not
independent in time, we do not fit our models
to the cumulative range expansion. Instead, we
assume that the differences in range extent from
year-to-year are normally distributed around the
predicted differences of the deterministic model.
Specifically, letting Lj be the likelihood of the jth

transition in the data dj (i.e., the range increase
between times t and t+1), given model transition
mj , the assumption of normality yields,

Lj = (mj − dj)2. (10)

Thus, the likelihood L of all the range increases
is the sum of the squared errors between each
predicted model range increase, and the observed
range increases in the data. Note that this ap-
proach assumes measurement-error-only, which we
deem acceptable given the resolution of the data,
but that process error can also be incorporated in
such analyses (see e.g., Wikle 2003; Hooten et al.
2007).

4.1. ∆i and strength of evidence

To avoid over-fitting, a model identification
procedure must penalize more complex models
for additional parameters. Thus, we used the
corrected Akaike Information Criterion (AICC),
which provides a quantitative means of identifying
models that are both most parsimonious and best
supported by the data (Burnham and Anderson
2002). The AIC is a likelihood-based statistic that
allows comparison of multiple hypotheses or mod-
els (Taper 2004). Specifically, letting Li(θ̂i) be the
likelihood of model i with maximum-likelihood pa-
rameter(s) θ̂i, number of model parameters ki, and
number of observations ni, AICCi is given by,

AICCi =

AIC︷ ︸︸ ︷
−2log(Li(θ̂i)) + 2ki +

small sample correction︷ ︸︸ ︷
2ki(ki + 1)
ni − ki − 1

. (11)

In practice, letting AIC∗ be the lowest AICCi

score, we calculated ∆i as the difference between
the AICCi of the ith model and AIC∗. That is

∆i = AICCi − AIC∗. (12)

Models generating AICCi such that ∆i ≥ 2 are
statistically distinguishable from the model gener-
ating AIC∗, while ∆i ≥ 5 indicates very strong
support for the best model, making ∆i a useful
metric for interpreting results (Taper and Gogan
2002). Note that such inferences depend on both
the suite of models considered, and the data. In
other words, if additional data were available, the
model yielding AIC∗ could change. Similarly, if
additional information became available that sug-
gested a new model, the rank order of ∆i could
change. Far from being a weakness, this is a
strength of the approach because, given current
information, it ensures we use the model(s) with
the lowest estimate(s) of the expected, relative dis-
tance between the model(s) and the generally un-
knowable true mechanism that generated the ob-
servations (Burnham and Anderson 2002).

5. Model variants suggested by the data

5.1. Case 1: Singe dispersal kernel

Fitting a single model to all the data sug-
gests that habitat-, and time-specific differences
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in spread are not important. Thus, this approach
reveals the most general description of the data,
and treats any spatial and temporal variability as
noise around the deterministic prediction of a sin-
gle reaction-diffusion process. The simplest RD
model we considered for this purpose was Eq. (1)
with, f(n) represented by logistic growth,

f(n) = rn(1 − n

K
), (13)

where here and in all the following models r is
the intrinsic population growth rate and K is the
carrying capacity. In Eq. (1), D is the diffusion
constant, which in this case is the same in both di-
rections (the shoreline can usefully be thought of
as one-dimensional). Eq. 1 serves as our null hy-
pothesis because more detailed models must over-
come penalties for the additional parameters ac-
companying increased model complexity. For ex-
ample, movement rates may be importantly differ-
ent in the northward and southward directions, or
more generally, in different habitats. As discussed
above, this trend is indeed qualitatively apparent
in the sea otter range expansion data (Fig. 2a),
though its relative importance remains unquanti-
fied.

Similarly, the simplest integrodifference equa-
tion we analyzed has a single, symmetric dispersal
kernel. Removing the absolute value from eq. (2)
to address asymmetric kernels later, gives us the
general integrodifference equation

nt+1(x) =
∫ +∞

−∞
k(x − y)f(nt(y))dy, (14)

where

f(nt(x)) =
Cert

(1 + C
K ert)

, (15)

is the integral of the logistic growth equation with
initial population size C.

5.2. Case 2: Separate north and south dis-
persal kernels

Northward and southward spread rates may
be different because of habitat differences along
the California coast, which alter the rate that ot-
ters colonize new territories. Although the otter
spread rate data suggest that northward range ex-
pansion was slower than southward, it is not at

all obvious whether this difference warrants addi-
tional model parameters or whether a single diffu-
sion constant can adequately describe both rates,
by essentially averaging them. To test whether
separate northward and southward diffusion con-
stants are warranted, we allowed the diffusion co-
efficient to vary in space D(x),

∂n

∂t
= f(n) + D(x)∇2n, (16)

with D(x) given by,

D(x) =

{
Dn, x > x̃

Ds, x ≤ x̃.
(17)

Here Dn represents the northward diffusion con-
stant, Ds the southward diffusion constant, and x̃
the location of the remnant source population.

Another way to account for the southward bias
in the data is to include an advection term in the
reaction-diffusion equation as Lubina and Levin
(1988) did, giving,

∂n

∂t
= f(n) + D∇2n + a

∂n

∂x
. (18)

Equation (18) says that the population changes
according to f(n), diffusive spread, and advec-
tive displacement, which shifts the center of the
distribution at a rate, and direction, governed
by the magnitude and sign, respectively, of a.
Thus, Eq. (18) suggests that diffusion rates are
identical in northerly and southerly habitats, but
that southerly coastal currents hinder net north-
ward spread and accelerate net southward spread.
While advection provides a plausible hypothesis
for the southward bias in spread rates, after care-
ful analysis of the otter data and the conditions
on the California coast, Lubina and Levin (1988)
conclude that advection is unlikely to account for
the bias in this case, and so we do not consider it
further here.

To accommodate differences in the speed of
range expansion in the northward and southward
directions for the IDE model, we created an asym-
metric version of the exponential dispersal kernel.
In this case, with z given by Eq. (3), k(z) can be
defined by cases analogous to eq. (17). Specifi-
cally,

k(z) =

{
ks = exp(−αszβs), x < x̃,

kn = exp(−αnzβn), x ≥ x̃,
(19)

7



where x̃ is again Point Sur, CA, the boundary be-
tween the northward and southward fronts. The
kernel in Eq. (19) thus allows for distinct disper-
sal probability distributions for the northern and
southern habitats, although with twice the num-
ber of parameters of Eq. (17).

5.3. Case 3: Separate early and late dis-
persal kernels

Inspection of both the northward and south-
ward sea otter range expansion data reveals an
obvious discontinuity in spread between t̃ = 1972
and 1973. Furthermore, the rates of spread before
and after this event appear to be substantially dif-
ferent, with range expansion proceeding at much
faster rates post-1972. These features of the data
suggest a temporal partition into pre–1973 and
post–1973 epochs, which we call the early e and
late l epochs.

Allowing diffusion rates D(t) to vary with time
yields,

∂n

∂t
= f(n) + D(t)∇2n, (20)

where

D(t) =

{
De, t < t̃,

Dl, t ≥ t̃.
(21)

A similar temporal partition in our IDE model
yields two equations, one for the early epoch and
one for the late, with the difference appearing in
the parameters of the dispersal kernel,

k(z) =

{
ke = exp(−αezβe), t < t̃,

kl = exp(−αlzβl), t ≥ t̃.
(22)

5.4. Case 4: Different early, late, north,
and south rates

Cases 2 and 3 allow us to evaluate the relative
importances of habitat differences and temporal
differences in sea otter spread rates. Despite the
potential for superiority of one of these, models
that account for both may also be useful. Thus,
because of the apparent increase in rate with time
in both directions, we also explored a model with
an early and late diffusion coefficient for both the
north and south directions. This resulted in four
values of D(x, t),

∂n

∂t
= f(n) + D(x, t)∇2n, (23)

where

D(x, t) =






Dn,e, x > x̃ and t < t̃,

Dn,l, x > x̃ and t ≥ t̃,

Ds,e, x ≤ x̃ and t < t̃,

Ds,l, x ≤ x̃ and t ≥ t̃.

(24)

Thus, diffusion proceeds at the slow (or fast)
northward (or southward) rate, depending whether
the range expansion is in the early (or late) stages,
and whether the spread occurs north (or south) of
x̃. Note that this approach remains valid in the
more general case in which temporal discontinu-
ities do not occur simultaneously in the habitats
(i.e., t̃i, i ∈ (n, s) could represent distinct discon-
tinuities in the northward and southward data).
The analogous cases for spatial and temporal di-
vision of the IDE dispersal kernels yield,

k(z, t) =





kn,e = exp(−αn,ezβn,e), x > x̃ and t < t̃,

kn,l = exp(−αn,lzβn,l), x > x̃ and t ≥ t̃,

ks,e = exp(−αs,ezβs,e), x ≤ x̃ and t < t̃,

ks,l = exp(−αs,lzβs,l), x ≤ x̃ and t ≥ t̃.

(25)

6. Results

Because of the obvious increase in spread rates
over time (Fig. 4a-b, dashed lines), an IDE model
captures the character of the data substantially
better than reaction-diffusion (i.e., Case 1, §5.1,
Tab. 1, rows 1 and 2). Note that because we fit
observed range expansion differences, the best-fit
models do not divide the northward and south-
ward fronts equally, as they would had we fit cu-
mulative distance. Analysis of residuals reveals
that the uncharacteristically large differences, in
both directions, at 1972 cannot be accommodated
by either modeling framework. In other words,
the extreme difference that candidate models must
generate to fit the 1972-1973 transition adequately
generates poor fits to all other transitions. Thus,
although the best-fit combined IDE divides the
northern and southern fronts nicely up to 1972
(Fig. 4b), the modest model transition to 1973 re-
sults in the remaining model prediction lying well
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Fig. 4.— a) Best reaction-diffusion models when northward and southward data are treated as coming from
habitats with distinct parameters, as well as the best single model that treats the northward and southward
fronts as arising from different realizations of the same diffusion process. The wave speeds ci and diffusion
constants Di are calculated using the entire data set spanning 1914-1986. b) As in (a) except that the best
northward, southward, and single integrodifference equations are superimposed over the data. The ki(z) are
parameterized generalizations of the square-root exponential dispersal kernel. c) Best northward, southward,
and combined reaction-diffusion models for the early e (1914-1972) and late l (1973-1986) epochs. d) As in
(c), except the models are integrodifference equations with parameterized dispersal kernels ki(z).

below the average of the two fronts. Note, how-
ever, that the curvature of the IDE model after
1973 is similar to that of both the northward and
southward fronts for this epoch.

Separating the data into separate northward
and southward components (i.e., Case 2, §5.2)
yields similar results, with the IDE models again
providing a substantially better fit (Fig. 4a-b, solid
and dash-dot lines). Additionally, note that al-
though the number of parameters doubles with
this habitat-based division of the data, the ∆i val-
ues are far smaller than the corresponding single-
model results, indicating that the increase in pa-
rameter number provides a meaningful improve-
ment (Tab. 1, rows 3 and 4), with the correspond-
ing inference that otter dispersal rates vary impor-

tantly by habitat.
Even after allowing for habitat differences, both

the RD and IDE model again fail to account for
the 1972 transition. Additionally, obvious dif-
ferences exist between early (pre-1973) and late
(post-1973) spread rates, a feature the otter range
expansion shares with other invasions (i.e., Case
3, § 5.3). To address the importance of these tem-
poral differences, we again fit both the reaction-
diffusion and IDE models simultaneously to the
northward and southward data, but in two sepa-
rate epochs (Fig. 4c-d, dashed lines). This sepa-
ration reduces the number of observations we are
fitting as well, however, because the abnormally
large transition between 1972 and 1973 is no longer
included. Thus, these ∆i values are not directly
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Table 1: Results of model identification using all the data (rows 1-4), and a division of the data into an early
(1914-1972) and late epoch (1973-1986) (rows 5-8) and using ∆i from Eq. (12) as the model identification
criterion.

Modeling Separate Separate
Framework directions? epochs? Eq. Fig. k n L ∆i

Reaction-Diffusion no no 1,13 4a 1 44 3499.1 1227.6
Integro-difference no no 14,15 4b 2 44 2591.7 322.4

Reaction-Diffusion yes no 16,17 4a 2 44 3319.6 1050.3
Integro-difference yes no 19 4b 4 44 2264.6 0

Reaction-Diffusion no yes 20,21 4c 2 42 1959.8 796.7
Integro-difference no yes 22 4d 4 42 1561.2 402.9

Reaction-Diffusion yes yes 23,24 4c 4 42 1737.7 579.4
Integro-difference yes yes 25 4d 8 42 1147 0

Note.—k is the number of model parameters, n is the number of transitions in the data used in the comparison. ∆i values ≥ 5
indicate very strong evidence against a model, and thus provide strong support for the model that generates ∆∗ = mini{AICCi}
.

comparable to those obtained from the full data
set, because differences arise from the combina-
tion of discarding the problematic 1972 transition,
and any differences in the ability of the model to
account for the remaining transitions. Also note
that in (Fig. 4c-d), both model predictions for the
late epoch are pictured as beginning at the aver-
age between the northward and southward 1973
fronts. This provides a convenient, though some-
what arbitrary, means of comparing the model to
both fronts, but recall that the models were fit to
the transitions, not the cumulative ranges.

With temporal division of the data, the IDE
again provides the better fit of the two model-
ing frameworks (Tab. 1, rows 5 and 6). Never-
theless, because habitat division did provide an
improvement over treating the entire data set as
a whole, we divided the data further into both
northward and southward components, and early
and late epochs (i.e., Case 4, §5.4, Fig. 5a-b). This
comparison reveals that despite the relatively large
number of parameters (i.e., 8), the IDE model is
overwhelmingly supported by the data (i.e., Tab.
1, rows 7 and 8), indicated by ∆i = 0 for the IDE
model and all other ∆i ( 5.

Although the IDE overwhelmingly fit these par-
ticular divisions of the data best when considering
the entire time span from 1914-1986, the differ-
ence in likelihoods between the reaction-diffusion
and IDE models for the late epoch from 1973-
1986 was trivial. This lack of difference, expected

in spread rate data that are essentially constant
through time, motivated us to explore compar-
isons between RD and IDE models within particu-
lar epochs. If the initial transition 1914-1938 (T1)
is also treated separately, data from the interme-
diate epoch 1938-1973 (T2) appear approximately
linear, from both the northward and southward
fronts, suggesting 3 piece-wise linear range expan-
sion epochs. Because the initial epoch (i.e., 1914-
1938) contains only two observations, it can be
matched perfectly by both modeling frameworks
and contributes nothing to the likelihoods. Dif-
ferentiating between the two frameworks in such
cases is a trivial matter of comparing parame-
ter numbers. We nevertheless show the best fit
reaction-diffusion model during T1 in order to
present the northward and southward speeds and
diffusion constants (Fig. 5a) of this initial phase
of the recolonization process.

Such divisions of the data into discrete epochs
cannot continue indefinitely if we are to make
meaningful generalizations about spread rates.
Nevertheless, the approximate linearity of the data
in the middle (T2) and late (T3) epochs is sug-
gestive, and reinforces the need for quantitative
methods of distinguishing between the modeling
frameworks (Fig. 5a-b). When both the middle
and late epochs are considered, the IDE model
again receives the most support from the data
(i.e., Tab. 2, rows 1 and 2). In contrast, when
only the late epoch (T3) is considered, the ad-
ditional parameters of the IDE model generate
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Fig. 5.— a) Best reaction-diffusion models when spread is separated into three epochs, an initial estab-
lishment phase 1914-1938 (T 1), an initial spread phase 1939-1972 (T 2), and a late spread phase 1973-1986
(T 3). Because epoch T 1 only contains one interval, both reaction-diffusion and integrodifference equations
can match it perfectly. We nevertheless show the best fit reaction-diffusion model to quantify speed and
diffusion during this epoch. b) As in (a) using integrodifference equations with separate dispersal kernels for
each direction and epoch. c) Differences between observed and predicted southward and northward range in-
creases per time interval for the reaction-diffusion models of panel (a). d) Differences between predicted and
observed southward and northward range increases per time interval for integrodifference equation models
of panel (b).

a modestly larger ∆i than the reaction-diffusion
model, despite a lower likelihood (i.e., Tab. 2,
rows 3 and 4). Thus, RD provides the best and
most parsimonious description of the data over
the 13 years of T3.

7. Discussion

Our results show that standard model selection
techniques can be useful for quantitatively choos-
ing between a suite of spatial models, each provid-
ing reasonable approximations to spread data from
a biological invasion. This is significant, because
both reaction-diffusion models (Lubina and Levin
1988), and IDE models (Krkos̆ek et al. 2007), have

been successfully used to model numerous inva-
sions, including the sea otter range expansion. In-
deed, the otter data shares features with a growing
number of range expansion data sets (Shigesada
and Kawasaki 1997) that render the best model-
ing framework far from obvious. For example, are
spread rates that vary in time best addressed with
piecewise constant spread associated with tempo-
rally variable diffusion, or with IDE models that
predict accelerating wave speeds? Without rigor-
ous model identification procedures, it is not clear
how to balance the need for adequate representa-
tion of such patterns in data with the additional
parameters of more complex models. Such ambi-
guity is perhaps most apparent when detailed in-
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Modeling
Epoch Framework Eq. Fig. k n L ∆i

1938-1972 & post-1973 Reaction-Diffusion 23,24 5a 4 40 1158.0 46.4
Integro-difference 25 5b 8 40 1100.1 0

post-1973 only Reaction-Diffusion 23,24 5a 2 22 952.2 0
Integro-difference 25 5b 4 22 950.3 3.9

Table 2: Results of model identification using the middle epoch (1938-1972) with the late epoch (1973-1986)
(rows 1-2), as well as the late epoch alone (rows 3-4). We used ∆i from Eq. (12) as the selection criterion, k
is the number of model parameters and n is the number of data transitions used to fit the model. 2 < ∆i ≤ 5
indicate strong, but not very strong, evidence against a model.

formation about movement behavior of individuals
is not available. In such cases, approaches such as
ours could be used to provide initial estimates of
the probability distribution of individual dispersal
distances, through inference from population-level
observations.

Our quantitative analysis shows that more com-
plex models may address large-scale patterns in
range expansion data better than simple models.
This result depends on the temporal scale of analy-
sis, however. For example, when fitting data over
the entire otter recolonization epoch, more com-
plex models fit the data substantially better. In
particular, the accelerating wave speed associated
with fat-tailed exponential dispersal kernels in the
integrodifference equation framework fits the cur-
vature in the range expansion data exceptionally
well. This would presumably also be true for other
data with increasing spread rates. In contrast,
when analyzing spread rates within a particular
habitat, over epochs of shorter duration, the con-
stant spread rate generated by reaction-diffusion
models generated lower AICC scores. This arose
despite the IDE having a lower likelihood for the
data in question, because penalties for additional
parameters increase the IDE AICC score above
that of the reaction-diffusion model. Again, this
is likely to be a general feature of approximately
linear subsets of range expansion data.

Treating the northern and southern fronts as
arising from separate habitats provides a large
improvement over treating them as different re-
alizations of the same dispersal process. This sug-
gests that ignoring these differences and estimat-
ing spread rates with a composite of the north-
ward and southward fronts would miss important
habitat-based differences in sea otter dispersal. In-
deed, sea otter ecology corroborates the potential
for habitat differences to drive the difference be-

tween northward and southward spread rates. For
example, south of the point of origin at Point Sur,
rocky intertidal gives way to less preferred sandy-
bottomed shore line. Because otter dynamics are
sensitive to pup survival (Monnett and Rotterman
2000), the lack of sheltered coves in sandy central
California, as well as rapid changes in the soft-
bottomed invertebrate communities post-otter ar-
rival (Wendell et al. 1986), may lead to more rapid
traversal through the southern range. Such expan-
sions typically occur when aggregations of males
leave areas with depleted food resources, and move
into adjacent, previously unoccupied areas. Thus,
they presumably continued southward to find un-
exploited resources rather than turn northward
and move back into occupied territory. Females
then typically expand into areas previously oc-
cupied by males (Garshelis et al. 1984). Appar-
ently, the suitable habitat along the rockier coast
of northern California leads to less rapid explo-
ration of new areas.

Within both the habitat-independent and
habitat-dependent results, the IDE had a sub-
stantially lower AICC score than the RD, sug-
gesting that flexibility in the dispersal kernel is
of paramount importance for matching the otter
re-expansion data. Indeed, although the range
expansion occurred at different rates in the north-
ward and southward directions, it accelerated in
both directions, a feature not possible when dis-
persal occurs via diffusive spread. Furthermore,
temporal differences in the rates of advance of the
northward and southward fronts may be more im-
portant than habitat differences, because the re-
sults of analyses in which we ignored habitat differ-
ences and temporally divided the data into early
and late epochs, generated lower AICC scores
than those generated by differentiating based on
habitat alone. We cannot make strong inferences
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about this result, however, because discarding the
1972-73 transition creates a new data set and in-
formation theoretic techniques cannot be used to
compare fits to different data sets. Nevertheless,
employing both habitat and temporal divisions
(i.e., the reduced data set) provided the best fit,
with the IDE model receiving the lowest AICC of
all.

The realities of otter range expansion are nev-
ertheless far more complex than any of the mod-
els we explored. For example, exploration of new
territories by sea otters is often carried out dis-
proportionately by adult males (Garshelis et al.
1984). None of our models is age-, stage-, or
size-structured, making all our descriptions of the
processes phenomenological approximations (for a
treatment with stage-structure, see Krkos̆ek et al.
2007). Furthermore, the ecological description in
§2 suggests density-dependent dispersal. Never-
theless, when faced with growing numbers of in-
vading organisms, or the potential for large-scale
shifts in species ranges, generalized models that
can adequately describe existing data provide use-
ful first approximations to future spread. In this
context, it is useful to compare some conclusions
from our results to those of previous investigators.
The spread rates we calculated from our RD model
compare quite favorably with those Lubina and
Levin (1988) calculated using linear regression.
For example, Lubina and Levin (1988) report the
southern spread rate as 3.1km/yr between 1938
and 1972, while our model predicts it as 3.0km/yr
for the same habitat and time span. Similarly, Lu-
bina and Levin (1988) report the northern spread
rate for the same time interval as 1.4km/yr while
our model predicts 1.2km/yr. The agreement be-
tween our model and their regressions is similarly
good for other habitat, and time, partitions.

Lubina and Levin (1988) also provide estimates
of the diffusion constant D, derived by regress-
ing mean-square-distance on time (Kareiva 1983),
which can be compared to the estimates generated
by our model. Though calculated with a differ-
ent technique and for different epochs, the results
are nevertheless consistent, so that our estimates
complement theirs to provide additional informa-
tion about otter dispersal. Note that this infor-
mation relates to RD models only, but as we have
shown, these models sometimes provide the best
description of sea otter range expansion. For the
years 1968–1974, Lubina and Levin (1988) report
diffusion rates in the north of D = 13.5km2/yr

and in the south, D = 54.7km2/yr. Because of
differences in methodology, we did not estimate
diffusion rates for this particular interval, but our
results bracket these in terms of time interval and,
encouragingly, in terms of diffusion rates. Specifi-
cally, for the middle epoch (T2) 1938–1972, we cal-
culated northward diffusion as Dn,T2 = 6.2km2/yr
and southward diffusion as Ds,T2 = 39.9km2/yr.
Both these values are less than those reported for
1968–1974, which is to be expected, because that
time interval contains the abnormally large range
jumps that occurred between 1972–1973. Simi-
larly, our late epoch (T3) estimates exclude slower
movement rates prior to 1972 included by Lubina
and Levin (1988). Our estimates from 1973-1986,
Dn,T3 = 73.2km2/yr and Ds,T3 = 78.3km2/yr
therefore exceed those reported by Lubina and
Levin (1988). Thus, to the extent that diffusion
adequately describes sea otter population spread,
our estimates of diffusion both before and after
the 1972 anomaly are consistent with previously
published rates, and may be useful for forecasting
future otter range expansions in similar habitats.

Populations obviously cannot continue to ex-
pand their range at increasing rates, or even con-
stant rates, indefinitely. Nevertheless models with
these characteristics may provide the best predic-
tions over realistic time horizons. Indeed, IDE
models with generalizations of the square root ex-
ponential dispersal kernel capture the character
of the sea otter range expansion exceedingly well.
When spread rates from particular habitats and
epochs are of interest, however, the simpler RD
model sometimes proves most useful, through the
combination of adequate fit and parsimony.
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