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Topics 
 
After a short overview of reliability and structural equa-
tion modeling, 2 new reliability methods are presented: 

 

 Specificity-enhanced coefficients for improved 
lower-bound reliability determination 

  

 Covariate-free and covariate-dependent 
reliability coefficients for eliminating spurious 
sources of internal consistency 
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Reliability 

Let X  be an item or a composite score. Test theory posits 
that X is the sum of 2 uncorrelated latent variables  

X T E  . 

Thus we have additive variances 2 2 2

X T E     and define  
2

2

T
XX

X





 . 

Such a coefficient holds for an item, or a test/scale, here 

taken simply as 
p

i

i

X X . Today, I concentrate on the 

reliability of a scale or test, based on the qualities of its  
items (internal consistency). For simplicity, I assume 
that errors on different items are uncorrelated. 
 



4 
 

 
Factor Analytic Decomposition in a Picture 

 
There are 4 variables A, B, C, D. Each has Common, 
Specific, and Error Variance, grouped variously:  
 
Factor analysis approach: 
Common = True - Specific.  
Unique = Specific + Error. 
 
Test theory approach: 
True = Common + Specific 
Error= Unique - Specific 
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Equations for FA Variance Decomposition 
X T E  , but 
T C S   (common plus specific, uncorrelated), so 
  
X C S E C U     ,  

with 2 2 2 2

X C S E       .  Thus (Bentler, 1968, 2009, 2015) 

 

22 2

2 2

2 2

2 22
1 1C U

xx

X X

ST E
xx XX

X X X

 


 


 


  
      . 

All internal consistency coefficients -- whose history goes 
back to 1910 (Spearman and Brown) -- are of the form

xx . 

Today, I introduce estimators of 2

S  to yield specificity-

enhanced reliability that will improve these coefficients.   
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Coefficient Alpha 

Let ( )( )xx E x x       be the population covariance 

matrix of 
iX  ( 1,..., )i p . If 1 is a unit vector, the 

variance of the sum
p

i i

i

X 1 X X   is 2

x xx1 1   . Let 

2 2

c ijp  , where 
ij is an off-diagonal element of 

xx

and 
ij is the average of all 

ij . Then  
2

2
.

i

x

X

j

X

p 



  

In practice, the sample covariance matrix 
xxS (not 

xxR ) is 

used. Model-based coefficients get closer to 2

c  and 

hence 
XX  (e.g., Bentler, 2009; Cho & Kim, 2015). 
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Model-based Coefficients 

Applying X C S E C U     to a set of items, and 
assuming zero means, the vector of item scores has 
decomposition  

x c s e c u     , 
This leads to the covariance structure 

xx c s e c       , 

 
where 

c is the covariance matrix of common scores 

and  is a (typically diagonal) unique variance matrix.  
Typically, the c  are functions of latent variables - in the 
factor model c    so 

c
    -- but could arise 

from LISREL, Bentler-Weeks, or other models.  
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When 
c is well-structured (e.g., 

c
   ), improved 

estimates of 2

c c1 1    and hence 2 2/xx c x    are 

possible.   
 

Note that 
xx (RHO in EQS) is one of many coefficients. 

If 
c

    , this is Heise & Bohrnstedt’s (1970)  and 

McDonald’s (1970)  . If is a 1-factor model, this is 
Jöreskog’s (1971) coefficient (McDonald’s 1999  .) If 

c  is based on an arbitrary – but fitting -- SEM model 

(Bentler, 2007), it is a unique coefficient that has no 
added special name. 
 
Essentially always 

xx XX    . Next, I show how to 

obtain  and xx   such that     and xx xx  . 
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Specificity-enhanced Reliability 
The Kaufman Assessment Battery for Children (Kline, 
2011, p. 235) has correlation matrix  

 
A model for 5 visual-spatial reasoning variables V4-V8 is:  
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It fits the covariances well 2

5( )( 2.3, 1.0)ML CFI   . The 

unstandardized factor loadings are 
[1.000  1.421  1.950  1.144  1.675]’ 

with factor variance  2

1 1.956F   and unique variances 

 [5.334  3.341  10.200  5.280  3.510] 

We have 2ˆ 27.665u  , 2ˆ 128.789x  , ˆ .785xx  . 

 
Next, keep this model as is, with fixed parameters. We 
augment it with V1-V3 that may correlate with the 
unique scores E4 to E8. If the unique scores are just 
random residuals, they won’t correlate with V1-V3. If 
they do correlate, the uniquenesses must contain true 
scores – that is, specificity. Definite nonzero r s obtain:  
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Can the E’s be predicted from the auxiliary Vs? Doing 
stepwise regression of each Ei on V1-V3 yields: 

2 2 2

E4.V1 E5.V1,V3 E6.V1,V3

2 2

E7.V1,V2 E8.V1,V3

.061, .302, .300,

.292, .562

R R R

R R

  

 
 

Next we compute, for each E4-E8, the proportion of 

unique variance that is actually specificity 2 2( )uR    

and error variance 2 2( {1 } )uR    . Computations give  
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specific, error, and original unique variances: 
Vi 2

is
   + 2

ie  = 
ii   

V4 0.325 5.009 5.334 
V5 1.009 2.332 3.341 
V6 3.060 7.140 10.2 
V7 1.542 3.738 5.280 
V8 1.973 1.537 3.510 
SUM 7.909 19.756 27.665 

 

Having the new estimate 2ˆ 7.909s  , RHO+ is  
2

2

ˆ 7.909
ˆ ˆ .7852 .847

ˆ 128.789

s
xx xx

x


 



       or 

2

2

ˆ 19.756
ˆ 1 1 .847

ˆ 128.789

e
xx

x






      . 
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The specificity-corrected ˆ ˆ( )xx    improves the 

reliability estimate by almost 8%. 
 
Next, consider a 2nd approach to specificity-corrected 
reliability: We augment the original model with doublet 
factors. Each doublet factor is associated with a given 

item and an auxiliary variable, and its variance is 2ˆ
s . 

  

This expanded model reproduces exactly the same ̂as 
the original one that yields ˆ

xx . 

  

We also add constraints so that each factor 2̂  plus 

unique 2̂ in the augmented model equals the fixed 

unique 2 from the original model. We specify:  
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/EQUATIONS 

V1 = *F1        + F4 +F5 +F6 +F7 +F8 + E1; 

V2 = *F1                             + E2; 

V3 = *F1                             + E3; 

V4 =    1.000F2 + F4                 + E4; 

V5 =    1.421F2      +F5             + E5; 

V6 =    1.950F2          +F6         + E6; 

V7 =    1.144F2              +F7     + E7; 

V8 =    1.675F2                  +F8 + E8; 

/VARIANCES 

F1 = 1; F2 = 1.956; 

F4 TO F8 =*; E1 TO E8 =*; 

/COVARIANCE 

F1,F2=*; 

/CONSTRAINTS 

(F4,F4)+(E4,E4)=5.334; 

(F5,F5)+(E5,E5)=3.341; 

(F6,F6)+(E6,E6)=10.2; 

(F7,F7)+(E7,E7)=5.280; 

(F8,F8)+(E8,E8)=3.510; 
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Notice that: 

 F4, F5, F6, F7, F8 are common factors in the 
space of all variables 

 F4 - F8 are not common factors in the space of 
the items V4-V8 making up our scale 

 In principle, there are as many possible doublets 
as the product of # auxiliary vars  # items 

 Doublets whose variances are not significant 
should be removed, to avoid capitalizing on chance 

 If a doublet variance is constrained at zero, a 
reparameterization should be considered to 
allow a possibly negative doublet correlation 

 

The model fits well 2

24( )( 13.2, 1.0)ML CFI   . 
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Specific, error and original unique variances are: 
Vi Fi,Fi + Ei,Ei = 

ii  (fixed) 

V4 .872 4.462 5.334 
V5 1.259 2.082 3.341 
V6 3.111 7.089 10.2 
V7 2.073 3.207 5.280 
V8 1.952 1.558 3.510 
SUM 9.267 18.398 27.665 

 

ˆ 1 (27.665 /128.789) .785xx        

ˆ 1 (18.398 /128.789) .857xx     , 

about a 9% improvement. The specific 2 2

V4 F4
ˆ ˆ

s  is not 

significant – if we set it to zero, we get 
ˆ 1 (19.704 /128.789) .847xx      (a .01 reduction) 
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We may similarly compute ̂  and ̂  . The runs are 
identical to the above (keeping all 5 specific factors), 
except that to get   from a factor model rather than 
just the sample covariances: 

1.  The 1-factor model has all fixed 1.0 loadings 
2.  METHOD = LS; (least squares estimation). 

The model fits so-so 2

9( )( 21.6, .95)LS CFI    

29.11
ˆ 1 .774

128.854
        

The enlarged model fits so-so 2

24( )( 56.2, .93)LS CFI    

19.786
ˆ 1 .846

128.854
     . 

These are almost as high as those from the unrestricted 
1-factor model.  
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These approaches also extend to various other 
coefficients. An important example is the greatest lower 
bound (glb) (Bentler, 1972; Woodhouse & Jackson, 
1977; Bentler & Woodward, 1980). This is based on a 
factor model with an unspecified # of factors that 
explains all covariances. 
 
Using the doublet approach as before, we get: 

glb

glb

ˆ .805

ˆ .876



 




  

The new glb+ exceeds the glb by about 9%. 
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Covariate-free and Covariate-dependent Reliability 
Coefficients 

 
Is xx  invariant to changes in populations? The APA Task 

Force on Statistical Inference (Wilkinson & APA, 1999): “…a 
test is not reliable or unreliable. Reliability is a property of the 
scores on a test for a particular population of examinees.” 
This implies there may be several, or even dozens, of reliabi-
lity coefficients [of any fixed definition] for a given scale: for 
males (females), old (young), low (high) SES, highly (little) 
educated, etc.  
 
Not a new idea: Generalizability theory has long held that 
various sources of error may imply different variance ratios.   
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How serious is this problem, and how can influences on xx  

be evaluated? In a previous talk (Bentler, 2014), I 
reviewed several possible approaches to this problem: 

1. Reliability generalization. This is a meta-analysis 
method that seeks correlates and predictors of 

xx  

size, such as gender. 
2. Multiple group models. Invariance or near invariance 

of parameters implies (near) invariance of 
xx across 

groups. 
3. Multilevel models. These provide both Between-

group ( )B  and Within-group ( )W  covariance 

matrices that can be used to obtain 
xx  coefficients. 

Within-group 
xx  eliminates cluster differences. 

I also proposed a new covariate-based methodology. 
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A Covariate-based Approach to Reliability 
 
As before, we start with 

X T E   
 
and make the usual assumptions to obtain  

2

2

T
xx

X





 . 

(For simplicity, I drop the distinction between 
xx  and 

XX . Context will clarify.) Now assume there is a set of 

covariates Z , which may be one or many variables, 
latent or observed, categorical or continuous, and 
consider the regression (linear or nonlinear) of T  on Z  
such that there exists the orthogonal decomposition 



23 
 

ˆT T T  , 

with ˆ ( )T T Z  the covariate-dependent part of T , and 

( )T T T Z   the covariate-free part of T . It follows that 
2 2 2

ˆT TT
     and hence 

 

2 22
ˆ

2 2 2

( )      = .

T T T
xx

X X X

z z

xx xx

 


  

 

  



 

( )z

xx  is covariate-dependent reliability and 
z

xx  is covariate-free reliability.  

 

In practice, the score decomposition ˆT T T  is not 
needed; only the variance decomposition is necessary. 
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This decomposition can be applied to each of multiple 
T  scores, or to T s that are based on a factor model, 
and hence a linear compound of factors F . 

If covariate-free reliability z

xx  is large compared to
xx , 

we have high reliability generalization. Reliability then 
hardly depends on covariates.  

If covariate-dependent reliability ( )z

xx  is large compared 

to
xx  (alternatively, absolutely large), reliability is highly 

population-dependent. Separate coefficients would be 
needed for different populations. 
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Covariate-free & Covariate-dependent Alpha 
 

Based on 
xx , the population covariance matrix among 

items, we have already encountered  
2

2
.

ij

x

p 



  

With covariates, we also have xx xz

zx zz

  
 
  

. The 

regression of 
iX  on Z  yields the matrix identity  

1 1( ) ( )xx xx xz zz zx xz zz zx

           , 

the residual and predictable parts of 
iX . Hence, their 

off-diagonal elements obey the equality 
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1

1

{ ( )} { ( )}

     { ( )}

xx xx xz zz zx

xz zz zx

mean offdiag mean offdiag

mean offdiag





     

   
  

and specifically, 

( )z z

ij ij ij    . 

It follows that alpha can be decomposed into 
( )z z    , 

where 
2 2/z z

ij xp     is covariate-free alpha and 
( ) 2 ( ) 2/z z

ij xp    is covariate-dependent alpha. 
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Model-based Coefficients 

We also have already seen the decomposition 

xx c   , 

based on orthogonal common and unique 1p  random 

vectors in deviation form x c u  . Now we would like 
to partial the 1q  vector of covariates z  out of c .  

 
Similarly as before, we may write the partial covariance 
identity 

1 1( ) ( )cc cc cz zz zc cz zz zc

           . 

To make this operational, we assume that ( ) 0E uz   

and we obtain  
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( ) ( )E xz E cz   or 
xz cz  . 

Now we can substitute 
xz in the previous formula: 

1 1 ( )( ) ( ) z z

c cc cc xz zz zx xz zz zx c c

                 . 

It immediately follows that 

( )

( )      =  

z z

c c c
xx

z z

xx xx

1 1 1 1 1 1

1 1 1 1 1 1

 






    
  

    



  

where 

z

xx  is covariate-free reliability 

( )z

xx  is covariate-dependent reliability. 
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c  represents the common score covariance matrix for 

many models, such as 
 EFA: c

    

 CFA: c
    

 FA/SEM: 1 1( ) ( )c I B I B           

 blb (Bentler, 1972): min tr( c ) psd,   diagonal 

glb (Woodhouse & Jackson, 1977; Bentler &     
Woodward, 1980): min tr( c ) psd, diagonal & psd 

Also,  may be a submatrix of a much larger structural 
model ( ) . The rank of c -- the number of factors -- is 

typically greater than 1. But the 1-factor case is 
interesting: 
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Covariate-based 1-Factor Reliability 

Let 
1x      be the factor model with 1 1c      . 

The factor variance  is a scalar (possibly 1  ). Hence  
2

1
11 2

( )
xx

x

1






   (   ). 

Now let the factor  be predicted by covariates z , with 

the 2R  for predicting   being 2

( )zR . It follows that  
2 2 ( )

( ) ( )(1 ) z z

z zR R 

          . 

With the factor variance partitioned, we may write  
( ) 2 2

( )1 1
11 11 112 2

( ) ( )z z
z z

x x

1 1 
  

 


  

    . 
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This partition of reliability can be obtained in two ways: 

 (1) a simultaneous mimic-type setup such as 

 
where the equation predicting F1 yields 2

( )zR  and 
z
is the 

variance of D1; 
 

(2) a 2-step approach, where 11  is first obtained from 

only the factor model (no covariates); in step 2, the model is 
run with loadings and error variances fixed at step-1 values, 
and other parameters free.   
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Covariate-based Reliability with LISREL 

The LISREL model easily permits a covariate-based partitioning of 
reliability. Assume we want the reliability of the endogenous y  

variables, and x  variables and its factors are covariates. 
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The covariance matrix of the y  is 

      1 1( ) ( )( )yy y yI B I B 

            .     

 
We immediately see that covariate-based reliability is 

1 1

( )
( ) ( )( )y yx

yy

yy

1 I B I B 1

1 1


        



  

 
and covariate-free reliability is 

1 1( ) ( )( )y yx

yy

yy

1 I B I B 1

1 1


 


     




. 
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Example: Brain Size and IQ 
Did you know that “Big-brained people are smarter” 
(McDaniel, 2005)? He reported: 
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Are intelligence measures mainly indirect measures of 
brain size? Posthuma et al. (2003) found: 
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What is the internal consistency reliability of the 4 
intelligence measures? Is the total score still reliable if 
we partial out the effects of the brain matter volumes? 
We run EQS with the setup: 
 /RELIABILITY                                                                     
    SCALE = V4 TO V7;                                                               
    COVARIATES = V1 TO V3; 
 
The covariates here are observed variables. They affect 
an IQ factor. Since there are only 4 intelligence mea-
sures, we may not get a very high internal consistency 
reliability. 
 
We get as output:  
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RELIABILITY COEFFICIENTS USING DEPENDENT VARIABLES 
ONLY 
   CRONBACH'S ALPHA                                   =     0.749 
   COVARIATE-FREE ALPHA                            =     0.695 
   COVARIATE-BASED ALPHA                         =     0.053 
 
We also get results for 1-factor reliability: 
   RELIABILITY COEFFICIENT RHO                  =     0.754 
   COVARIATE-FREE RHO                                 =     0.678 
   COVARIATE-BASED RHO                              =     0.076 

 
The intelligence measures retain 93% and 90% of their 
reliability when the brain volume measures are 
controlled. But the model fit is a bit marginal. 
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If we structure the covariates, we obtain better fit and 
similar 

xx  results, even when models vary somewhat. 

  

 
 

( )ˆ ˆ ˆ.763,  .698,  .065z z

xx xx xx      

(Note: F2F1Verbal is positive, but F2Verbal is 
negative)  



39 
 

Another model also fits well. 
 

 
 

( )ˆ ˆ ˆ.761,  .709,  .052z z

xx xx xx      

(Note: F2 has no effect on Verbal) 
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Concluding Comments 

 
The proposed specificity-enhanced and covariate-based 
reliabilities provide new ways to evaluate the quality of 
tests and scales. 
 
Like anything else, these methods can probably be 
misused, e.g., 

 when meaningless auxiliary variables or 
covariates are used 

 when assumptions are not met 

 when models ̂  used to define coefficients do 
not fit the data. 
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Your feedback is most welcome. 
 
 

 

 
That’s All.  

And, thank you again. 
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