
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Psychophysical-Score: A Behavioral Measure for Assessing the Biological Plausibility of 
Visual Recognition Models

Permalink
https://escholarship.org/uc/item/6wn3c1t9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors
Richardwebster, Brandon
Dulay, Justin
DiFalco, Anthony
et al.

Publication Date
2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6wn3c1t9
https://escholarship.org/uc/item/6wn3c1t9#author
https://escholarship.org
http://www.cdlib.org/


Psychophysical-Score: A Behavioral Measure for Assessing the Biological
Plausibility of Visual Recognition Models

Brandon RichardWebster
Kitware, Inc.

Justin Dulay
University of Notre Dame

Anthony DiFalco
SPRX

Elisabetta Caldesi
Microsoft

Walter J. Scheirer
University of Notre Dame

Abstract

For the last decade, convolutional neural networks (CNNs)
have vastly superseded their predecessors in nearly all vi-
sion tasks in artificial intelligence, including object recogni-
tion. However, despite abundant advancements, they continue
to pale in comparison to biological vision. This chasm has
prompted the development of biologically-inspired models that
have attempted to mimic the human visual system, primarily
at a neural level, which is evaluated using standard dataset
benchmarks. However, more work is needed to understand
how these models perceive the visual world. This article pro-
poses a state-of-the-art procedure that generates a new met-
ric, Psychophysical-Score, which is grounded in visual psy-
chophysics and is capable of reliably estimating perceptual re-
sponses across numerous models — representing a large range
in complexity and biological inspiration. We perform the pro-
cedure on twelve models that vary in degree of biological in-
spiration and complexity, we compare the results against the
aggregated results of 2,390 Amazon Mechanical Turk work-
ers who together provided ∼ 2.7 million perceptual responses.
Each model’s Psychophysical-Score is compared against the
state-of-the-art neural activity-based metric, Brain-Score. Our
study indicates that models with a high correlation to human
perceptual behavior also have a high correlation with the cor-
responding neural activity.

Introduction
Could biologically-inspired artificial vision — that is to say,
artificial vision possessing neural-like connections or a model
of the dynamics of neural activity — be the next frontier for
computer vision scientists? A growing community of neuro-
scientists, computer vision scientists, funding agencies, and
participants in congressional hearings envision this as the
next age of artificial vision (IARPA, n.d.; of Health: NIH,
2021; Dickson, 2021; Kasthuri, 2020). Regardless, few ex-
perts would be remiss enough to let the current struggles of
modern artificial vision systems go unacknowledged. Take
convolutional neural networks (CNNs) for example, CNNs
require enormous numbers of input examples, easily become
overfit, are sensitive to any deviation from the original in-
put, and generally lack robustness to novelty within object
classes (Marcus, 2018). In contrast, a young human child can
be shown for the first time a cartoon image of a horse, and
with a high degree of accuracy, after just one example, can
recognize living horses, pictures of horses, and even cartoon
horses — all of which can differ in breed, color, or artistic
style (Guthrie, 1946). Human vision requires few examples,
generalizes quickly, and is extremely tolerant to many of the
conditions that negatively impact CNNs.

There are two major questions that computer vision scien-
tists need to ask to move forward with the development of
more sophisticated artificial object recognition systems that
match or exceed human performance: (1) how are models
constructed and (2) how does the evaluation of the model
affect its construction? Let us begin with the latter. In the
task of object recognition in computer vision, for roughly a
decade now, progress has been defined and often constrained
to rank-1 or rank-5 accuracy on benchmark datasets such
as ImageNet (Russakovsky et al., 2015) (the one most fre-
quently used), COCO (Lin et al., 2014), ShapeNet (Chang et
al., 2015), and Open Images V6 (Pont-Tuset, 2020). Taken as
one pool of data, the combination of images in ImageNet and
COCO represents the largest publicly available collection of
data for the study of object recognition in computer vision.
But it still has the same underlying problem as all datasets.
That is, it is a discrete representation of the real world. Thus,
while the goal is to improve recognition rates in real-world
applications using these dataset(s), they often do not reflect a
one-to-one correspondence from the dataset to the real world.
If the objective of a computer scientist is to produce mod-
els which demonstrate improvement on real-world tasks, then
the pursuit of sophisticated object recognition models can be
sidetracked by constraining evaluation to just the dataset.

Coming back to the former point, in the last half-decade,
the vast majority of the progress made in computer vision has
been made through more complex techniques in deep learn-
ing that a) allow for deeper models under the current limits of
GPU capacity (with the assumption that deeper models per-
form better), and b) train more quickly so more input data can
be ingested. It is a routine occurrence that with a new genera-
tion of GPUs comes a new record performance on traditional
metrics. But does the optimization of models on hardware
and data equate in the long term to better or more sophisti-
cated artificial object recognition? Not likely. Instead, we
need to develop ways to circumvent the constraints of hard-
ware such as small models trained to recognize low-level fea-
tures like human observers which could improve model gen-
eralization.

To help overcome this challenge, we propose a new proce-
dure that generates a new metric, Psychophysical-Score, for
examining perceptual similarities between human observers
and machine observers. Psychophysical-Score isn’t just a
metric that helps us quantifiably represent what an observer
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— whether human or machine — perceives but also why the
observer perceives it that way. Beyond the why, it also could
be used to teach a machine observer how to perceive like a
human observer perceives the what. The how is particularly
possible because Psychophysical-Score doesn’t just measure
how observers differentiate between objects but also what lies
between those objects, the interspace.

We perform the procedure on seven traditional convo-
lutional neural networks (AlexNet, GoogleNet, ResNet,
SqueezeNetv1.0, SqueezeNetv1.1, VGG-16, and VGG-
19) (Krizhevsky, 2014; Szegedy et al., 2015; He, Zhang,
Ren, & Sun, 2016; Iandola et al., 2016; Simonyan & Zis-
serman, 2015) and five biologically inspired models (Ga-
bor, HMAX, HT-L3, PredNet, and CORnet) (Fogel & Sagi,
1989; Riesenhuber & Poggio, 1999; Cox & Pinto, 2011;
Lotter, Kreiman, & Cox, 2017; Kubilius et al., 2019), and
compare the behavior to 2,390 Amazon Mechanical Turk
workers who contributed ∼ 2.7 million perceptual responses.
We then perform an analysis that compares Psychophysical-
Score results with the published results of the Brain-Score
metric (Schrimpf et al., 2020). Our study indicates mod-
els which have a high correlation with human perceptual be-
havior (a high Psychophysical-Score) also have a high corre-
lation with the corresponding neural activity (a high Brain-
Score). The positive relationship between neural activity and
perceptual behavior indicates a much-needed shift in research
from traditional machine learning to machine learning de-
rived from biology — perceptual behavior, neural activity, or
both.

Related Work
Recent developments between scientists in machine learning,
neuroscience, and psychology often use artificial neural net-
works as a model of the brain. Increasingly, there is a perti-
nent need to instill interpretability in neural models (Olah et
al., 2018). Lotter et al. (Lotter et al., 2017) published Pred-
Net, a biologically inspired predictive coding model which
displays similar perceptual behavior to that of human ob-
servers on the visual phenomena of the flash-lag effect and
end-stopping. Kubilius et al. (Kubilius et al., 2019) intro-
duced a model called CORnet-S, which they report to have
similar activation patterns to the neural activity of monkeys.
And the most recent addition to artificial neural network mod-
els, though not a model by itself, VOneNet (Dapello et al.,
2020), attempts to model the V1 primary visual cortex of pri-
mates. When VOneNet is prepended to the input layer of
other artificial neural networks, it is shown to improve protec-
tion against white-box adversarial attacks. Each of these re-
cent models represents advancements in both the understand-
ing of biological vision and the quantitative approaches used
in artificial neural networks.

An alternative to expensive and often difficult-to-obtain
physiological recordings which were part of these models is a
psychological method called psychophysics. Psychophysics
is a well-established century-old set of methods for study-

ing the relationship between stimuli and perceptual behav-
ior. In computer vision, psychophysics has been applied to
assess whether or not models with claimed high biological
fidelity have perceptual behavior that also corresponds to bi-
ology. Rajalingham et al. (Rajalingham et al., 2018a) com-
pare the recognition behavior of monkeys and people with
CNNs, and report that CNNs did not represent the percep-
tual behavioral patterns of primates. Similar studies have ob-
served the same disparities (Gerhard, Wichmann, & Bethge,
2013; Heath, Sarkar, Sanocki, & Bowyer, 1996; Eberhardt,
Cader, & Serre, 2016). Concerning psychophysics applied
to computer vision algorithms specifically, PsyPhy was intro-
duced by RichardWebster et al. (RichardWebster, Anthony, &
Scheirer, 2018; RichardWebster, Kwon, Clarizio, Anthony, &
Scheirer, 2018a). PsyPhy facilitates a psychophysical analy-
sis for object recognition and face recognition through the use
of item-response theory (Embretson & Reise, 2000). An ex-
ample finding from RichardWebster et al. (RichardWebster,
Anthony, & Scheirer, 2018; RichardWebster, Kwon, Clar-
izio, Anthony, & Scheirer, 2018b) that is representative of
this type of analysis is that there is behavioral consistency be-
tween deep learning algorithms and human observers when a
blur was applied to input stimuli and in low contrast.

Some other datasets demonstrate low-level embeddings of
human behaviors within machine learning models, but they
focus on concept maps (Hebart et al., 2019), object structure
(Peterson, Abbott, & Griffiths, 2018), and classification loss
functions (Roads & Love, 2021). This paper focuses more
intently on assessing the behavioral plausibility of machine
learning models with respect to human intentions as opposed
to observing similar structures to approaches.

Methods
Maximum-likelihood Difference Scaling (MLDS): To un-
derstand the interspace between two objects, whether it’s
the neurological representation in a human observer or the
numerical representation in a computer vision observer,
we build on a technique called Maximum-likelihood Dif-
ference Scaling (MLDS) developed by Maloney et al.,
2003 (Maloney & Yang, 2003). MLDS is a technique to
estimate the parameters of a stochastic model of perceptual
differences based on an error measurement. Let us consider
Figs. 1a & 1b.

Figs. 1a & 1b each contain a sequence of 7 images where
the leftmost image contains an object A, the rightmost object
B, and the inner 5 images each contain a composite of A and
B. Each image has a corresponding nominal value denoted as
φi where Φ = φ0,φ1, ...,φ6 represents the nominal scale for
the entire sequence. Recognize that the nominal scale, Φ, is
not how observers perceive the differences in the images of
the sequence — although it can be. Figs. 1a & 1b, as will
be the case for all sequences presented in this article, has a
Φ = 0, 1

6 , ...,1.
The goal of MLDS is to estimate the parameters of the

stochastic model of perceptual differences, Ψ. A perceptual
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(a) Ψ with no skewness (b) Ψ with positive skewness

Figure 1: Two plots showing the differences in an unskewed
(a) and positively skewed (b) perceptual scale, Ψ. Underneath
are the object sequences that correspond to the estimated per-
ceptual scale. Φ is the nominal value/ratio to blend the in-
termediate objects in the sequence. See Methods Sect. for
complete details.

scale represents the estimated suprathresholds of perceived
distances through the repeated trials in the two-alternative
forced choice (2AFC) where an observer is instructed to se-
lect the pair (out of two) which is most similar in structure
and texture. The stimuli change over time, so the selection
of their similarity is dependent upon temporal change. This
choice is repeated numerous times to generate the complete
perceptual scale of the sequence.

Stimuli generation: To generate the stimuli for a percep-
tual scale we used a software framework ShapeNet which
contains 55 ImageNet classes. There are anywhere from tens
to over thousands of instances for each of the 55 classes.
There are two ways to define your view-port — the perspec-
tive from which the virtual camera is pointed at an object —
in ShapeNet: panorama and canonical. Panorama allows the
user to define the number of steps to take in 360◦ of rotation
around a selected axis (x, y, z) and direction (− or +), and
canonical is a selection of six view-ports one for each com-
bination of axis and direction. To simplify our selection and
reduce the sheer number of possible generated images (from
infinite possibilities), we chose to use the built-in canonical
view-port selection.

After we proceeded to generate every object instance with
their respective six view-ports, we needed to determine which
instance pairs (a and b) had adequate overlap before forming
a composite of the pair. The higher the overlap in the instance
pair, the more significant the object features of the pair will
be blended. If the overlap is low, blending of background
and object will occur instead and cause the object to appear
to fade instead of blending with its pair. To determine which
instance pairs we can use for creating composites, we created
a mask for each object and computed the Jaccard Index,

J(a,b) =
|a∩b|
|a∪b|

(1)

on the corresponding pair to determine the intersection be-
tween a and b. The Jaccard Index ranges from [0,1], or no

overlap to perfect overlap, respectively. For every instance
pair in ShapeNet, we computed the Jaccard index, then se-
lected the 10 pairs — for each instance pair — which had
the highest Jaccard index. When the Jaccard index was high
enough that the top 10 pairs had no statistically significant
difference, 10 pairs were randomly selected from that set.
Combined with the six canonical perspectives, we started
with an initial set of 89.1k unique pairs. We then generated a
sequence for each pair of objects.

Before creating a composite image of (a,b), we needed to
ensure each image contained primarily low-level vision fea-
tures such as edges, gradients, and local morphology. First,
every image is converted to grayscale using the average of
the RGB image channels, R+B+G

3 . Then a Gaussian blur with
σ = 3 is applied to the image to deteriorate higher features.
At this point, each image is a grayscale image with each ob-
ject looking closer to an unrecognizable blob than a known
object in the 55 ImageNet classes.

At this point, each pair was blended using Alpha blending,
A(a′,b′,α) = a′(1−α)+b′(α) where a′ and b′ are the mod-
ified source images, and α is in the range [0,1] representing
the percentage to include from image b′. To generate a se-
quence, the nominal scale Φ = 0, 1

6 , ...,1 is used as input to
generate 7 composite images of pair (a,b).

Relating to our terminology, there are two types of se-
quences: class-level sequences and instance-level sequences.
An instance-level sequence is a sequence using pair of im-
ages, (a,b), where a ∈ A and b ∈ B, and A and B are two sets
of instances for two classes. An instance-level sequence has
7 composite images but no perceptual scale — for our exper-
iments — but a class-sequence has no composite images but
has a perceptual scale. A class-level sequence is a set of all
instance-level sequences aggregated together using MLDS to
create the perceptual scale. In total there were 1450 class-
level perceptual scales aggregated. Henceforth, we will use
the notation Ψ(A,B) to specify the perceptual scale for class
(A,B).

Human Observer Experiments: A human baseline must
be established to analyze how machine learning models com-
pared to their human counterparts. While (Maloney & Yang,
2003) used a traditional approach to psychophysical experi-
mentation with in-the-lab monitoring of participants, we use
a modern crowd-sourced approach, called Amazon Mechani-
cal Turk (AMT). In all, we had 2,390 participants submitting
∼ 2.7m perceptual responses. Rather than one individual re-
sponding to different instances of the same object sequence
to obtain the perceptual scale — as would have been done in
a lab setting under the original MLDS paradigm — we feed
all of the participant responses to the stimuli into the MLDS
optimization routine. Instead of having the set of suprathresh-
olds that might be of one person, we have the mean set of
suprathresholds for the population. Due to the vast number
of stimuli and needed responses, this was the only way to get
the estimations we needed. In this respect, Psychophysical-
Score offers a superior approach to Brain-Score because of
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the difficulty in obtaining large numbers of cortical measure-
ments from subjects.

Skewness: Perceptual scales appear different for each pair;
however, we needed a way to quantitatively compare the 1450
different perceptual scales. We developed a method to mea-
sure the skewness of the perceptual space based on the skew-
ness of probability distributions. Recall that the skewness of a
probability distribution is a measurement of where the proba-
bility mass is located to its tail. For example, in a normal dis-
tribution, the probability mass is precisely in the center — the
mean, median, and mode are equal — with symmetric tails.
In a right-tailed positively skewed distribution, the probabil-
ity mass is closer to zero and the mode < median < mean.
A left-tailed negatively skewed distribution has the opposite
with mean > median > mode.

Since a perceptual scale has a few similar properties of a
probability distribution, we can use the idea of skewness to
generate a similar skewness for perceptual scales. However,
one fundamental difference is that a perceptual scale is dis-
crete, which poses complications to using previously known
skewness calculations. One option to overcome this chal-
lenge would be to use a best-fit approximation using a non-
symmetric distribution such as the Beta distribution, but this
comes at the cost of introducing approximation errors. Al-
ternatively, we can use a discrete integral to approximate the
area under the curve and then rescale to match the standard
format of skewness (−∞,∞):

S(Ψ) :=−2∗
(
(∑6

i=0 ψi)−1
5

− 1
2

)
(2)

If the ∑ ψ ≃ 1
2 , then S(Ψ) ≃ 0, and is considered to have a

neutral interspace. An object sequence with a neutral inter-
space can be seen in Fig. 1a. If ∑ ψ > 1

2 , then S(Ψ) > 0,
which is positive skewness and a positively skewed inter-
space (see Fig. 1b). Finally, if ∑ ψ < 1

2 , then P(ψ) < 0 has
negatively skewed interspace. Given the skewness value for
each perceptual scale, we define Psychophysical-Score as the
ranked-correlation, monotonic relationship, between a set of
perceptual scales measured from humans and those measured
from a machine learning model.

Experiments
What did we learn about human vision? The original se-
quences used in Meloney et al. (Maloney & Yang, 2003)
demonstrated the utility of the MLDS procedure on an or-
dered sequence of color patches, so the first thing that we
needed to determine was if humans could even perform the
task with sequences that were significantly more complex
(see Fig. 3). Meloney et al. describe two axiomatic valida-
tions an observer must meet for the procedure to work. The
first test is that an observer must be able to order the sequence
given the complete sequence, and second, meet what is called
the Six-Point Property. The first test is a given. The second
test is a subset of the first: observers must be able to order any
random three images in the sequence (see (Maloney & Yang,

2003) for complete details). Out of the 1,485 possible se-
quences using all 55 objects in ShapeNet, only two sequences
did not fully qualify (see Figs. 3(1a) & 3(1b)).

While these two tests indicate observers can properly per-
form the task for individual sequences, it does not indi-
cate whether the measured suprethresholds for the percep-
tual space are an adequate representation of the population
— i.e., are the perceptual spaces more than just the product
of chance? To determine this, we perform a Pearson’s Chi-
Squared Test on the null hypothesis, h0, that the perceptual
spaces are the product of chance. Each space is represented
as a quantitative value, what we call the skewness of the per-
ceptual space (see Methods). The null hypothesis is unequiv-
ocally rejected with a p ∼= 0 and α < 0.001. Thus, h1, is true,
and the human-obtained perceptual scales are not randomly
sampled signals.

Thus the results so far indicate 1) human observers can per-
form the task, and 2) the scales that result from the observa-
tions mean something beyond the noise.

The skewness for each perceptual scale can be seen from a
high-level perspective in the “Human” plot in Fig. 2 and Table
1. One potential complication in analyzing variance is that
AMT presents an uncontrolled environment, which naturally
introduces extraneous factors in observer responses. How-
ever, even in a controlled environment, there will be variance
among observers. To analyze the results of the AMT partici-
pants, and consistent with other findings (Germine, Duchaine,
& Nakayama, 2011; Crump, McDonnell, & Gureckis, 2013),
we assume the variance in perception has been accurately
captured.

Figure 2: Each skewness, S(Ψ), of a perceptual scale, Ψ,
plotted for three observers: Humans, Gabor, and CORnet-
S. The red lines indicate two standard deviations for the ob-
server. Notice the two orders of magnitude difference be-
tween the human observers and the CORnet-S observer. Ga-
bor filters have roughly half the amount of variance and have
near-random chance level variance. See Table 1 for a com-
plete list of variances by model, and the Results section for
further analysis.

A possible reason for the variance is the varying quality of
the object sequences — not all sequences blend well. For
an estimate of the quality of a blend, we can use the hu-
man noise factor (HNF) that is estimated along with a per-
ceptual scale using MLDS (see (Maloney & Yang, 2003) for
complete details). As with perceptual scales, in (Maloney &
Yang, 2003), the HNF is for one observer. But for this exper-
iment, it represents the population’s noise factor. While we
use HNF for blend quality analysis for human perception, the
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HNF has no bearing on the described procedure to calculate
Psychophysical-Score.

Figure 3: Six object sequences with their corresponding per-
ceptual scale derived from human observers, Ψ. The two
columns on the right give the value of the human noise factor
(HNF) and S(Ψ), the skewness of Ψ. See Results section for
the description of how each sequence 1-4 differs and corre-
sponding analyses.

Human-Machine Learning Comparison: How do hu-
man observers compare to machine learning models?
We perform the 2AFC procedure on seven traditional
CNNs (AlexNet, GoogleNet, ResNet, SqueezeNetv1.0,
SqueezeNetv1.1, VGG-16, and VGG-19) (Krizhevsky, 2014;
Szegedy et al., 2015; He et al., 2016; Iandola et al., 2016;
Simonyan & Zisserman, 2015) and five biologically in-
spired models (Gabor, HMAX, HT-L3, PredNet, and COR-
net) (Fogel & Sagi, 1989; Riesenhuber & Poggio, 1999; Cox
& Pinto, 2011; Lotter et al., 2017; Kubilius et al., 2019),
each representing significant advancements at the time of
their publication. The procedure for humans differs from ma-
chine observers in two subtle ways: 1) we use many human
observers whereas each machine observer is its own, and 2)
machine observers use ℓ2 distance for their difference mea-
surement — the mechanism by which human observers as-
sess distance is unknown. While procedural differences are
minimal, we did make one substantial change to each ma-
chine observer that differs from their published form. Before
performing the procedure, each machine observer was mod-
ified to better match our intentions of measuring low-level
vision. In general, the later layers of each model were re-
moved, which are thought to correspond with the later part of
the human visual cortex (Rajalingham et al., 2018b).

Each model performs our proposed procedure so that we
can compare scales from human observers to machine ob-
servers. Looking at the results in Table 1, we can see a sub-
stantial difference between human and machine performance.
Human observers have a larger variance compared to ran-
dom chance, while all machine observers have variance less
than random chance. This is consistent with what one should
expect given human perceptual scales are aggregate. How-
ever, Gabor filters standout because they are close to random
chance, an order of magnitude higher than any other machine
observer (Table 1). Something that differs with Gabor filters
that is not present in the other models is that Gabor filters

are not trained with data. In this respect, Gabor filters differ
the most from human observers as well because humans have
learn something visual throughout their lives. Although all of
the learned machine models had a variance which was an or-
der of magnitude smaller, it is possible that had each of these
models been trained hundreds of times separately to better
replicate the crowd-sourcing procedure, the variance would
be higher. However, given this and the way the perceptual
scales are acquired, we don’t believe these fluctuations would
be substantial.

Table 1: Ordered List of the variances, σ2, in the skewness,
S(Ψ)

- σ2

Human 0.06154
Random 0.03047
Gabor 0.02704
HT-L3 0.00622
HMAX 0.00607
VGG-19 0.00314
AlexNet 0.00302
SqueezeNet v1.0 0.00301
VGG-16 0.00264
CORnet-S 0.00250
GoogleNet 0.00230
ResNet-18 0.00196
SqueezeNet 0.00133
PredNet 0.00082

In each of the trained machine observers, even the biolog-
ical ones, the classification layer treats each class as equally
important. We don’t know yet how human observers com-
paratively represent objects, but from the results, it is clear
that different objects have different representational values.
For machine observers, since each object has equal represen-
tational value, the skewness of the perceptual space is only
present due to the loss in the training regime — the train-
ing regime forces skewness towards zero but only succeeds
if there is no error. This is a huge difference between ma-
chine and human observers and something the computer vi-
sion community needs to consider.

Comparison to Brain-Score: Next we analyze whether or
not our procedure produces results that align with the Brain-
Score (Schrimpf et al., 2020) metric, which is a measurement
of a model’s biological fidelity from the perspective of neural
activity. If a computer vision model has a high Brain-Score, it
highly correlates with the neural activity of monkeys, but just
because a machine observer has a high correlation, does it
mean that the machine observer is “seeing” like a human ob-
server? To answer this, we look at the monotonic relationship
between the perceptual scales of a machine observer to the
perceptual scales of human observers using Spearman’s Rho.
The correlation of all results can be seen in Fig. 4. Due to the
symmetric property of perceptual scales, we represent them
as either absolute correlation or its Psychophysical-Score.

The Psychophysical-Score for each machine ob-
server is then compared to its published Brain-Score on
www.brain-score.org. When the correlation results of the
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Figure 4: A visualization of the Psychophysical-Scores for
each machine observer and each corresponding Brain-Score.
Some models do not have a Brain-Score because they are
not published on www.brain-score.org. Note the “U-
shape” for both Psychophysical-Scores and Brain-Scores,
where high Brain-Scores and Psychophysical-Scores are cor-
related. One outlier exists, ResNet-18. See Results for fur-
ther analysis of individual Psychophysical-Scores and Brain-
Scores for these models.

machine observers are compared as in Fig. 4, it becomes
immediately apparent that Psychophysical-Score and Brain-
Score are converging on similar observations, i.e., models
which have a higher Psychophysical-Score also have a higher
Brain-Score, and vice versa. However, ResNet remains an
outlier. A potential reason for this deviation might be that
when the later layers were removed, the skip connections
which are only present in ResNet, were also removed. Skip
connections provide early information to later layers by
bypassing intermediate layers. However, the removal of
these skip connections may have created a bifurcation in
corresponding neural activity (includes the skip connections)
and perceptual behavior.

PredNet is a particularly interesting case because it is bio-
logically inspired in design but performs near the bottom on
Brain-Score and has ∼0 as a Psychophysical-Score. PredNet
was designed to operationalize a complex predictive coding
model of visual processing. This biological mechanism may
differ from the neural activity aligned with object recognition,
causing a lower Brain-Score. However, this doesn’t explain
why its Psychophysical-Score is so low. We raise two possi-
bilities for this: 1) by removing all but one predictive block,
it may have eliminated quality error propagation (the output
before ℓ2 distance is computed), or 2) behavioral results may
differ depending on which of the next predicted frames from
the model are used — we used the first predicted frame.

Finally, and most importantly, the highest scoring model
published on www.brain-score.org, CORnet, also scores
high on Psychophysical-Score (although not the highest,
there is no statistical difference when compared to AlexNet).
CORnet-S is designed for and trained with Brain-Score,
which is derived from the neural activity of monkeys, so one
would expect CORnet-S to perform high on Brain-Score. But
even more, since CORnet-S also has a high Psychophysical-
Score, it indicates CORnet-S may have even more similarity
to biology than initially considered. First, the neural activ-

ity recorded is representing authentic perceptual behavior to
some degree. Second, using Brain-Score’s representation of
neural activity to train a model has significant potential util-
ity. And third, Psychophysical-Score can be used to predict
whether a model will have the potential to score high for neu-
ral activity, without the need for a difficult and expensive ac-
quisition process — though the relationship is correlative, not
causal.

Discussion
The capability of human vision has long inspired the pur-
suit of sophisticated artificial vision systems — generations
of computer vision scientists have worked towards this end.
The early advancements in artificial vision were often in tan-
dem with an improved understanding of human visual sys-
tems. Unfortunately, the deep learning age has allowed com-
puter vision scientists to lose sight of this original goal of
mimicking human visual systems. Thankfully, scientists such
as (Schrimpf et al., 2020; Rajalingham et al., 2018a; Gerhard
et al., 2013; Heath et al., 1996; Eberhardt et al., 2016; Ku-
bilius et al., 2019; Lotter et al., 2017; Dapello et al., 2020;
RichardWebster, Anthony, & Scheirer, 2018) have returned to
the grassroots of artificial vision. Arguably, the Brain-Score
metric published by Schrimpf et al. (Schrimpf et al., 2020) is
currently the best metric scientists have at estimating the re-
lationship between modern vision algorithms and the neural
activity of the brain. Even on its own, Brain-Score has shown
to have huge potential (Kubilius et al., 2019). But now that
Psychophysical-Score can complement Brain-Score by esti-
mating the relationship between the perception of machine
and human observers, the opportunity for the development of
new biologically-inspired algorithms is apparent.

Psychophysical-Score and Brain-Score have the unique
ability to inform scientists at every scale of artificial vision al-
gorithm development. Take for example something as simple
as the skip connections in ResNet-18. Previously it has been
hypothesized that they model the pyramidal neurons in the
cerebral cortex. But if Brain-Score and Psychophysical-Score
differs so greatly, we should ask questions such as: does this
really model a component of the brain? Did we misunder-
stand that component of the brain? Or is there a missing piece
we don’t know about? While previously questions like these
have been asked rhetorically, they can now be asked with the
hope of at least obtaining a partial answer. Instead of arti-
ficial models learning what to perceive from input images,
using metrics like Psychophysical-Score and Brain-Score, a
model can also learn how to perceive directly from human
perception and neural activity. If a model can learn how to
perceive, maybe it can learn from humans how to do exceed-
ingly difficult tasks such as one-shot learning, generalization,
or behavioral prediction.
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