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Abstract
Making goods evolved over several centuries from craft production to
complex and highly automated manufacturing processes. A companion
paper by R. Jaikumar documents the transformation of firearms man-
ufacture through six distinct epochs, each accompanied by radical
changes in the nature of work. These shifts were enabled by correspond-
ing changes in technological knowledge. This paper models knowledge
about manufacturing methods as a directed graph of cause–effect rela-
tionships. Increasing knowledge corresponds to more numerous variables
(nodes) and relationships (arcs). The more dense the graph, the more
variables can be monitored and controlled, with greater precision. This
enables higher production speeds, tighter tolerances, and higher quality.

Changes in knowledge from epoch to epoch tend to follow consist-
ent patterns. More is learned about key classes of phenomena, including
measurement methods, feedback control methods, and disturbances.
As knowledge increases, control becomes more formal, and operator
discretion is reduced or shifted to other types of activity. Increasing
knowledge and control are two dimensions of a shift from art towards
science.

Evolution from art to science is not monotonic. The knowledge
graphs of new processes are riddled with holes; dozens of new vari-
ables must be identified, understood, and controlled. Frederick Taylor



pioneered three key methods of developing causal knowledge in such
situations: reductionism, using systems of quantitative equations to
express knowledge, and learning by systematic experimentation.

Using causal networks to formally model knowledge appears to
also fit other kinds of technology. But even as vital aspects of manufac-
turing verge on “full science,” other technological activities will remain
nearer to art, as for them complete knowledge is unapproachable.



1
Introduction

Since the first Industrial Revolution, technology has steadily trans-
formed living standards and daily life. The aggregate effects of new
technology – rising productivity and improving product performance –
are visible effects of from new knowledge of “how to do things.” But
what is the nature of this knowledge, and how does it evolve over time?
This paper investigates long-term technological change and the evolu-
tion of enabling knowledge through the lens of a single industry over
more than 200 years.

Changes in technological knowledge are usually observed indirectly,
as changes in methods or performance. Performance that improves by
more than can be explained by measured inputs is taken as evidence
of changes in the stock of knowledge. Implicitly this assumes a causal
chain approximately as follows: learning activities create new knowledge
that allows the firm to implement superior designs and methods that
improve local physical performance such as machine speed and material
consumption, which ultimately causes better high level performance
(Figure 1.1). But generally, the middle variables in this chain are not
observed directly.

Our focus is on the intermediate steps of this chain – new know-
ledge, superior methods, and improved performance at workstations –



Fig. 1.1 Knowledge as an unobserved intermediate variable in technological change
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that cause improved aggregate performance. Changes in production
methods are explored in the companion paper, From Filing and Fitting
to Flexible Manufacturing: The Evolution of Process Control by
R. Jaikumar [15]. Here we explicitly examine the new knowledge that
made possible these changes.

Our case study centers on the manufacturing methods of a single
company over 500 years. The company, Beretta, has remained in
family hands and has made firearms since its founding in 1492, when
firearms were manufactured as a small-scale craft with only hand tools.
Jaikumar identified six distinct epochs of manufacturing, characterized
by different conceptions of work, different key problems, and different
organizations (Table 1.1).

Each epoch constituted an intellectual watershed in how manufac-
turing and its key activities were viewed. Each required introducing a
new system of manufacture. Machines, the nature of work, and factory
organization all had to change in concert. Within Beretta, each of these
epochal shifts took about ten years to assimilate.

A longitudinal study of a single industry is an excellent test-bed
to examine technological change over a long period. In Jaikumar’s
study, the fundamental product concept changed little from the 16th
to the late 20th century: a chemical explosion propels a small metal
object through a hollow metal cylinder at high speed. With such product
stability, changes in manufacturing stand out even more.

The central problem in manufacturing over the entire period was
to increase process control, for once society moved beyond making
unique items by hand predictability, consistency, and speed were
achieved by progressively tightening control. Each new epoch revolved
around solving a new process control challenge, generally reducing a
novel class of variation. To accomplish this required major, often
unexpected, shifts in many aspects of manufacturing (Table 1.2). The
nature and organization of work changed, use and sophistication of
machines increased, and, most important for our purposes, manufactur-
ing control shifted, all requiring changes in knowledge.

We will describe shifts in technology using the metaphor of
transformation from art to science. Jaikumar observed that “The holy
grail of a manufacturing science begun in the early 1800s and carried
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Approx
dateEpoch

15000) The Craft System (circa 1500)

18001) The invention of machine tools and the English System of Manufacture

18302) Special purpose machine tools and interchangeability of
components in the American System of Manufacture

19003) Scientific Management and the engineering of work in the Taylor System

19504) Statistical process control (SPC) in an increasingly dynamic manufac-
turing environment

19655) Information processing and the era of Numerical Control (NC)

19856) Flexible manufacturing and Computer-Integrated Manufacturing
(CIM/FMS)

Table 1.1 Manufacturing epochs [15]

on with religious fervor by Taylor in early 1900s is, with the dawning
of the twenty-first century, finally within grasp.”1 But precisely what
does this mean? Is such evolution inevitable? Is it universal, or limited
to manufacturing?

As late as the early 18th century, making firearms still relied
entirely workers’ expertise. Documented or standardized methods were
non-existent.

Production involved the master, the model, and a set of calipers.
If there were drawings, they indicated only rough proportions and
functions of components. Masters and millwrights, being keenly
aware of the function of the product, oriented their work towards
proper fit and intended functionality. Fit among components was
important, and the master was the arbiter of fit. Apprentices
learned from masters the craft of using tools. Control was a
developed skill situated in the eyes and hands of the millwright.

Inasmuch as adaptive skills are really contingent responses
to a wide variety of work conditions, procedures cannot readily

1 Unattributed quotations are from [15].
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be transferred. Critical knowledge was mainly tacit, and a journey-
man had to learn by observing the master’s idiosyncratic behaviors.
The master, who could solve the most difficult of problems, fash-
ioned each product such that quality was inherent in its fit, finish,
and functionality. [15, Section 2]

This description corresponds to technology as an art. Learning was
by apprenticeship; quality was achieved by rework; progress occurred
slowly by trial and error; techniques and knowledge were idiosyncratic.

In contrast, in the most advanced flexible manufacturing systems
of the late 20th century people are normally absent from the production
area, and machines execute complex contingent procedures under
computer control. Operators manipulate symbols on workstations, and
use scientific methods of observation, experimentation, and data ana-
lysis. Alternative production methods can be precisely described, tested,
and embodied in software. Methods and general knowledge can be
transferred to other locations, machines, and products with little effort
and no face-to-face communication. This is manufacturing as a science.
Manufacturing changed profoundly over the two century transition
from art to science, with performance improvements on some dimensions
of two orders of magnitude or more (Figure 1.2).

Transitions from art toward science can be seen in many techno-
logies. Early aviation, literally a “seat of the pants” technology early
in its development, today includes the Global Hawk aircraft, which
can take off, cross the Pacific, and land without human intervention.
In contrast, although product development technology has progressed
tremendously, it still has remains in many ways more like art than a
science.

Although we are concerned here with a relatively small industry
that has not been leading edge since the mid-19th century, the evolution
of knowledge and the transition from art to science are still critical in
all high-tech industries, and influence many contemporary issues such
as offshoring, automation, and outsourcing. These activities require
transfers of knowledge and information across organizational and firm
boundaries. We will see that the difficulty of such transfers depends
on the detailed structure of knowledge. [18]

8



Fig. 1.2 Changing performance over six epochs [15]

In Section 1.1 we consider different ways of classifying technology
along a spectrum from art to science. Section 1.2 presents a formal
model of technological knowledge that supports precise descriptions of
changes in knowledge when learning occurs. Prior research is presented
in Section 1.3. The case study evidence is presented in Section 2 and
Section 3.

In Section 2 we examine the first three epochs of manufacturing
(approximately the 19th century), during which workers’ discretion
and insight were progressively reduced, culminating in Taylor’s extreme
division of labor and separation of intellectual work from line operations.
We will see that the de-skilling of workers in the Taylor System rested
on an unprecedented level of technological knowledge, developed by
Taylor himself using several seminal concepts.

In Section 3 we examine the development of knowledge over the
last three epochs, in which workers increasingly became problem solvers
and knowledge creators, effectively reversing Taylor’s de-skilling
paradigm. We also examine the integration of formal science with
practical engineering. Finally, we consider what happens when novel
and immature physical processes are substituted for mature ones. Even

9



when the core physical process is entirely changed, considerable
knowledge from old processes is still relevant.

In the concluding section we examine broad patterns of change in
manufacturing over the centuries.

1.1. Art and Science in Technology

The metaphor of art and science in human endeavor is long established
and widely used. Military treatises speak of the “art and science of
war” as in a 1745 book that provides “a short introduction to the art
of fortification, containing draughts and explanations of the principal
works in military architecture, and the machines and utensils necessary
either in attacks or defenses: also a military dictionary … explaining
all the technical terms in the science of war” [3]. Sometimes a clear
distinction is made between “art” and “science,” as in the title of an
American book on surveying circa 1802: Art without science, or, The
art of surveying: unshackled with the terms and science of mathematics,
designed for farmers’ boys [33]. The two are not as clearly differentiated
in a 1671 title, An introduction to the art of logick: composed for …
[those who do not speak Latin but] desire to be instructed in this liberal
science [28].

In modern usage art and science are generally viewed as the
extremes of a spectrum. “Art” conveys the sense of a master craftsman
using informal and tacit knowledge, “science” that of an engineer who
uses mathematical equations to program computerized machines. Fur-
thermore, the outcome from a craftsman is not as predictable or con-
sistent as that from an engineer. The sense (whether legitimate or not)
is that amateurs and low-volume production are at the artistic end,
professionals and high-volume production at the scientific end (e.g., a
home cook versus a packaged goods bakery). Most technical and
managerial activities are perceived to require a mix, and progress in
understanding a field to correspond to a gradual shift from “mostly
art” to “mostly science.”

The range of methods in human endeavor can be examined along
many dimensions. Particularly useful for characterizing technology are
how work is done, quality of the results that are achieved, and how

1.1. Art and Science in Technology 10



well the technology is understood (Table 1.3). Any of these dimensions
could be used to specify some measure of “art or science” and we might
expect that all move toward “science” as a given technology advances.

The activity dimension describes how actions are carried out,
whether according to rigid procedures or idiosyncratically. Procedure
refers to specifying activities in advance and reducing them to complete
and explicit rules that must be followed exactly. [16] We observe this
in a lights-out factory, in which every intentional action results from
explicitly stated computer instructions executed properly by micropro-
cessors. Human discretion characterized the pre-manufacturing world
of expert craftsmen who used rudimentary hand tools, informal judg-
ment, and individualized methods without formal guidelines. But it is
simplistic to equate degree of procedure with the extent of automation,
which would imply that activities done by machines are fully rigid and
those performed by people cannot be. Much of the emphasis during
the Taylor epoch was on applying rigid procedure (“one best way”) to
people, and in many factories today this continues to be the goal.

We can also characterize art-versus-science by the nature of the
knowledge about a given technology. If nothing is known production
is impossible; if everything is fully understood, we can call it completely
science-based. We will analyze how knowledge moves from one extreme
towards the other, through intermediate gradations. Among the criteria
used to describe knowledge qualitatively the most common is probably
the degree of explicitness – whether knowledge is tacit or codified.
Polanyi pointed out that much knowledge cannot be written down,
even when it is critically needed in order for a technological system to
function properly.2 [30]

Codified knowledge refers to knowledge that is transmittable in
formal, symbolic language, whereas tacit knowledge is hard to
articulate and is acquired through experience … Tacit and codified
knowledge exist along a spectrum, not as mutually exclusive cat-
egories … For some knowledge, especially [sic] in medical practice,

2 The literature on this topic is vast; Balconi’s analysis of tacit knowledge in modern manufacturing
is similar in spirit to that in this paper [5].

1.1. Art and Science in Technology 11



Ideal technology:
“Science”

Embryonic technology:
“Art”

Fully specified
procedureZero procedure; idiosyncraticHow activities are

executed

Consistent and
excellent

Each one different, mostly
poor

What results are
achieved

Characteristics of knowledge:

CodifiedTacitHow knowledge
specified

Also know-whyPurely know-howWhat knowledge
about

Complete
Minimal; can distinguish
good from bad results, but
little more

Extent of knowledge

Table 1.3 Dimensions of production technology on an art-science spectrum

the difference between tacit and codified is temporal: much codified
knowledge in medicine today was tacit in the past. [14]

Knowledge that tells what to do but does not explain why things happen
is also incomplete. For example, it is inadequate to debug problems.3

Finally, we can examine the quality of the results achieved by a process.
A perfect technology should always deliver perfect results, especially
in conformance quality. At the other extreme, pure art would never
produce the same thing twice, and much of what is produced is
expected to be unusable.4

Movement along the dimensions of action, knowledge, and results
(Table 1.3) tends to occur in concert, in part because the extent of
available knowledge constrains procedures. For example, all desired
actions to be performed by a numerically controlled (NC) machine tool
must be specified in detail in computer programs, which are highly

3 Know-how and know-why are often referred to as procedural knowledge and causal knowledge.
See the discussion of [23] later. An additional category is declarative knowledge.
4 Many other ways of classifying knowledge are used. For example, the distinction between col-
lective and individual knowledge is important for designing knowledge management systems. [2]

1.1. Art and Science in Technology 12



formal procedures. Writing effective programs requires that knowledge
be extensive and explicit. When these conditions are not met, proced-
ures can still be specified but will not work well.

Each step of a process can be summarized by two measures, the
amount known about it and the degree of procedure used to execute
it (Figure 1.3). If these are consistent, points plotted on a graph will
be near the diagonal, and over time a process step will normally
move up and to the right. If knowledge is inadequate for the degree of
procedure used, the plotted point will be above the diagonal and the
step will not operate well. Conversely, if a process is below the diagonal,
it could have been done in a more formal way, presumably reducing
cost and improving consistency.

The increasingly formal execution of manufacturing from epoch
to epoch is detailed in [15], corresponding to upward movement in
Figure 1.3. Implicitly this requires greater knowledge. We address this
next.

1.2. A Model of Technological Knowledge

New methods, if they are to be superior to their predecessors, must be
based on new knowledge (Figure 1.1). To understand how technological
knowledge changes and grows over time requires a disaggregated model,
detailed enough to compare two knowledge states. Notwithstanding
the substantial body of research on innovation and technology, specific
knowledge is little analyzed in the technology management literature.

Recent studies of engineers, scientists and technicians have brought
to light the social and political aspects of work … [but] as a whole
they overemphasize the importance of political actions and social
networks and underestimate the importance of formal,
often technical, knowledge in the carrying out of tasks. Formal
knowledge looms in the background in nearly every study of
technical workers. [4]

1.2. A Model of Technological Knowledge 13



Fig. 1.3 Level of knowledge versus degree of procedure (adapted from [11])

To do our analysis we therefore develop and exploit a model of
technological knowledge. It starts with the following observation:5

The core of technological knowledge is knowledge about causality
in human-engineered systems.

Designing, building, or operating a technological system, whether
a firearm or a factory, requires an understanding of the causal relation-
ships among actions, events, and outcomes. Only with such knowledge
can desired outcomes be achieved, and undesirable ones debugged.

Causality can be modeled formally using causal networks, directed
graphs whose nodes are variables. Directed arcs between the nodes

5 This theory of technological knowledge was developed jointly with R. Jaikumar. Previous work
includes [9].

1.2. A Model of Technological Knowledge 14



show causal relationships.6 [29] Variables can be physical properties of
an object, logical values, or information. Useful variables for a metal
part, for example, might include its composition, shape, mass, hardness,
and perhaps color. For a machine tool, they include control settings
such as speed and feed, actual behavior such as cutting depth and
vibration, and many elements of its design. These variables are linked
in a dense network of causal relationships, and the state of knowledge
at any moment can be summarized by depicting the causal network
as it was understood (implicitly or explicitly) at that time. This known
causal network expands as technological knowledge develops.

Relationships among variables can also be described by mathem-
atical functions, in particular by systems of nonparametric simultaneous
equations. Any such system can be summarized by a causal network.
The simplest relationship is two variables A and B that cause a third
variable C, C = f(A, B). (Left side of Figure 1.4.) The properties and
arguments of the function f are known only to a limited extent. Better
knowledge about the technology corresponds to better understanding
of the causal network’s topology and of the specifics of the function f.

Genealogical terminology is used to express causal relationships.
A parent causes a child if there is a direct link from parent to child.
Parents often have many children, and children usually have many
parents. Descendants are all nodes that can be reached by forward
chaining from a variable and, equivalently, whose values may be affected
by it. Ancestors include parents, grandparents, and so forth: any vari-
able of which the child is a descendant. In Figure 1.4, E and F are both
descendants of A, B, C, and D; E is a child only of D and F is a child
of both B and D. Cycles are possible; one variable can be both ancestor
and descendant of another. Such relationships create feedback, such
as would occur if there were a directed link from E to A. A causal
path from X to Y is a directional sequence of ancestors of Y, each
variable having the previous one as its only parent in the chain. A ⇒

6 Pearl’s formal definition is “A causal structure of a set of variables V is a directed acyclic graph
(DAG) in which each node corresponds to a distinct element of V, and each link represents direct
functional relationship among the corresponding variables.” (page 43) Note that this definition
specifies Acyclic Graphs, which cannot have feedback. But feedback loops are central to process
control and are central to any theory of modern technological knowledge. Therefore, we will allow
cyclic graphs.

1.2. A Model of Technological Knowledge 15



Fig. 1.4 Simple causal network

C ⇒ D ⇒ F is a causal chain from A to F; B ⇒ F is also a chain.
Cousins are variables with at least one common ancestor, but no causal
path from one to another (such as D and G). Cousins are statistically
correlated, but no causal relationship exists among them.

One value of causal networks is that they quickly identify how a
variable can be altered; all and only its ancestors can affect it. Because
of this property, any unexplained change in a variable reveals the
existence of previously unknown parents. Causal networks also facilitate
various kinds of counter-factual reasoning (difficult or impossible
with standard statistical models), such as predicting how a system
will behave under novel operating rules. [29] They thus not only repres-
ent knowledge abstractly, but also constitute useful knowledge in
themselves.

It is often useful to select a small number of important variables
that summarize the important results of a system. These are referred
to as outcome variables for that system. In manufacturing, typical
outcome variables are production rates, costs, and properties of the
final product. These variables are chosen based on criteria from outside
the system: the ultimate goals of a causal system are selected exogen-
ously. Typical goals of a production system might include cost minim-
ization, high conformance quality, and high output.

Causal networks reveal how the outcomes are determined by their
ancestors. Each ancestor, in turn, has its own network of ancestors.
The important input variables for one process include the outcome
variables for upstream processes and suppliers, including the properties

1.2. A Model of Technological Knowledge 16



of machines or materials passed from one to the other. In this way,
causal paths can be traced back through industrial supply chains.

Causal networks for production processes are extremely complex,
but not all variables are equally important. The status and behavior
of a process or sub-process can generally be summarized by a few
important intermediate variables. Good intermediate variables are often
“choke points” in the causal network – many ancestral variables
determine their levels, and they in turn exert multiple effects. They
can include machine control settings, process behavior, and physical
properties of products. Simply learning the identities of key variables
is useful, and often requires considerable effort.

As Jaikumar showed, fabricating accurate parts by machining was
a key activity throughout the history of firearms manufacture. Fig-
ure 1.5 shows a highly simplified causal network for machining. The
most important variable, metal removal, is at the center. The shape
and location of the metal removed from a workpiece are functions of
the motion of the cutting tool relative to the workpiece surface, the
cutting tool characteristics, and the composition and orientation of the
workpiece before cutting begins. Behavior of the cutting tool is
determined by the various processes that created or affect it, e.g. those
related to the machine power train and to tool maintenance. A variety
of machine adjustments enable workers to influence results, for example
by changing the cutting depth. Almost without exception, adjustments
are based on some form of feedback control. For example, in the pre-
numerical control epochs an experienced machinist used sound, the
shapes of chips from the workpiece, and other indicators to determine
whether and how to adjust cutting. Higher order feedback loops (not
shown in the figure) are used to diagnose systemic problems, and many
small feedback loops embedded in subsystems’ control variables such
as motor speed.

The causal network in Figure 1.5 emphasizes desired process
variables and relationships. But what makes manufacturing especially
challenging are undesired disturbances. An operator can set the intended
behavior of a machine, but not the actual behavior. Disturbances arise
both from outside the system, such as defective raw materials, and as
side effects such as vibration and contamination. We will see that no
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complex process can be completely understood, much less measured in
real time, so detecting disturbances, uncovering their sources, and
devising counter-measures are never-ending stories. The causal know-
ledge graph includes whatever is known about disturbances and their
effects.

This paper limits the domain of inquiry to “hard engineering.”
We will analyze only knowledge about human-designed systems intended
to accomplish tangible physical tasks. This excludes analysis of, among
other things, worker motivation, strategic goal-setting, and political
interactions among people and organizations. The virtue of limiting
the domain so sharply is that objective truth exists, even if it can never
be fully known.

Axiom: The true causal network exists, is complete, and is
deterministic.

Pearl stated this as follows:

We view the task of causal modeling as an induction game that
scientists play against Nature. Nature possesses stable causal
mechanisms that, on a detailed level of description, are determin-
istic functional relationships between variables, some of which are
unobservable. [29, p 43]

Applying this specifically to machining:

The following statement is the basis of the Deterministic Theory:
“Automatic machine tools obey cause and effect relationships that
are within our ability to understand and control and there is
nothing random or probabilistic about their behavior” (Dr. John
Loxham). Typically, the term random implies that the causes of
the errors are not understood and cannot be eradicated … The
reality is that these errors are apparently nonrepeatable errors
that the design engineers have decided to quantify statistically
rather than completely understand. [20]

The evolution from art toward science occurs through identifying, in
ever greater detail and breadth, “Nature’s stable causal mechanisms.”
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In the following sections we analyze the knowledge about them that
emerged in each epoch.

There is an important distinction between the true causal network
and what is believed at a particular time in a specific organization.
The true causal network exists and is deterministic, but it is never
fully known. The belief network, in contrast, is never perfect or com-
plete. For example, metal removal by a cutting tool can be described
by a system of algebraic equations first crudely set down only circa
1900. Yet the relationships summarized by such equations were always
active. For clarity, the known version of the true causal network will
be referred to as the causal knowledge graph. This also sidesteps the
problem that the organizational learning literature uses the term
“knowledge network” to mean something entirely different.

1.2.1. Stages of Knowledge

The causal knowledge graph gives the overall structure of knowledge
about a technology. The structure of the graph is only a partial
description of what is known. The degree of knowledge about specific
variables and relationships (nodes and arcs in the graph) shifts qualit-
atively as more is learned, passing through a series of stages. We use
an extension of the framework from [16] and [9].

Knowledge about individual variables can be classified into six
stages (Table 1.4). Initially, many of the variables in a process are not
even recognized (Stage 0). Other variables in the same process might
be almost completely understood and controlled. In between, knowledge
about a variable has several possible degrees.

Similarly, two variables might be recognized as somehow related
(for example they may be statistically correlated), but the nature of
their relationship not known. With effort, more might become known
about how one variable causes the other (Table 1.5).

Each node and each arc in a causal graph has its own stage of
knowledge. Some combinations of stages, however, are impossible. For
example, a variable cannot be adjustable unless at least one of its
parents is adjustable and the magnitude of the relationship between
them is known.
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CommentDescriptionNameStage

Effects of X perceived
as pure noise

Complete ignorance: the existence
of X is not knownUnknown0

X is an exogenous
disturbance

The existence of X is known, but
magnitude is only known qualitat-Recognized1 ively. Even ordinal measure may
not exist.

X can be measured on a cardinal
scale, through a repeatable meas-
urement process

Measurable2

X is endogenous to the
process

The mean level of X can be
altered at will but the actual level
has high variation

Adjustable3

X can be used as a
control or outcome
variable for the
process

Control of the variance: Enough
is known to reduce the variance
of X to a fraction of its uncon-
trolled level

Capable4

Stage 5 knowledge is
unreachable; it canComplete knowledge: X can be

held at a target level under all
conditions.

Perfectly
Understood5 only be approached

asymptotically.

Table 1.4 Stages of knowledge about control of an individual variable

1.3. Other views of technological knowledge

The most thorough analysis of specific technological knowledge is
Vincenti’s work on aeronautics. [41] What Engineers Know and How
They Know It contains five detailed case studies of how specific aero-
nautical problems were solved, including the design of airfoils, design
of propellers, and design and production of flush riveting. The cases
cover the development of theoretical design tools, a series of empirical
experiments to reveal the effects of design choices in the absence of
adequate theory, and the case of riveting, in which dimensional toler-
ances and design of tools played key roles.

Vincenti classifies the knowledge developed by engineers in the
case studies into six categories:
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DescriptionNameStage

No awareness that X and Y might be related. The
true effects X on Y are perceived as a random
disturbance

Ignorance0

Aware X and Y are related but not nature of causality
(ancestor, descendant, or cousin)Correlation1

Direction of causality known (X a cause of Y, not a
descendant or cousin)Direction2

Know the partial derivative of Y with respect to X (or
shape of the partial function, for highly nonlinear
relationships)

Magnitude3

Scientific model: Have a scientifically based theory
giving functional form and coefficients of relationship
between X and Y

Scientific model4

Complete knowledge. Stage 5 knowledge is unreachable;
it can only be approached asymptoticallyComplete5

Table 1.5 Stages of knowledge about the relationship between two variables (True
relationship: X an ancestor of Y)

• Fundamental design concepts: The operational principles
and normal configuration of working devices.

• Criteria and specifications: Specific criteria and quantitative
targets for key intermediate variables. Examples include load
per rivet, dimensional tolerances, and “stick force per g of
gravity.”

• Quantitative data: Usually from experiments, and represented
by tables or graphs.

• Practical considerations: Knowledge about issues that have
little formal role, but nonetheless influence how something
should be designed (e.g., the capabilities of specific machines).

• Theoretical tools: A broad category that includes intellectual
concepts such as feedback, mathematical tools such as Fourier
transforms, and theories based on scientific principles such as
heat transfer.
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• Design instrumentalities: Knowledge about how to design,
such as structured design procedures, ways of thinking, and
judgmental skills.7

Although he does not use the metaphor of art versus science,
Vincenti is conscious of the progression of design knowledge and pro-
cedures from crude to exact, or as he puts it, from “infancy to matur-
ity.” For example, he summarizes the development of airfoils as follows.

Finally we can observe – somewhat roughly – a progression of
development in airfoil technology, which I take to comprise both
explicit knowledge and methods for design. The first decades of
the century saw the technology in what can be called its infancy.
No realistically useful theory existed, and empirical knowledge was
meager and uncodified. Design was almost exclusively by simple
cut-and-try; that is, by sketching an airfoil and trying it out. No
other way was possible. Today, airfoil technology has reached
maturity. Using relatively complete (though not yet finished)
theories, supported by sophisticated experimental techniques and
accurate semitheoretical correlations of data, engineers design
airfoils to specific requirements with a minimum of uncertainty.
Little cut-and-try is needed by a skilled professional. Between the
phases of infancy and maturity lay a half-century of growth. In
this period theory provided qualitative guidance and increasing
partial results, but wind-tunnel data were vital. Design was an
uncertain and changing combination of theoretical thinking and
calculation and cut-and-try empiricism … Perhaps we could call
this decade [of most rapid change, from late 1930s to early 1940s]
the adolescence of airfoil technology, when rational behavior was
on the increase but offbeat things could still occur. Whether or
not we push the metaphor that far, we can at least see a progres-
sion of development through phases of infancy, growth, and

7 This list has been extended by Bailey and Gainsburg’s study of building design, which added
construction feasibility, organization of work, and engineering politics [4].
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maturity, with a characteristic relationship of knowledge and design
in each phase.8 [41; p 50]

Vincenti is concerned with design, not manufacturing. Nonetheless, if
we substitute “art” or “craft” for infancy, and “nearly perfect science”
for maturity, his formulation of the transformation of technology from
art to science is consistent with what we will describe for firearms
manufacture. We will return to Vincenti’s classification of technological
knowledge, which encompasses more issues but is less precise than the
one used here, in the last section.

8 Additional work on the evolution of knowledge using Vincenti’s framework includes [12] and
[42].
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2
Evolution of Knowledge in a World of

Increasing Mechanization

Machine tools, invented circa 1800, brought mechanical power and
control to metal shaping. During the first three epochs of manufactur-
ing, from 1800 to the early 20th century, the precision of these machines
was progressively increased, mainly by mechanical means that con-
strained the behavior of machines and workers. The key developments
of this period emphasized knowledge about different portions of the
machining process (see Figure 1.5).

Little formal knowledge about any portion of the machining process
existed prior to 1800. Quantitative measurement of parts not yet
existing, the goal was to make each new firearm as similar as possible
to the shop’s working model. Even the conformance of finished parts
to the model was judged idiosyncratically, by eye and caliper. Beyond
this little can be said. Plates from Didier’s Encyclopedia illustrate the
range of hand tools available and undoubtedly there was qualitative
knowledge (both verbal and tacit) about when and how to use them
to achieve desired results.



2.1. English System

Different epochs emphasized the development of knowledge about dif-
ferent subsystems of processes. The state of technological knowledge
in the English System is little documented, but we can infer general
properties of the knowledge from what was achieved during that epoch.
Technological breakthroughs revolved around three subsystems: the
machine, specification of intended outcomes, and measurement of actual
outcomes (Table 2.1).

Maudsley’s achievement of highly accurate parts measurement
using micrometers was accompanied by the invention of the engineering
drawing. Accurate measurement and an absolute goal provided by the
engineering drawing enabled a distinction between “better” and “worse”
parts, which otherwise would have been judged merely “different” as
in the Craft epoch. Taken together, the micrometer and the engineering
drawing supported the creation of a basic feedback loop: keep removing
material until a part is of the dimension specified in the drawings as
measured by a micrometer. [15, Section 3]

Woodbury described Maudsley’s other key contribution, the general
purpose machine tool with highly precise lead screws for accurately
cutting parts with a minimum of trial and error, in the four key ele-
ments: ample power and drive train sufficient to effect its delivery;
adequate rigidity under the stress of cutting ferrous metal; precision
in construction greater than the precision of the parts to be produced;
and adjustability to accommodate flexibility in the parts. [44, pp 96–97]
At a minimum, enough was thus known to design and build iron
machines with these properties.

2.2. American System

The American System introduced new concepts of ideal outcomes based
on tolerances and precision as well as accuracy. The corresponding new
measurement method was the use of go/no-go gauges.

“Accuracy in this system, which might be as close as a thirty-
second or sixty-fourth of an inch, was ensured by an elaborate system
of patterns, guides, templates, gauges, and filing jigs.” The use of these
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SignificancePortion of process
(Figure 1.5)Key Invention

Accuracy in cuttingMachineMachine tool w. lead screw

Ability to state desired
goal and measure actualSpecify target shapeEngineering drawing (pro-

jective geometry)
outcome enable feedback

Measurement methodMicrometer, standard plane
control for finer accuracy
than can be delivered by
the machine tool

Table 2.1 Key knowledge contributions of the English System

geometric devices to constrain the motion of cutting tools required the
development of causal knowledge about linkages from jigs to final parts
(Figure 2.1).

Colt and others developed, in parallel with knowledge about
making firearms, the knowledge needed to design and build machine
tools for specific purposes. Workers independent of those employed in
the manufacture of firearms “built, maintained, set up, and improved
machines.” Specialized machine tool companies emerged to sell these
machines abroad to furnish entire firearms factories.

Implicit in the emergence of these companies is another funda-
mental innovation of this epoch: separation of organizational knowledge
by causal module. A machine tool designer does not need to know what
parts are to be fabricated, only how to construct a machine capable of
cutting along precise trajectories. The parts maker need not understand
the nuances of how the machine works, only a limited range of
adjustment methods. Information is transmitted from one to the other
through the jigs. This separation of toolmakers’ from tool users’
knowledge is vital to the success of capital equipment industries.

What conditions support this separation of users and suppliers?
There are two key conditions, one physical, the other having to do
with knowledge.

First, the technology itself must have a modular causal network,
that is, the total causal network must be separable into two subnet-
works with much denser connections within than between them. The
comparatively few connections between the subnetworks must be almost
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Fig. 2.1 Causal network from jigs to part shapes

entirely in a single direction. Such a network structure is observed, for
example, with geographically separated suppliers and customers between
which there is a one-way flow of intermediate product. Causal paths
tying the firms together pass through these intermediate products.

Second, knowledge about the causal relationships that join the
subnetworks must be sufficiently complete to enable the modularity
to be exploited. The key relationships that link the subnetworks must
be well understood and their variables be known and measurable.

If both conditions are met, each subnetwork can be controlled by
its own organization (department or firm) and the two joined by an
arms length relationship. In Figure 2.1, a cutting tool’s trajectory is a
function of only a limited number of machine tool properties. Knowledge
about the causal linkages among these properties was sufficient in the
American System to make separate machine tool companies feasible.

2.3. Taylor System

Their extensive research on the “hard” technology of machining would
render the impact of Taylor and his team on the transition from art
to science fundamental, even in the absence of their more well known
work at the Watertown Arsenal on worker procedures and standardized
methods for each job. Conducted in secret for more than 20 years, the
research was finally presented, in 1906, to an overflow audience of 3,000
at a gathering of the American Society of Mechanical Engineers. [35]
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SignificancePortion of process
(Figure 1.5)Key Invention

Precision and flexibility possibleControl methodElaborate jigs and
fixtures

Simple way to estimate precisionMeasurement methodGo/no-go gauges

Separation of machine knowledge
from product knowledge; organ-
izational specialization

MachineGeneral purpose
machine tools

Table 2.2 Key knowledge contributions of the American System

As in the other epochal shifts Taylor did not so much add to the
established body of knowledge in its own terms, as shift the nature of
the knowledge sought. His fundamental contributions to technological
knowledge were several (see Table 2.3).

• Taylor’s reductionist approach to systems analysis divided
parts production into linked subsystems, each carefully analyzed
in isolation to arrive at a formally specified “best” process. He
studied not only parts machining, but also indirect supporting
activities.

• Taylor moved from qualitative and ordinal relationships among
variables to systems of equations with numerical coefficients
that could be solved quantitatively.

• Finally, he employed a much superior learning method, namely
a large number of carefully controlled empirical experiments,
to develop knowledge systematically.

• These three contributions enabled Taylor’s team to make spe-
cific discoveries about better manufacturing methods, perhaps
most important their discovery of high-speed steel.

Each of Taylor’s contributions constitutes a move from art
towards science. The scientific knowledge he developed was a prerequis-
ite for the development of standardized work procedures – his “one
best way” – for which he is more famous. In Taylor’s view, the best
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SignificancePortion of pro-
cess (Figure 1.5)Key Invention

Allows separation and
improvement of staff activit-
ies, reductionism in analysis

Ancillary subsys-
tems (e.g., power)

Concepts of repeatable pro-
cess, separable subsystem

Represents knowledge in
explicit and easily manipu-
lated form

Metal cutting
Simultaneous equation mod-
els to describe complex
causal relationships

Huge improvement in feasible
cutting speeds, costsCutting tool

High speed (heat treated)
steel; other specifics of cut-
ting methods

Facilitates discovery of
quantitative causal knowledge
for any repeatable process

Learning method
(not shown)

Carefully controlled experi-
ments; four-step learning
process

Table 2.3 Key knowledge contributions of the Taylor System

way could be determined only after the behavior of each subsystem
was understood and had been quantified. Thus, for each subsystem,
he moved towards science along the knowledge axis in advance of cor-
responding movement along the procedural axis. We consider these
advances in turn.

2.3.1. Reductionist Approach to Manufacturing Systems

Taylor’s insight was that production encompassed a host of distinct
processes that could be analyzed and improved independently of the
larger system they comprised. The sharpening of a tool, in his view,
could be managed and optimized independently of the purpose for
which the tool was to be used. As with the separation of capital
equipment from firearms manufacture in the American System, this is
feasible if and only if there is causal knowledge modularity. Taylor
further realized that separation, analysis, and improvement could be
applied to auxiliary processes such as accounting and maintenance as
well as to materials processing.

Taylor applied this approach to all activities that had a significant
effect on the overall rate of production, for example, the power trans-
mission system (pink areas in Figure 1.5). The electrical motors of
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Taylor’s day were large and expensive, so a few central motors powered
dozens of machine tools by means of a network of moving belts. [15,
Figure 5.1]

Inasmuch as the speed of operators was largely determined by the
speed of the machines as driven from a central location by belts,
pulleys, and shafts, Taylor considered the standardization and
control of these systems at their optimal level of efficiency essential.
To this end he established the activities of belt maintenance and
adjustment as a separate job and prescribed methods for scientific-
ally determining correct belt tensions. [15, Section 5]

A great deal of the old belting was replaced with new and in
some cases heavier belting. This made it possible to run machines
at higher speeds and with greater power, so that full advantage
could be taken of the cutting powers of high-speed steel, and also
prepared the way for Barth’s later standardization of cutting speeds
and feeds. By the end of April 1910 the belt-maintenance system
was in full operation and belt failures during working hours had
been practically eliminated. [1]

Taylor studied and optimized the causal subnetwork that determined
belt breakage and other belt-related influences on production rates
(Figure 2.2). Belt failures had persisted despite limiting speeds. By
standardizing and optimizing the belt maintenance system (B in Fig-
ure 2.2), the tradeoff between speed and belt reliability was substan-
tially shifted outward, enabling faster speeds (A and D) while reducing
the incidence of breaks (C). Since total production is the product of
cutting rate and operating time, productivity improved substantially.

Taylor developed for the first time detailed knowledge and corres-
ponding procedures for many other subsystems.

• Standardization of ancillary equipment (e.g., sockets, screws)

• Storeroom handling of in-process materials

• Tool maintenance (including tool room procedures and equip-
ment)

• Cutting speeds (discussed below)
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Fig. 2.2 Belt-related causal knowledge graph

• Tool design and fabrication, especially the metallurgy of new
high-speed steels

For each subsystem, analyzing and prescribing behavior required the
development of knowledge about at least three parts of its causal net-
work.

• The key outcome variables that describe the results of the
subprocess

• The ancestral causal network used to deduce what caused the
outcomes including the identities of and relationships among
key intermediate variables

• The best levels of key control variables not only for specific
cases but also for ranges of operating requirements.

Just to establish which variables are important is no small task. In his
26-year investigation Taylor identified twelve groups of variables that
affected optimal cutting speed (Table 2.4).1

In a seminal lecture and paper, Taylor presented these variables
in terms of their effects on optimal cutting speed. The numbers in the

1 This list is from [36], with modern terminology provided by [26]. Cutting speed is a key outcome
variable because it directly drives output and total factor productivity.
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Magnitude of
effect

Variables that influence optimal cutting speed (from
[35])

100• Quality (e.g., hardness) of the metal to be cut

1.36• Depth of cut

3.5• Work piece’s feed per revolution

1.15• Elasticity of the work or tool

6• Shape or contour as well as clearance and rake angles of
the cutting edge of the tool

7• Tool material (e.g., chemical composition and heat
treatment)

1.4• Use of a coolant such as water

1.2• Tool life before regrinding

1.023• Lip and clearance angles of the tool

Not given• Force exerted on the tool by the cut

Not given• Diameter of the work piece

Not given• Maximum power, torque, and tool feeding force available
on the lathe

Table 2.4 Taylor’s list of key variables related to cutting speed

last column are his estimates of the sensitivity of cutting speed to each
variable. For example, the most potent decision variable is tool
material, reflecting the importance of Taylor’s discovery of high-speed
steel and the way machining procedures had to change to take
advantage of it. [15]

2.3.2. Expressing Causal Knowledge as Systems of Equations

Organizing variables as in Table 2.4 yields a simple causal structure
in the manner of the shallow tree depicted in Figure 2.3. Taylor and
his team recognized, however, that behavior was driven by systems of
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nonlinear equations (although they did not use that terminology). They
eventually expressed the relationships as equations such as:

where V20 = cutting speed that leads to a 20 minute tool life, in feet
per minute
r = tool nose radius, in inches
f = feed per revolution, in inches
d = depth of cut, in inches [26].

These equations, derived empirically by fitting curves to experi-
mental data, were too complex to solve, but the team was able to
embody approximations of the most important into specialized slide
rules (see Figure 2.4).2 Each slide rule is an analog computer corres-
ponding to a specific system of multivariate equations, and some were
specific to a single machine. With them the values of the respective
variables could be solved for, given values of enough of the other vari-
ables.3

Multiple slide rules with common variables were used to solve for
multiple outcome variables. Cutting conditions, for example, were used
by one slide rule to determine how much power the machine tool would
require, by another to determine how much stress would be placed on
the spur gears (Figure 2.5), and by a third to determine how long the
cutting operation would take.

Some of Taylor’s results are still used today. A summary relation-
ship known as the Taylor equation, for example, is used to trade off
cutting speed versus tool life, both of which have direct economic effects.

VTn = C

2 Taylor does not discuss how the curves were fit to data and he does not try to justify the
functional forms he used. This was before the use of statistical analysis for experimental data
and his data tables suggest heavy use of judgment. [35 exhibits]
3 Solution methods are described in elaborate detail in [7].
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Fig. 2.3 Possible simplistic knowledge graph for cutting influences

where V = cutting speed in feet per minute,
T = cutting time to produce a standard amount of tool wear,
n is an empirical constant for the material being cut,
and C an empirical constant for other cutting conditions such as tool
design and material.

There are still no general predictive models for n or C, but engin-
eering handbooks have tables of n for different metals and C can be
estimated experimentally for a given situation. Figure 2.6 shows the
corresponding causal knowledge graph.
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Fig. 2.5 Slide rule for side calculation [7]

The existence and use of these formulas, slide rules, and corresponding
systems of equations show the extent of causal knowledge developed
by Taylor. Not only did he identify the important variables that govern
how machining should be done for high production rates, he also claimed
that he understood the relationships among the variables well enough
to derive normative rules for the best way to machine.

2.3.3. Systematic Learning by Experimentation

The third fundamental way in which Taylor and his team moved
machining knowledge from art towards science was through a systematic
learning methodology. This comprised two major innovations, (1) a
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Fig. 2.6 Knowledge graph corresponding to Taylor equation VTn = C

procedure for learning about any subprocess, and (2) massive systematic
experimentation to estimate the quantitative relationships in causal
networks. Used with numerous subsystems, as for the infamous exper-
iments on shoveling by “Schmidt,” the most elaborate applications of
these methods were in the areas of metallurgy of cutting tools and
formulating cutting equations.

With the benefit of a century of hindsight we can see that Taylor
developed a more-or-less-repeatable procedure for learning about
physical causality. He organized the analysis and prescription of beha-
vior for each subsystem into four steps.

(1) Identify the key outcome variables that describe the results
of the subprocess. To make these variables operationally useful
required establishing standard definitions and measurement
methods. Taylor spent several years establishing the best way
to measure tool wear, for example.

(2) Determine the ancestral causal graph for these outcomes
including the identities of, and to the extent possible,
important relationships among, key intermediate variables.

(3) Given this knowledge, determine the best levels of key control
variables not just for specific cases but for ranges of operating
requirements and conditions.
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(4) Establish standard procedures that make it easy for workers
to use the best methods. This step essentially translated
increased knowledge into formal procedures.

As important as his overall procedure was Taylor’s use of massive
numbers of controlled experiments. He identified key variables and
relationships (steps 1 and 2) from experimental evidence. Taylor sum-
marized his team’s decades of experimentation on tooling and cutting
speed as follows.

Experiments in this field were carried on, with occasional interrup-
tion, through a period of about 26 years, in the course of which
ten different experimental machines were especially fitted up to
do this work. Between 30,000 and 50,000 experiments were carefully
recorded, and many other experiments were made, of which no
record was kept. In studying these laws [sic] more than 800,000
pounds of steel and iron was cut up into chips with the experi-
mental tools, and it is estimated that from $150,000 to $200,000
was spent in the investigation. [36]

Taylor devoted many pages of his exposition to experimental method-
ology, both successes and problems, as in the following passage.

[W]e had made one set of experiments after another as we success-
ively found the errors due to our earlier standards, and realized
and remedied the defects in our apparatus and methods; and we
have now arrived at the interesting though rather humiliating
conclusion that with our present knowledge of methods and
apparatus, it would be entirely practicable to obtain through four
or five years of experimenting all of the information which we have
spent 26 years in getting. [35, p 42]

Taylor also acknowledges “failure on our part from various causes to
hold all of the variables constant except the one which was being sys-
tematically changed.”

But Taylor reserved his most devastating critiques for academics
and other perceived experts. His criticisms of previous research included
the following: [35, p 40ff]
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• That researchers assumed they knew which variables were and
were not important, and ran their experiments such that these
assumptions were never tested;

• That researchers conducted detailed investigations of complex
and difficult-to-measure variables of no actual importance, in
particular obsessive investigation of the pressure exerted on
the cutting tool, which “calls for elaborate and expensive
apparatus and is almost barren of [effect]”;

• That researchers were also guilty of the converse; “several of
those elements [variables] which are of the greatest importance
have received no attention from experimenters” he complained,
adding by way of example that “the effect of cooling the tool
through pouring a heavy stream of water upon it, which results
in a gain of 40 per cent in cutting speed, … [has] been left
entirely untouched by all experimenters”;

• That researchers used “wrong or inadequate standards for
measuring” dependent variables;

• That researchers changed multiple variables at once and in ad-
hoc fashion.

Taylor’s assessment of the best known previous research, conducted
at the University of Illinois, is scathing. If his overflow audience hoped
to be entertained as well as informed, they surely were not disappointed.

These experiments, from a scientific viewpoint, were so defective
as to make it out of the question to deduce formulae, because no
effort was made to keep the following variables uniform: (1) the
shape of the … tool varied from one experiment to another; (2) the
quality of the tool steel varied; (3) the [heat] treatment of the tool
varied; (4) the depth of the cut varied from that aimed at; (5) the
cutting speed was not accurately determined at which each tool
would do its maximum work throughout a given period of time;
and (6) … it does not appear that any careful tests were made to
determine whether [the raw unfinished workpieces being cut were]
sufficiently uniform throughout in quality … The same criticism,
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broadly speaking, applies to both the German and the University
of Illinois experiments. [35, p 46]

Taylor’s attention to detail (his biographers have commented on
his obsessive personality) was vital to the success of his experiments
and accounts for some of his major serendipitous discoveries. A modern
description of Taylor’s breakthrough development of high-speed steel
portrays it as a premeditated and rational process, in marked contrast
to Taylor’s own account of his work.

Their investigation thus turned from the optimization of cutting
conditions to the importance of heat treatment. Putting on one
side conventional craft wisdom and the advice of academic metal-
lurgy, Taylor and White conducted a series of tests in which tools
were quenched from successively higher temperatures up to their
melting points and then tempered over a range of temperatures.
This work was made possible by use of the thermocouple which
had not long been in use in industrial conditions. After each
treatment, cutting tests were carried out on each tool steel …
Certain tungsten/chromium tool steels gave the best results …

… The tools treated in this way were capable of machining
steel at 30 [meters per minute] under Taylor’s standard test con-
ditions. This was nearly four times as fast as when using [the best
previous] steels and six times the cutting speed for carbon steel
tools. This was a remarkable breakthrough.

… High speed steels revolutionized metal cutting practice,
vastly increasing the productivity of machine shops and requiring
a complete revision of all aspects of machine tool construction. It
was estimated that in the first few years, engineering production
in the USA had been increased by $8 billion through the use of
$20 million worth of high-speed steel. [40]

The tone of Taylor’s description of this research is quite different.
The breakthrough came when he attempted to demonstrate by running
a trial in front of the foremen and superintendents of Bethlehem Steel
his recent “discovery” that tools made from Midvale steel were the
best. “In this test, however, the Midvale tools proved worse than those
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of any other make … This result was rather humiliating to us.” [35, p
51, emphasis added] Taylor’s first reaction was to blame the workers
who had made the sample tools, for heat treating them at too high a
temperature. But this explanation was unproven and Taylor and his
collaborator decided to characterize the exact effects of different tem-
peratures. As expected, this revealed that tools were damaged by
overheating to a temperature of around 1700 degrees F. But,

to our great surprise, tools heated up to or above the high of 1725
degrees F. proved better than any of those heated to the best
previous temperature …; and from 1725 F. up to the [melting
point], the higher they were heated, the higher the cutting speeds
at which they would run.

Thus, the discovery that phenomenal results could be obtained
by heating tools close to the melting point, which was so com-
pletely revolutionary and directly the opposite of all previous heat
treatment of tools, was the indirect result of an accurate scientific
effort to investigate as to which brand of tool steel was [best];
neither Mr. White nor the writer having the slightest idea that
overheating would do anything except injure the tool more and
more the higher it was heated. [35 p 52, emphasis added]

Taylor’s accounts of his research still elicit admiration. Although
operating before the invention of statistical tools such as regression,
design of experiments, and gradient search, Taylor clearly understood
the importance of applying the scientific method. His sheer persistence
and emphasis on careful empirical observation more than compensated
for the inadequate statistical tools of his era.

2.3.4. Taylor’s Legacy

Taylor wrought fundamental changes in the nature of work and in the
procedural dimension of the evolution of manufacturing from art to
science, in much the same way as did the English and American Sys-
tems of manufacture. [15] But the impact of the Taylor System on how
technological knowledge is developed, partitioned, and expressed was
even more revolutionary and fundamental. The concepts of learning
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through controlled experiments, of reductionism, and of expressing
causal knowledge through systems of quantitative equations are still
the bases of modern technology, and not just in manufacturing. Of
course, Taylor’s work was heavily influenced by its era; his methods
had precedents in the natural sciences. But he harnessed their power
and directed it at complex, real-world applications to manufacturing
and process control.

Ironically, Taylor believed his innovations in factory management
were more important than his work on machining and metallurgy. In
his factories knowledge was not only developed independently for dif-
ferent activities, but was then used and maintained by staff specialists.
In Taylor’s shop, knowledge and execution were separated; workers
were taught fixed methods for their jobs and only specialists were
permitted to alter these procedures. But in the dynamic world the “one
best way” changes frequently, and the necessary rates of problem
solving and learning, which rely overwhelmingly on the intellectual
abilities of workers, have increased dramatically. [17]
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3
Knowledge in a Dynamic World

The treatment of knowledge changed fundamentally in the dynamic
world that followed WW II. Problem solving and learning, which
entailed the development of new knowledge, had to become organic to
the production process. Finding a single optimum production method
was replaced by change as the central concern of manufacturing.

The first three epochs emphasized increasing mechanization in a
world that was, at least ideally, static – doing the same tasks again
and again, as efficiently as possible, at increasingly high volume.
Discretion was progressively removed from workers, and knowledge
about their tasks was subdivided and given to specialists, removing
it from the shop floor … In contrast, in the last three epochs, while
the tools continued to become more mechanized, knowledge about
the work was returned to workers and their discretion increased.
The key goal shifted from efficiency at high volume to coping with
a dynamic world of rapid changes such as high product variety
and rapid product introduction. [15, Section 6]

But mechanization, in particular the development of increasingly
autonomous machines, continued unabated. For a machine to operate
autonomously a high level of knowledge is needed to guide responses



to or forestall disruptions. Taylor’s contributions to knowledge manage-
ment discussed in the previous section thus continued to be vital, even
as his approach to shop floor management was being turned on its
head.

The Statistical Process Control (SPC) epoch coincided with a
flowering of academic research on the science of metal cutting. Taylor’s
attempt to determine empirical formulas for factors that affect the rate
of machining was extended, with the goal of raising effective machine
speeds and productivity through a deeper understanding of the under-
lying science. This research was not primarily concerned with the SPC
agenda of controlling variation.

The organization of this Section is not strictly chronological. We
first examine the knowledge effects of the SPC epoch and the coinciding
academic development of the “engineering science of machining.” We
then explore how numerical control initially foundered for want of
sufficient knowledge. Finally, we consider what happens with funda-
mentally different manufacturing processes.

3.1. Statistical Process Control Epoch

The SPC epoch arrived at Beretta in the 1950s with the contract to
manufacture the Garand M1 rifle. [15, Section 6] SPC shifted concern
from average performance to variations in performance. To understand
causes of variation requires detailed knowledge about a process and its
real-world operation. Beretta’s newly formed quality control department
“was responsible for quantitatively measuring the natural variability
of every machine and the degree of fidelity of every tool, verifying tool
conformity to design, and identifying possible causes of systematic
error.”

Because so many variables can disturb a process, the complexity
of causal networks for variation is an order of magnitude higher than
for ideal operation. SPC thus drove the development of much more
detailed causal knowledge, with a strong emphasis on the actual
behavior of processes and machines on the factory floor.

This reorientation was accompanied by a complementary shift
from a static to a dynamic world view. Dynamic causal models, in
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which sources and consequences of changes are explicitly monitored
over time are vital to SPC. Each variable becomes a time series.
Dynamic behavior such as the rate at which variables change had to
go from being recognized to being measured (via control charts) to
being adjustable. To eliminate adjustments between setups, for example,
the rate of drift of key variables had to be constrained. But because
dynamic behavior in this period was still not technically capable, pro-
cesses escaped from control and interventions continued to be neces-
sary.1

“Soft” innovations, such as control charts, were a hallmark of this
period. The genius of the control chart is that it enabled operators, in
a pre-computer era, to track dynamic variables and filter out real shifts
from normal stochastic variation. Beretta’s quality control department
employed a variety of even more sophisticated statistical techniques
such as gauge R&R studies, which are still essential for physical
measurement.2

These changes shifted the focus of manufacturing from control to
learning. “The application of SPC provided one way by which errors
could, over time, be observed, better understood, and eventually solved.
Manufacturing’s evolution from an art to a science now included a
systematic way of learning by doing.” They also directed attention
away from the product to the process. SPC effectively democratized
and replicated Taylor’s innovations in systematic learning about pro-
cesses, even as his de-skilling of line workers was being reversed. Modern
versions of SPC, such as Total Quality Management and Six Sigma,
have institutionalized systematic learning, and moved it from the
factory floor into general management.

1 Tolerances were much tighter for the Garand rifle than previously (roughly .001 inches or 25
microns). Yet, rejects on Beretta’s frame line went down from 15% to 3%, and overall rework
time went down from 25% to 8%. Thus process capability improved even though tolerances
tightened, suggesting that effective process variability was reduced by two orders of magnitude
(standard deviation by one order of magnitude).
2 Gauge R&R studies deal with the problem that measurements are inherently imperfect, and
variation in measurements can be confounded with variation in the processes being measured,
leading to serious mistakes. Gauge R&R also quantifies measurement variance from different
sources. Although it is actually a sophisticated ANOVA calculation, training material teaches it
as a “cookbook” procedure, and it can be done with little statistical knowledge.
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Beretta’s introduction of synchronous lines both required and made
easier an integrated view of production, involving analysis of interac-
tions among variables in different parts of a process. The sequence of
workstations that comprise a process could no longer be assumed to
be independent. This necessitated a major shift in problem solving and
learning from a focus on individual machine performance to a process
orientation.3 “Diagnosis and problem solving are now carried out by
examining the workstation not in isolation, but as part of the entire
system … Synchronous lines forced an integrated view of the entire
system of manufacture. Whereas the intellectual underpinnings of
Taylorism were reductionism and specialization, that of SPC in a syn-
chronous line was integration.”

3.2. The Science of Cutting Metal

At roughly the same time that Beretta was introducing SPC, formal
laboratory-based research into machining was being conducted by
universities and company research labs. Much of this research
emphasized machining-speed issues in the Taylorist tradition, over
precision and quality which are central concerns of SPC. A distinguish-
ing feature was the effort to develop models based on known scientific
principles rather than just fit curves to empirical data.

The basic characteristic of science-based modeling of machining
is that it draws on the established natural sciences, and particularly
the science of physics, to establish reliable predictive models. These
are models that can then be used to carry out reliable engineering
calculations of the expected behavior or characteristics of a
machining process, independent of empirical information.

Development of capability for science-based modeling of
machining was quite dependent on the knowledge and understand-
ing of machining developed by the [earlier] research on empirical
modeling. A good example of such was the research done by the

3 The impact of synchronous lines on knowledge modularity is a topic in itself. One factor is that
with no inspection or delay between workstations, problems in a workstation propagate downstream
without any chance to be removed. By the time a problem is finally observed at the end of the
line, it could have originated anywhere upstream.
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SignificancePortion of Process
(Figure 1.5)Key Invention

Attention focusing for problem
solving and learning; leads to
continuous improvement

Higher order feedback
system for controlling
process (not shown)

Control chart

Forces integrated perspective;
interactions easier to studyMultiple workstationsSynchronous line

Causal knowledge more general;
integrate scientific knowledge
from diverse sources

Workpiece-tool interface
Science-based
models (see
below)

Table 3.1 Key knowledge contributions of the SPC epoch

Ernst–Merchant team … in the period from 1936 to 1957, which
culminated in the creation by Merchant of the basic science-based
model of the machining process. [26]

Researchers found, for example, that the shear angle, the angle at
which metal chips “peel away” from the face being machined, was key
to predicting machining behavior. Shear angle being an important
intermediate variable, it became a target for detailed causal modeling.
“The ultimate goal of the above analysis leading to the shear angle
relationships is to enable the estimation of all the relevant metal cutting
quantities of interest, such as the forces, stresses, strains, strain
rates, velocities, and energies without actually measuring them. For
example … knowing the shear stress of the metal and the cutting con-
ditions, all of the above metal cutting quantities of interest can be
calculated.” [19, p 86, emphasis added] We can thus say that for the
first time the knowledge graph incorporated “first principle” scientific
models.

Among its major accomplishments this research:4

• Extended Taylor’s empirical research to a range of additional
operations (turning, milling, drilling) and issues (surface finish,
costs, forces);

4 Following is based primarily on [26].
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• Established a qualitative understanding of what happens when
a tool cuts. The research identified four basic processes:
primary shear, secondary shear, fracture, and built-up edge
formation. These correspond to four distinct causal models
with only modest overlap; [26]

• Yielded further details of cutting tool design, including mater-
ials and geometries for different purposes;

• Originated theoretically based models of the forces at work in
metal cutting (e.g., Figure 3.1);

• Contributed analytic models of heat and thermal effects in
metal processing.

In addition to incorporating fundamental scientific models for the
first time, this research was notable for its depth. More variables and
more relationships were incorporated into knowledge graphs, reflecting
the fractal nature of causal knowledge. The more closely a phenomenon
is examined, the more complex it appears. The effects include:

• Individual variables are replaced by collections of more specific
variables.

• When a variable is discovered to be important, its causes must
be understood in turn.

• New relationships among variables are identified, so a causal
knowledge subgraph that is initially tree-like becomes a more
complex network.

• Engineered subsystems are created to control new key variables.
These systems add complexity beyond that of the underlying
physical process. Even a simple feedback loop requires its own
new causal system with measurement methods, a calculation
algorithm, and an adjustment method.

Cutting tool geometry provides an example of the intricacy of
knowledge. The Taylor experiments discussed previously showed the
importance of heat treatment, which we now know affects the grain
structure of the tool. Elemental composition of the steel is also
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Fig. 3.1 Forces at work in chip cutting [25]

important. Tool geometry might seem more straightforward to describe,
but six angles (and six corresponding dimensions) are required to begin
to do so, and these six angles interact with more than 20 additional
variables indicated by the underlined phrases.

Single-Point Cutting Tool Geometry. [A figure, not included here,
shows] the location of [six] angles of interest on a single-point
cutting tool. The most significant angle is the cutting-edge angle,
which directly affects the shear angle in the chip formation process,
and therefore greatly influences tool force, power requirements,
and temperature of the tool/workpiece interface. The larger the
positive value of the cutting-edge angle, the lower the force, but
the greater the load on the cutting tool. For machining higher-
strength materials, negative rake angles are used. Back rake usually
controls the direction of chip flow and is of less importance than
the side rake. Zero back rake makes the [chip] spiral more tightly,
whereas a positive back rake stretches the spiral into a longer
helix. Side rake angle controls the thickness of the tool behind the
cutting edge. A thick tool associated with a small rake angle
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provides maximum strength, but the small angle produces higher
cutting forces than a larger angle; the large angle requires less
motor horsepower.

The end relief angle provides clearance between the tool and
the finished surface of the work. Wear reduces the angle. If the
angle is too small, the tool rubs on the surface of the workpiece
and mars the finish. If the angle is too large, the tool may dig into
the workpiece and chatter, or show weakness and fail through
chipping. The side relief angle provides clearance between the cut
surface of the work and the flank of the tool. Tool wear reduces
the effective portion of the angle closest to the workpiece. If this
angle is too small, the cutter rubs and heats. If the angle is too
large, the cutting edge is weak and the tool may dig into the
workpiece. The end cutting-edge angle provides clearance between
the cutter and the finished surface of the work. An angle too close
to zero may cause chatter with heavy feeds, but for a smooth finish
the angle on light finishing cuts should be small. [24, p 13–13]

Even six angles and six dimensions do not come close to fully
describing an actual cutting tool’s geometry. Moreover, how the tool
is made can have a major effect on its performance.

The design of tools involves an immense variety of shapes and the
full nomenclature and specifications are very complex … The per-
formance of cutting tools is very dependent on their precise shape.
In most cases there are critical features or dimensions, which must
be accurately formed for efficient cutting. These may be, for
example, the clearance angles, the nose radius and its blending
into the faces, or the sharpness of the cutting edge. The importance
of precision in tool making, whether in the tool room of the user,
or in the factory of the tool maker, cannot be over estimated. This
is an area where excellence in craftsmanship is still of great value.
[39, p 7, emphasis added]

In other words, even where the effects of using tool features can be
predicted, the causal network for making good tools is not well under-
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stood, and manufacturing them is closer to the art end of the spectrum
even today.

The development of formal models of machining based on first
principles generated considerable excitement, but appears to have had
only limited impact on practice. One reason might be the tendency of
academics to choose research issues based on the next logical intellectual
problem rather than examine the most serious problems being
encountered in the field. Jaikumar and Bohn [17] argue that in a
dynamic world the critical problems tend to arise from poorly under-
stood disturbances in real world manufacturing environments. Because
not enough is known about them to simulate them in a laboratory,
they must be studied on the factory floor, as Beretta did using SPC.

In some domains, moreover, theoretically grounded models did
not agree well with experimental results.[19, p 86] One reason is that
conditions (such as forces and temperatures) during metal cutting are
much more extreme than those encountered during mechanical testing,
where the relevant properties of materials are measured. Moreover,
fundamental disagreements about correct ways to model particular
phenomena persist. It is unclear, for example, whether the physics of
metal cutting are sufficiently constrained to even have unique mathem-
atical solutions.

Analysis of learning methods in another steel products industry,
wire-making, illuminates the relationships among theoretical models,
factory experimentation, and performance. [23 and articles cited therein]
In one study, 62 process improvement projects were analyzed according
to how extensively they developed theory-based causal knowledge
(“conceptual learning”) and how extensively they tested proposed
changes on the factory floor (“operational learning”). Surprisingly,
neither approach was sufficient to improve performance. Only projects
that were high on both scales led to actual improvements, and many
projects had a negative effect on performance. These results suggest
that scientific models of metal processing can be helpful, but by
themselves do not provide sufficient knowledge of real-world causality.
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3.3. NC and CIM/FMS Epochs

In order for a computer program to successfully control a cutting tool,
sufficient knowledge is needed first to predict how a process will behave,
second to write a recipe that will reliably achieve the required toler-
ances, and third to either avoid or respond to disruptions without
manual intervention. As tolerances tightened and adaptability became
important, more detailed knowledge of the causal network was needed.
(Table 3.2) This knowledge was not available when NC tools were first
built and used.5

The early problems of NC technology were partially due to limited
formal knowledge of the machining process. A lot of the knowledge
possessed by operators, such as when to make “on the fly”
adjustments, was tacit or at least not accessible to programmers
[and was therefore not incorporated into the NC programs]. This
limited understanding of variations in machinability, tool wear,
and part material properties, together with inadequate control
strategies for coping with these shortcomings, significantly con-
strained early implementations of NC technology. But with effort,
over time more of the tacit knowledge implicit in operator skills
became precise, explicit knowledge that was used to develop pro-
cedures capable of dealing with a variety of contingencies. [15,
Section 7]

Early implementations of numerical control were thus based on
less knowledge than was accessible to conventional machinists, yet
simultaneously employed a higher degree of procedure. The resulting
attempt to operate above the diagonal region in Figure 1.3 resulted in
frequent disruptions and poor outcomes.

In the SPC era and before, master mechanics working with general
purpose machines usually accrued years of experience, during which
they accumulated a wealth of idiosyncratic knowledge about how
to perform in a wide variety of circumstances. They talked in terms

5 The term NC here covers both Numerical Control and Computer Numerical Control.
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SignificancePortion of Process
(Figure 1.5)Key Invention

VersatilityControl systemHardware and software for
machine control

Sophisticated feedback
and control despite noise

Measurement;
adjustment

Special purpose algorithms for
signal processing, dynamic
control, and other

Monitoring or regulation
of many variables in real
time

MeasurementsVariety of hardware sensors

Table 3.2 Key knowledge in NC epoch

of a “feel” for the machine, the tools, and the parts they worked
on. It was through this feel that they were capable of producing
parts to exacting specifications. Watching them work, one had a
sense that they recognized errors (e.g., vibration, chatter, structural
deformation due to thermal forces) as they were happening and
adapted their procedures to compensate for them. This, in engin-
eering terminology, is an advanced form of adaptive control in an
ambiguous environment. Such adaptive error recognition and
compensation requires either … the experiential and partly tacit
knowledge of the skilled machinist, or alternately a high stage of
formal knowledge approaching full scientific understanding of the
machinery, sensor, and controller technology, as well as of the
product, the process, and all their interactions. [15]

For example, a potential problem in most machining is “chatter,”
a forced vibration of the tool against the workpiece that damages the
surface as well as the tool. It is “easily detected by an operator because
of the loud, high-pitched noise it produces and the distinctive ‘chatter
marks’ it leaves on the workpiece surface.” [21] Once detected, an
experienced operator can stop it and even rework the damaged surface
on the fly. But for an NC machine tool to detect chatter requires elec-
tronically sensing and processing an appropriate signal, usually sound.
Due to the background noise that accompanies machining, this repres-
ents a difficult signal-processing problem for computers, compared with
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the excellent signal processing ability of the human nervous system.
Having detected chatter, the NC machine must decide how to end it
and, if possible, execute another pass to repair the surface finish. In
other words, operators’ knowledge about how to detect and deal with
chatter must be replaced by adequate formal knowledge and complex
signal processing. For many years, available formal knowledge was
inadequate to solve this problem. Instead, NC programmers modified
programs for particular parts to reduce cutting speeds. This avoided
the domain in which chatter is likely to occur, at the cost of reduced
productivity. Clearly, the more knowledge about when chatter will
occur, the less safety margin is needed.6

To operate an untended FMS (Flexible Manufacturing System)
requires even more knowledge than is needed to operate an equivalent
set of NC tools. An FMS “lacks the stand-alone NC machine’s almost
constant attention from a machine operator, who can compensate for
small machine and operational errors by realigning parts in a fixture,
tweaking cutting tools, visually inspecting parts between workstations,
and so forth.” In the absence of this constant attention, small problems
at one workstation can accumulate, and the number of possible contin-
gencies that must either be prevented (which requires detailed under-
standing of their causes) or otherwise dealt with is much larger for
FMS than for NC machines.

Consider the problem of tool breakage. A nearby operator can
quickly detect a break, stop the machine, visually inspect the part for
damage, instruct the machine to change tools, and take other corrective
action. Although an operator can explain this sequence to an NC pro-
grammer, to equip a machine to detect a break is exceedingly complex.
It took years for machine-tool makers to develop sufficient knowledge
to add tool breakage and chatter detection to machine tools. Even
when it detects a break, what response should the machine make? To
diagnose the type of break and choose the best from among a set of
possible responses requires considerable knowledge.

6 A complementary approach developed later was to redesign machine tool structures to reduce
the conditions under which chatter would occur. This required considerable research in applying
mathematical theories of feedback and vibration. It is a superior solution in that it allows the
tool to actually run faster without chatter. [26]
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Jaikumar discusses the difficulties of problem solving in an FMS.
The reason operators had to become knowledge workers, rather than
vendors developing the necessary knowledge and selling their machines
at a premium, is that much of the requisite learning and problem
solving must be done at a local level. At the highest levels of speed
and precision, individual machines exhibit idiosyncratic quirks that
must be identified and compensated. Moreover, each plant, production
line, and part number has specific characteristics and requirements.
Owing to the interactions among all these variables, the preponderance
of problems tend to be novel and local, although over time general
knowledge can be built up and incorporated into machines and operat-
ing methods.

Research on process monitoring and response continues using a
variety of advanced techniques. [21] A fundamental obstacle to process
monitoring is that the working region of a machine tool is an extremely
messy environment contaminated by coolant, chips, vibration, noise,
dirt, and such. This exemplifies the problem of side effects. Energy
applied in any form creates many children, of which only a few are
desired. But all of the children propagate through the causal network,
potentially causing disturbances at many points. Side effects are central
to the nature of manufacturing and we return to them in the concluding
Section.

The other development of the CIM/FMS epoch, computer integ-
rated manufacturing (CIM), required additional knowledge about how
to predict the behavior of part designs and manufacturing processes.

An engineer working with a number of different parts geometries
could create and test [using simulation] different alternatives, settle
on a tentative design, and then examine the manufacturing impacts
of each part. A host of manufacturing related computer programs
could then be used to create the NC programs needed to machine
the components and even graphically display the tool path of a
metal cutting program on the screen. When satisfied with the
design, the engineer could transfer the program to a machining
center and have the components fabricated automatically. [15,
Section 8]
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These simulations, and other capabilities embedded in CIM tools,
rely on extremely high levels of knowledge about many phenomena.
Complex systems of mathematical equations or equivalent algorithms
are needed to model interactions among large numbers of variables and
the knowledge generated must be “reduced to practice,” that is,
embedded in the CIM system, by applying additional formal knowledge
of yet another kind. CIM software is never perfect; gaps become
apparent as new manufacturing methods, product designs, and mater-
ials are introduced. Considerable improvement also occurs over time
in the number of phenomena that can be incorporated, accuracy of the
models, and speed of computational algorithms.

3.4. New Physical Processes

Firearms manufacture at Beretta makes a particularly good longitudinal
case study of manufacturing in part because the core technology – the
dominant product design, material, and processing methods – changed
surprisingly little over 200 years. Steel tools on powered machines
progressively removed metal chips to make metal parts.

The latter part of the 20th century saw a variety of fundamentally
different metal-working methods based on new physical principles.
These were potentially available for making firearms. When a mature
and well understood technology is replaced by a less understood newer
technology, how does the causal knowledge graph change, and what
are the consequences? Since new physical technologies are critically
important to long-term progress in most industries, we discuss several
examples in more detail than warranted by their current importance
to firearms manufacture.

New methods of precision machining – among them, electrical
discharge, electrical chemical, abrasive water jet, and ultrasonic
machining – employ entirely different physical principles to remove
metal from workpieces.7 Electrical discharge machining (EDM), for
example, removes material by means of thermal energy generated by
a spark across a gap between the tool and workpiece. The spark pro-
duces an extremely high temperature (up to 10,000°C) plasma channel

7 Technology descriptions are from [31].
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that evaporates a small amount of material. As the tool and workpiece
move according to a computer-controlled trajectory, the spark shifts
and the workpiece is shaped.

Removing material by vaporizing it with a spark clearly involves
different variables than cutting it with a metal tool. EDM process
performance is unaffected by the hardness, toughness, and strength of
the material, but is affected by melting temperature, thermal conduct-
ivity, and electrical conductivity, the converse of the variables that
matter in conventional machining. Dimensional tolerances of three
microns can be achieved. Increasing the peak current can increase the
machining rate, but the surface finish becomes rougher. Maximum
production rates are also limited because at too high a power, tool wear
becomes excessive, machining becomes unstable, and thermal damage
occurs.

In electrical chemical machining (ECM), used to make rifle barrels
among other applications, an electrolytic fluid is pumped between the
tool and workpiece and current is applied to the tool. A variety of
electrolytes can be used. The workpiece surface material dissolves into
metal ions that are carried away by the fluid. ECM performance,
like the performance of EDM, is unaffected by the strength and hard-
ness of either tool or workpiece and is affected by their electrical
parameters, but unlike EDM, performance is unaffected by their thermal
behavior.

Why use ECM instead of EDM when both processes can machine
any electrically conductive material? ECM can fabricate parts with
low rigidity such as those with thin walls. It is much faster and gives
better surface finish, but has poor accuracy because the pattern of
electrical current flow with a given tool is influenced by many factors
and difficult to predict. Tool shape must thus be modified by trial and
error before making actual workpieces. Even then accuracy is only 10
to 300 microns, which is greatly inferior to that achieved with EDM.

Abrasive water jet machining involves spraying water mixed with
abrasive particles onto a workpiece. The particles remove material.
Typically, the water pressure and velocity are extremely high,
approximately one million pounds per square inch and supersonic,
respectively, so safety and noise issues are important. Abrasive water
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jet machining can shape ceramics and other nonconductive materials
that ECM and EDM cannot, and which conventional machining has
difficulty with. Not surprisingly, the characteristics, problems, and
variables associated with abrasive water jet machining vary markedly
from those encountered in ECM and EDM machining.

With such different variables and different physical principles, new
processes start with less detailed causal knowledge graphs. Over time,
new variables are identified as important, and new techniques developed
to increase precision, speed, and other figures of merit. Table 3.3 shows
some of the factors thought to influence ECM performance, very few
of which are relevant to conventional machining. It is significant that
trial and error are still required to choose the final ECM tool shape
and, even then, the process is less accurate than other removal methods.
This means that important portions of the causal network that
determine final workpiece shape are not well understood. It was only
recently, for example, that ECM accuracy was shown to improve with
pulsed instead of continuous voltage. [31, p 13–32] Knowledge about
ECM variables reported in Table 3.3 is at a much lower level than that
about conventional machining, and overall the process remains much
closer than conventional machining to art.

As always, knowledge develops by progressive exploration and
refinement of the causal knowledge graph. Before a technology can be
used, precision must be adequate and cost reasonable, at least for
favorable applications. Once in use, a host of intermediate variables
can be further improved as more is learned. For example, electrolysis
is an undesirable side effect that corrodes the surface of parts in EDM
(Figure 3.2).

Electrolysis, intrinsic to the early days of EDMing and continuing
until the early 1990s, is caused by stray voltage from the cutting
process interacting with contaminant in the dielectric fluid and
attacking the workpiece. Electrolysis is particularly problematic
when machining titanium, carbide, and stainless and mold steels,
all of which suffer from poor surface integrity and shortened tool
life due to the effects of electrolysis. They often require significant
secondary machining operations and excessive polishing, which
affect the overall accuracy of the machined part. Titanium turns

3.4. New Physical Processes 59



Key Determinants of ECM PerformanceSubsystem

Current

Electrical power system
Current areal density

Voltage

Pulse shape (on time, rise rate, etc.)

Aqueous or nonaqueous

Electrolyte composition

Organic/inorganic; specific molecules

Alkalinity

Mixtures

Contamination

Passivating or nonpassivating

Flow rate

Electrolyte circulation
system

Pressure

Temperature

Concentration

Contour gradient

Tool design; tool/workpiece
geometry

Radii

Flow path

Flow cross section

Tool feed rate

Table 3.3 Key variables affect electro-chemical machining; new variables in bold
(based on [31])

“blue,” while stainless steel can be weakened by a thick recast
layer; tool steels rust; and carbide suffers degradation, the result
of cobalt binder depletion. [34]
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Fig. 3.2 Defects caused by electrolysis of carbide [34]

The leading vendors of EDM machines developed power supplies
that reduced electrolysis without reducing cutting speed. Other
improvements included better filtration of the electrolyte fluid and a
variety of power-saving methods.

Whereas the new material removal processes are entirely different
from conventional machining and require extensive new knowledge,
some of the other causal knowledge subnetworks in Figure 1.5 change
only modestly. For example, dimensional measurement methods for
finished parts are similar no matter how a part is produced. An ECM
machine is still numerically controlled, and knowledge about how to
control movement during cutting requires only moderate additions.
The mathematics of feedback control can be adapted for ECM rather
than redeveloped from scratch. In most cases, taking full advantage of
the different characteristics of the new process involves changes to the
ancillary subsystems, but the causal knowledge graph requires only
moderate additional knowledge, even if the optimal method turns out
to be quite different.

Finally, progress from art to science for new processes being
developed today is markedly faster than was the case for conventional
machining. First, there is less to learn. Second, the fundamentals of
art-to-science transition established by Taylor, namely reductionism,
using systems of quantitative equations to express knowledge, and
learning by controlled experiments, are well known and much more
refined than when Taylor used them.8 Third, the firearms industry,
having lagged in the adoption of ECM and other new processes, can
take advantage of knowledge developed elsewhere. Indeed, much of the

8 And of course other learning tools are also available that were not available at comparable
points in the development of conventional machining, such as sophisticated statistical methods,
automated monitoring and data collection, and process simulation.
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relevant knowledge need not even be thoroughly understood within
the industry, as tools based on it can be purchased from suppliers, a
consequence of the modularity property of knowledge graphs.
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4
From Art to Science

How should we characterize the evolution of manufacturing in the light
of this examination of firearms over the course of two centuries? As
Jaikumar showed, the central problem throughout the development of
manufacturing has been achieving adequate process control. Once
society moved beyond making unique items by hand, predictability,
consistency, speed, and eventually versatility became key. All of these
require control. Each successive epoch confronted problems whose
solutions demanded new operating methods. Developing the solutions
required deeper knowledge. The dual changes to procedures and their
underlying knowledge constituted an evolution from art to science.

How procedures evolved is examined in Section 4.1. The regularity
of changes in knowledge is considered in Section 4.2. The future of
manufacturing is discussed in Section 4.3, as well as whether other
activities of modern economies will reveal similar patterns.

4.1. Changes in Procedures

Procedures specify what actions to take and how to perform them. The
companion paper described how production evolved from completely
idiosyncratic activities before 1800 to an all but unmanned manufactur-



ing plant in 1985 [15]. We can identify three major trends in procedures
over these centuries: increasing specificity, increasing scope, and
increasing depth in the causal network (Table 4.1).

To describe the first major trend in the evolution from art to sci-
ence over the six epochs, how manufacturing activities have become
more completely specified over time, we can construct a scale that
measures the formality of procedures. At the extreme of zero procedure,
no written or even mental plan of work exists; all actions are based on
moment-by-moment decisions. At the opposite extreme of complete
procedure, all activity is controlled by detailed written or programmed
instructions. At intermediate points, high level instructions are specified,
but details of implementation and responses to contingencies are left
open. Over time, pictures became detailed written procedures. (Compare
the sketches from the 18th century in Figure 2.3 of [15] with the 1950
operations sheet for the M1 rifle in Figure 6.3.) In parallel cams, jigs,
and fixtures forced specified trajectories of machine motion – the
principle of increasing mechanical constraint. The most formalized
procedures can be realized in microprocessor-based systems, which
require detailed instructions and allow for elaborate contingent behavior.

The second major trend was an ever expanding scope of activities
governed by formal procedures. More machining subsystems (see Fig-
ure 1.5) were brought under explicit control. In the American System,
for example, tools and methods were devised to control final inspection.
In the Taylor epoch, proceduralization brought activities such as
maintenance, tool making, and setup under formal control. With the
debut of CIM and FMS, control of material flows, machine scheduling,
and the translation of specifications from development into manufac-
turing were effected through computer programs. Untended operation
of an FMS is possible today because virtually all normal activities
including inspections, tool changes, and material movements are gov-
erned by programmed procedures.

The third trend we observe is increasing depth of control, measured
by the number of generations controlled in the causal network. Consider
an important intermediate variable such as cutting speed. Higher speed
increases immediate output rates, but causes multiple problems. With
greater knowledge, we can make a more sophisticated judgment of
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MeasureNature of change

Amount of detail used to specify proceduresFormality of control

Breadth of control, such as number of subsystems act-
ively controlledScope/extent of control

Number of ancestral variables monitored or controlled
for each key variableDepth

Table 4.1 Evolution of procedures from art to science

proper cutting speed, eventually reaching real-time decision-making.
Although measuring more variables is costly and controlling them even
more costly, depth of control tends to increase over time for reasons
we discuss later.

Full proceduralization of all activities has never been achieved and
in a dynamic world would be disastrous. Even in high volume repetitive
manufacturing rare, diverse, or extreme circumstances will occur, and
will not be well understood. To attempt to fully proceduralize them is
counterproductive. For example, the response to emergencies should
be “shut down the machine and signal for assistance.”

Moreover, the appropriate formality and scope of procedure fluc-
tuates over time rather than increasing monotonically. When new
processes or products are adopted, the initial level of knowledge is lower
than before. Methods can be highly procedural and bad if knowledge
is inadequate, as happened initially with NC machines. We now turn
to the evolution of the underlying knowledge.

4.2. How Knowledge Evolved

Specific new knowledge was critical to each epoch, but changes in
knowledge followed regular patterns from epoch to epoch. We can
group the patterns, somewhat arbitrarily, into three categories. First,
certain broad classes of problems recur, and make manufacturing
inherently difficult. For example, more requirements are added over
time. Second, there are classes of recurrent solutions, including the
development of new mathematical methods for each epoch. Third,
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causal knowledge graphs themselves have structure, and the structure
evolves in specific ways. We address each in turn.

4.2.1. Why is Manufacturing Hard? Sources of Problems

Presumably, every branch of human technology and endeavor has its
own difficulties, but some are especially acute for manufacturing and
came up in epoch after epoch.

Growing list of requirements. Additional outcome variables
(system requirements) were added over time. Some were created by
new product requirements propagating back through the causal network,
such as the use of new raw materials.1 In the modern era, emphasis
increased on reducing side effects such as pollution, contamination,
safety hazards, and noise.2 Each new requirement forces rapid learning.
Often, changes made to satisfy a new requirement interact with
established portions of the process, leading to changes elsewhere.

Both tolerances and operating speeds had to improve
simultaneously. Two fundamental manufacturing requirements are
speed and precision/tolerance. At a given state of knowledge, operating
speed can be traded off against conformance quality, including the
tolerances achieved. A machine can be run slower to reduce its vibra-
tion; additional or more thorough inspection steps can be added to
catch more problems; setups and calibrations can be done more often.
Yet, both tighter tolerances and higher operating speeds were required
in each epoch, for economic reasons. The only way to satisfy both was
through better process control.

Control of more and smaller disturbances. Many important
variables, such as the exact position of a tool relative to a cut surface,
are influenced by dozens of ancestors. At a tolerance of 1/64th inch,
many are too small to matter or even to detect, but at a few microns
tolerance the number of relevant variables grows many-fold.

1 Competitive dynamics drive many of these requirements; Beretta had to improve to keep up
with other firms. This is the Red Queen paradox familiar to many industries – running faster
and faster to stay in the same place.
2 For example, in the 1980s Beretta engaged in a bitter fight to win a contract for a new
US military sidearm. Winning required meeting a multitude of requirements, including local
production.
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Control of side effects. Wherever energy is applied in a process,
it creates side effects such as heat, vibration, contamination, and elec-
tromagnetic interference that are transmitted through the local envir-
onment. Because of the sensitivity of high-precision operations, these
can cause significant difficulties in disparate portions of the process.
Control of heat during cutting, for example, is a side effect that has
been a concern for more than a century, forcing more detailed under-
standing of its causes and effects (see [15], Figure 8.3). Taylor demon-
strated the importance of coolant, but as tolerances tighten heat cannot
be adequately removed from the cutting zone, so its effects must be
compensated for. This requires much more knowledge than for cooling.
And as operating speed increases, the magnitudes of side effects increase,
even without considering tightening tolerances.

If we define side effects as “undesired descendants of a variable,”
there are also many direct side effects of process and machine designs.
For example, a tool can be strengthened by making it larger, but this
changes its thermal properties and requires larger motors to move it.

Solved problems may recur. A solution that is adequate at
one level of performance may be inadequate when requirements such
as speed of production change, or when side effects from elsewhere
increase. When this happened, old solutions were refined and new ones
added.

4.2.2. Measurement, Feedback, and Other Recurrent Solutions

Just as some problems are ubiquitous in manufacturing, some classes
of solutions were vital to solving diverse problems across epochs.

New Mathematical Methods. New mathematical techniques
supported the creation and articulation of knowledge in each epoch.
Projective geometry ushered in the English System and simultaneous
equations and custom slide rules were central to the calculations that
were a hallmark of the Taylor system. Later epochs evolved on the
back of statistical methods such as design of experiments in the SPC
epoch, programming languages and Proportional-Integral-Derivative
control in the NC epoch, and 3-D CAD and simulation techniques like
FEM in the CIM epoch.
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Strategies for Controlling Variation. Three generic strategies
for controlling variation in a key variable are modifying the process to
make it more robust, reducing variation in the most influential
ancestors, and adding feedback control. An example is the problem of
chatter discussed in Section 3, which can be solved by close operator
monitoring of the machine, by reducing the speed of cutting, or by
reinforcing the machine structure to reduce vibration.

Feedback-based control. Because causal knowledge graphs are
never perfect renditions of the true causal network, all manufacturing
depends on feedback, and increasing sophistication of feedback was a
hallmark of evolution in procedures and knowledge. Consider an
important intermediate variable W = f(X, V) where X and its effects
on W are well understood but the constituents of V, or the relationships
∂f/∂V, at low stages of knowledge. As V varies according to its own
causal network, it creates stochastic variation in W with no visible
cause. One solution is to learn more about f and V, and learn to control
the most important elements of V, but this is time-consuming and
expensive. The genius of feedback is that W can be partially stabilized
without understanding V, by manipulating one or more elements of
X to compensate for measured changes in W. Feedback can also be
used to reduce variation in W caused by parents in X that are known
but expensive to control. Learning enough about X and ∂f/∂X to use
feedback thus constitutes a critical step in learning to control W. It
can change W from adjustable (stage 3 of knowledge) to capable (stage
4). As a result, feedback is a general technique for interrupting the
propagation of variation downstream through a causal network.

Improvements in measurement. Feedback has serious limita-
tions, one of which arises from the fact that W cannot be measured
perfectly. Control of a variable by feedback is bounded by how well
that variable is measured, and the evolution of measurement knowledge
has played a key role in the evolution of manufacturing. Even where
direct feedback is not used, accurate measurement is needed for calib-
ration, adjustment, verification, and especially for learning.

Measurement techniques are production processes for information,
with their own causal knowledge graphs, so knowledge about metrology
evolved according to the patterns described here. Although measurement
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technology often arrived from other industries, additional knowledge
about how to use it effectively still had to be developed. For example,
many measurement techniques are very sensitive to environmental
disturbances, which are context dependent.

Accuracy, precision, repeatability, and related attributes are critical
outcome variables for measurement processes. Less obvious is the
importance of measurement speed. Because information turnaround
time is a critical determinant of the effectiveness of feedback of all
kinds, faster measurement enables better process control. If measure-
ment takes several days, feedback cannot compensate for faster change
such as diurnal or setup-caused. Faster measurement also increases the
speed of subsequent learning [8, 38].

Measurement methods for a variable therefore tend to evolve
through a sequence of techniques as metrology knowledge advances.3

• Measurement is generally first developed in a laboratory. To
the extent that it is used in manufacturing, it is performed off-
site using special equipment. This is acceptable because the
variable is not measured routinely, but rather used in lab
experiments.

• As metrology vendors develop special purpose tools embodying
the new techniques, measurement is performed in specialized,
on-site test labs. Although information turnaround can take
days, such measurement can still be useful for field experiments,
troubleshooting, checking incoming materials, and supporting
various kinds of quality assurance, as well as calibrating pro-
duction equipment and instruments.

• As technology progresses, measurement is performed on the
factory floor in specific workstations. This was the norm for
control charting and for measuring test pieces at the start of
a batch.

• Measurement tools are built into machines, but the machine
must be halted while a measurement is taken.

3 Specifics of this sequence are based on unpublished notes on measurement in semiconductor
and hard disk drive manufacturing.
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• If a particular variable becomes important enough and is hard
to control except by real-time feedback, measurement is ulti-
mately performed while the machine is operating, with results
available immediately.

Often, several different physical principles can be used to measure
a variable. With different combinations of speed, precision, and cost,
different methods are often employed concurrently at different locations.
Economics plays a significant role in decisions about which variables
to measure and how.

4.2.3. Structure and Evolution of Knowledge Graphs

Causal networks for actual working systems such as factories reflect
the specifics of the design, construction, and operation of that system.
But they are determined by natural laws, operating at levels from the
atomic and nanosecond (chemical reactions and semiconductor gates)
to tens of meters and days (inventory flows in a bulk processing plant).
Knowledge graphs, which approximate the underlying causal network,
are further constrained by the way people and organizations learn.
Based on the cases discussed here and in [15] we can describe these
graphs and how they changed.

Increasing local complexity. Knowledge graphs for individual
phenomena become more complex over time. Added complexity includes
first the addition of previously unrecognized variables, second ever
deeper graphs comprising more generations of ancestors, and third a
growing number of links due to discovering additional relationships
among variables.

Rising stages of knowledge for variables and relationships.
Discovering new variables and causal relationships changes the structure
of the knowledge graph. But learning can also improve knowledge about
previously identified variables and causal relationships. This does not
change the structure of the graph, but does change the stage of know-
ledge of individual elements. Many variables that are eventually tightly
controlled (i.e., at stage 4) were at one time only recognized (i.e., at
stage 1). For example, Taylor’s serendipitous discovery that tool steel
could be improved by (what we now call) heat treatment took
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hardening from stage 0 (unknown) to stage 3 (adjustable). Decades of
subsequent research led to a scientific model of the key relationships
that brought knowledge to stage 4 (capable).

Multiple solutions. Because the causal networks that determine
outcomes are complex, problems can usually be solved in multiple ways.
For example, a causal path connecting a source of variation to a
harmful effect can be interrupted at many links. Effectiveness, amount
of new knowledge needed, and side effects vary for different solutions.
New solutions are usually added, rather than replacing old ones.

Backwards evolution of knowledge graphs. Knowledge tends
to evolve backwards. Deeper understanding of what causes a variable
to vary hinges on a fuller understanding of parental relationships.
Sometimes the parents can be partially controlled directly, but refining
control of the parents requires understanding the grandparents, and
so on.

Punctuated gradualism. Knowledge evolved by “punctuated
gradualism,” meaning incremental learning interspersed with occasional
technological discontinuities. Incremental learning takes the form of
gradual accretion of knowledge about phenomena, and gradual
adjustments of procedures and tools. Discontinuities occur when the
introduction of a new technique or requirement forces rapid learning
about a host of new phenomena, and re-visiting many old variables,
such as occured with electro-chemical machining.4 Epochal shifts in
manufacturing were marked by multiple discontinuities in parallel, but
local discontinuities can occur at any time.

Causal networks are not tree-structured. It is convenient to
model complex systems as hierarchical trees of systems and subsystems,
and many authors including Vincenti have emphasized hierarchical
decomposition of technological devices. However, causal networks are
thickets and not trees.5 That is, variables have multiple descendants
and not just multiple parents. This makes them much more difficult
to analyze and control. Changes to one variable, intended to produce
a desired effect in a particular descendant, will also change many other

4 This is a purely technological definition of disruptive change.
5 Decompositions of systems into subsystems also differ from knowledge graphs in that links are
not based on causal relationships.
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descendants, often in undesirable ways. Environmental side effects are
an example, but the phenomenon is much more general.

Modularity. As a partial substitute for tree-structure, manufac-
turing processes have some degree of modularity in their causal net-
works, and therefore in their knowledge graphs. This was demonstrated
by Taylor’s use of reductionism, which would not have worked without
modularity (Section 2.3). In a near-modular network, although changing
one variable will have many effects, most of the descendants are close
to the original change. Closeness is measured by length of the causal
path, but short paths usually correspond to physical closeness as well.
In a modular process other subsystems can be ignored except for effects
that propagate through the small number of relationships between
modules.6

A very useful form of modularity is the sequential relationship
among steps in a manufacturing process, such as raw material → shaped
part → assembly → tested product. Each step can be treated as a
module, with many internal causal links and few external links. Fur-
thermore, causal paths that link different steps/modules can only occur
through one of three mechanisms: information flows, environmental
side effects, and by far the most important, physical transfer of work
in process (WIP). So, if something goes wrong with an upstream process
it can be detected, at least in principle, by looking at the properties of
the WIP. Clever rearrangement of WIP can quickly isolate a problem
to a single step/module.

Fractal nature of knowledge graphs. The more closely a causal
system is examined, the more detail it contains. To a plant manager,
a phenomenon such as rework might be summarized by a single vari-
able, whereas a process engineer will have complex and evolving
knowledge of the same phenomenon. On a very different scale, a process
engineer can alter a machine’s behavior by setting a few parameters
in a PID controller, but the activity set in motion by those parameters
includes electrons flowing through millions of gates inside a micropro-
cessor. As a result, the patterns discussed above, such as punctuated
gradualism, occur on multiple scales. To the plant accountant, rework

6 [32] has a detailed discussion of hierarchy versus modularity in metabolic networks.
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evolves smoothly, while to the process engineer it is the result of mul-
tiple discrete changes, some of them radical.

4.3. The Quest for Perfect Science

We have seen that the progression of manufacturing from art towards
science consisted of advances in knowledge and the methods that
embody it. Each epoch brought major improvements; rework at Beretta
declined from more than fifty percent to less than one percent of
activity. Can we predict that at some point knowledge will be perfect?
To what extent can we say that manufacturing approaches the “end
of its history,” with complete understanding, absolute predictability,
ideal performance, and nothing left to learn?

The answer is in two parts. Day-to-day production that exploits
existing knowledge can approach this level. But dynamic tasks such
as problem solving, design, and technology development, which extend
knowledge, will always be a mixture of art and science.

For production in a static world, meaning a well-established process
turning out a mature, thoroughly understood product for a known
marketplace, it is feasible to bring processes to a level at which there
is little left to learn and virtually all (normal) activity is highly proced-
ural. The Taylor System was the apotheosis of this static view of
manufacturing. Indeed, Taylor might be ecstatic about both how much
is known by engineers today and how well procedures are executed by
machines. Yet even when knowledge is virtually complete, some rare
disruptions will necessitate human intervention.

But more fundamentally, the manufacturing world is not static.
Competitive pressure, progress in upstream technologies such as
materials science, and new features demanded by customers will inev-
itably drive the development of new products and new processes to
produce them. Almost by definition, these products and processes will
push the limits of what is known, and will therefore enter production
only part way along the art-to-science spectrum.

Furthermore, the key tasks in a dynamic world are those of
learning and problem solving, which are far from perfect science. Con-
sider, for example, the problem of discovering and fixing a variety of
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intermittent problems that are detected at the end of a long production
process. Questions that must be approached more as craft than proced-
ure include: Which problems do we work on first? Who should be
assigned to a particular problem? How should overall problem-solving
efforts be organized? Having diagnosed a problem, where in its causal
network should we attempt to fix it? How do we know we have actually
solved a problem? When should we drop a problem and move on to
something else? Are several different problems manifestations of single
underlying problem?

Such questions involve ambiguity and uncertainty, and answering
them requires expertise. Learning and problem solving, because they
will continue to require human judgment and intuition, will never reach
full procedure or full knowledge. Balconi in a study of recent changes
in European manufacturing industries reaches the same conclusion:

[T]raditional tacit skills of workers have become largely obsolete
and modern operators on the shop floor are mainly process control-
lers and low-level problem solvers. Alongside this, the acceleration
of innovation has made high-level problem solvers increasingly
important. Tacit knowledge has thus remained crucial, but it has
become complementary to a codified knowledge base and concerns
problem solving heuristics, interpretation of data, etc …

In fact the performance and survival of firms depends on the
individuals’ ability to solve problems, to control, to improve pro-
cesses, to find new technical solutions and to design new products,
to integrate various “bodies of understanding” and to build rela-
tions with clients and interpret market trends. In conclusion,
whereas the product of searching activity in the technological field
is codified knowledge (know-how and know-what), it is the process
of searching itself and of creating new artifacts which is embodied
in individuals (depending on acts of insight). [6]

Yet, although learning activities will never reach the level of
static manufacturing tasks, there was considerable progress toward
science from Taylor to the present. Table 4.2 summarizes some of the
important developments, most of which are soft tools that assist experts.
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Currently, the leading industry for innovation in learning methods and
tools is probably semiconductors. There, the economic rewards for
faster development and ramp-up are high, and the high noise levels
and long time lags in semiconductor fabrication mandate use of more
procedural learning methods.7

Finally, the engineering disciplines of control theory and artificial
intelligence have made modest progress towards formal computerized
learning in well-structured systems. Adaptive control methods can
compensate for minor design errors and component failures. Some of
the more ambitious systems gradually moving from academia into the
semiconductor industry use explicit causal models of the system being
controlled. Both theoretical models (stage 4 of causal knowledge) and
empirical fitting to statistical data (stage 3) are employed. Such systems
can monitor a sequence of steps in photolithography, continuously
monitoring the process and detecting out-of-control equipment.
Although we can expect continued incremental progress towards
automatic systems for refining coefficients when the structure of the
causal network is already known, unstructured learning has resisted
automation and is likely to do so for the foreseeable future.

4.3.1. Non-Manufacturing Applications

We have examined the evolution of manufacturing and the structure
of the knowledge that supports it; but the structure of knowledge for
some other technologies is similar. Consider the analogy between
manufacturing and air transportation systems. A factory is a complex
system organized to transform raw materials into useful products,
quickly and precisely. An airline is a complex system involving aircraft,
maintenance, airports, and air traffic control organized to move indi-
viduals from one location to another, quickly, precisely, and reliably.
Both factory and airline are designed and operated using technological
knowledge, specifically physical cause and effect relationships that can
be modeled as causal knowledge graphs. Among the many analogies,
both are heavily concerned with maintaining control despite variation

7 This is a vast topic. [13; 10; 43]
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Area of improvement*Epoch of
first useInvention

Signal to Noise ratio (S/N)TaylorControlled experiments

Information Turnaround
Time (ITAT)TaylorSystems analysis using

reductionism

Cost, ITAT, S/N, generaliz-
ability beyond conditions
tested

TaylorMathematical modeling of
phenomena

S/NSPC
Statistical concepts and techniques
(e.g. control chart, regression,
experimental design)

Generalizability; use of out-
side knowledgeSPCUsing science-based explanations

of phenomena

Cost, ITAT, S/NCIM/FMSComputer simulation of processes
or products

Facilitates natural experi-
ments e.g. data miningNC

Massive database of process
variables (Factory Information
System)

Use of outside knowledgeNCInteraction between academic
research and field problems

ITAT, S/NAllFaster, more precise measurement
methods

* Principal impact of innovation on learning; terminology from [8]

Table 4.2 Selected innovations in methods of learning

in the environment: weather for aviation, conditions inside the plant
for manufacturing.

Given these similarities, it is not surprising that we see analogous
patterns in the evolution of procedures and knowledge in the two sec-
tors. Methods of flying, guiding, and maintaining aircraft have become
more scientific with increasing scope, increasing depth, and increasing
formality, exemplified by the “automated cockpit” of contemporary
commercial aircraft. As far as knowledge about aviation, there are
analogs of most of the evolutionary patterns discussed in Section 4.2,

4.3.1. Non-Manufacturing Applications 76



such as a growing list of requirements (passenger comfort; noise control
at airports; anti-piracy), use of new mathematical methods (extensively
discussed by Vincenti), feedback-based control, and improvements in
measurement.

Vincenti has an excellent example of raising the knowledge stage
of variables, specifically the struggle to identify variables that measure
flying-qualities of different aircraft. This is defined as the ease and
precision with which a pilot can control an aircraft. Initially, test pilots
could express an opinion about an aircraft as “easy” or “hard” to
control, but these subjective judgments were at stage 1 of knowledge.
Decades of research were needed to fully define the key variables that
should be used as formal specifications for designers. A report from
1937, for example, discusses how to measure 17 different variables
during test flights of new aircraft. With hindsight, it is easy to overlook
the initial confusion about the existence and definition of variables.
Modern engineers routinely use a variable called “stick force per g” but
“express amazement that any [other] maneuverability criterion ever
existed and that it took [more than five years] to develop.” [41, p 96]

Similarities in the evolution of aviation and manufacturing are not
too surprising given the extreme dependence of both on physical pro-
cesses. For a less similar industry, we might look, for example, at the
back rooms of banks and other information processing “factories.” Did
such industries exhibit epochal shifts in the nature of work, from craft
to functional specialization to statistical process control to, ultimately,
process intelligence? Certainly we can point to many non-manufacturing
industries in which managing intellectual assets is now critical, but
historical research would be needed to investigate parallels with the
intellectual shifts in firearms manufacture.

What about intellectual tasks such as design? The processes by
which products are designed, the necessary supporting knowledge, and
the tools employed by product designers all evidence evolution from
art to science as we have defined it. As underlying knowledge about
how products can be made to work becomes more elaborate, causal
knowledge graphs grow. Design methods become more formal and
procedural and portions of the design task more heavily automated.
Draftsmen, for example, are no longer needed to translate design intent
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into engineering drawings and design calculations that used to employ
slide rules now employ digital simulation.

The types of knowledge identified in Vincenti’s studies of aeronaut-
ical design, however, go beyond the knowledge of physical cause and
effect that we have considered. His engineers made extensive use of
meta-knowledge – knowledge about how to manipulate causal knowledge
to arrive at new designs (not his terminology). One of Vincenti’s
knowledge categories is design instrumentalities, the understanding of
how to carry out the activities of design. One type of design instrument-
ality is structured design procedures such as optimization, satisficing,
and deciding how to divide a system into subsystems. Less tangible
design instrumentalities include ways of thinking such as visual thinking
and reasoning by analogy, and judgmental skills such as intuition and
imagination. [41, p 219ff]

Vincenti points out an equally important class of meta-knowledge,
namely the methods used to extend causal knowledge, which he classifies
into invention, transfer of knowledge from science, theoretical engineer-
ing research, design practice, experimental engineering research, pro-
duction, and direct trial. The methods Taylor used to develop manu-
facturing knowledge correspond roughly to the last three methods in
Vincenti’s list. The first three were also relevant in various epochs,
such as theoretical engineering research on the forces and geometry of
metal cutting in the 1950s.

Learning methods and design instrumentalities are meta-knowledge
about how to create and then exploit causal knowledge about underlying
physical systems. As with physical manufacturing, specific design and
learning tasks that used to require experts can now be done by soft
tools. Nevertheless, because they will always depend partly on creativity
and human intuition, design and especially learning will never approach
perfect science.8

8 A number of engineers, managers, and academics contributed to this research. Most important
was R. Jaikumar, who under better circumstances would have co-authored this paper. He was
my collaborator on many of its ideas. Special thanks to Jai’s former editor, John Simon, for his
work on the manuscript. Paul Dambre of Bekaert, who uniquely combines mastery of both scientific
theory and manufacturing practice in his industry, patiently shared his expertise and was always
an eager sounding board and experimenter. None of them bears responsibility for errors and
omissions. REB
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