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Two-Cell Power Allocation for Downlink CDMA
Chi Zhou, Peifang Zhang, Michael L. Honig, Fellow, IEEE, and Scott Jordan

Abstract—Power and code allocation across two adjacent cells is
studied for the downlink of a code-division multiple-access voice
network. Each user has a utility function that measures the user’s
willingness to pay, or utility, as a function of the received signal-to-
interference-plus-noise-ratio. The objective is to maximize the total
utility over the two cells subject to code and power constraints.
When all active users receive the same utility, the optimal alloca-
tion is characterized by a pair of threshold radii for the two cells,
where each radius specifies the set of active users in that cell. The
behavior of the optimal radii are characterized as a function of load
and available resources (power and codes). The corresponding op-
timal power allocation can be achieved through a pricing scheme,
in which each base station announces a price for each resource,
and each user responds by requesting the amount of resources that
maximizes the user’s surplus (utility minus cost). We show that,
depending on the load and resource constraints, the two cells may
have to coordinate, or exchange information, in order to maximize
the total utility.

Index Terms—Code-division multiple-access (CDMA), down-
link, power control, pricing, resource allocation, surplus, utility,
voice service.

I. INTRODUCTION

E FFICIENT allocation of resources in a wireless network
must take into account user requests for quality of service

(QoS) along with channel variations, and received interference
across users. In addition, when resources are scarce, allocations
should be weighted by relative priorities, or differences in the
value of the service to each user. The latter objective has moti-
vated the utility-based approach to power control presented in
[5]–[7], [9]–[12]. Earlier related work on wireline resource al-
location based on utilities and pricing is presented in [1]–[4].

In this paper, we study resource allocation for the downlink
of a code-division multiple-access (CDMA) voice network. As
in prior work on utility-based resource allocation, we assume
that each user has a utility function that specifies the utility the
user derives from the service as a function of the received QoS,
which is taken to be signal-to-interference-plus-noise-ratio
(SINR). Our objective is to allocate resources, namely, power
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and codes, to maximize the total utility summed over all users,
subject to constraints on the number of available codes and
total transmit power in each cell. In contrast with prior work on
utility-based power control and related pricing methods (e.g.,
[5]–[7], [9]–[13]), here we consider resource allocation over
two adjacent (interfering) cells.

For the voice service considered, the utility as a function of
SINR is modeled as a step function starting at zero utility. For
purposes of analysis, we consider the case where the SINR at
the step transition, and the height of the step are the same for
all users. Each active user receives one code, corresponding to
a fixed rate. Maximizing total utility is then equivalent to maxi-
mizing the number of active users. We characterize the optimal
power and code allocation for a one-dimensional (1-D) cellular
model, previously considered in [12] for a single cell, in which
there is a continuous uniform distribution of users along the
line in each cell. (The loads, or user densities in the two cells
can differ.) We explicitly account for other-cell interference by
treating the codes in other cells as random, and assuming a
matched filter receiver. The codes within each cell are assumed
to be orthogonal, and we assume ideal channels (no multipath)
with only distance-based attenuation.

The optimal power allocation is specified by the set of
threshold radii of active users for the two cells. For a given cell,
all users within the radius are active, and all users outside the
radius are inactive. The set of feasible threshold radii determine
a region, the shape of which depends on the constraints on
codes and power, in addition to model parameters, such as load,
noise level, and attenuation versus distance. We partition the
space of feasible regions into different classes, which corre-
spond to different shapes. For example, when the total available
power is small, the region is convex, whereas when the total
available power is large enough, the region is nonconvex. In
the latter case, the optimal allocation typically exhausts the
available power in only one cell. The power consumed by
the other cell is then limited by the amount of interference it
generates. Although our analysis considers only the case where
the utilities are the same across users, numerical examples are
presented, which illustrate optimal power and code allocations
when different users may receive different utilities.

We introduce a pricing scheme to distribute the resource allo-
cation process, analogous to that proposed in [4] for resource al-
location in a wireline network. Within each cell, the base station
announces to the users a price per code and a price per unit trans-
mitted power, and each user responds by requesting the amount
of resources that maximizes the user’s surplus (utility minus
cost). Without coordination between the two cells, the corre-
sponding fixed point may not be the global optimum. Hence, in
general, the two cells must exchange information to achieve the
maximum total utility.

1536-1276/04$20.00 © 2004 IEEE
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Fig. 1. One-dimensional two-cell model.

The rest of the paper is organized as follows. In Section II,
we present the user and network models. In Section III, we for-
mulate the power allocation problem for utility maximization,
and in Section IV, we partition the space of feasible regions for
the set of threshold radii into different classes. In Section V, we
characterize the optimal power allocation, and in Section VI, we
present a pricing scheme which can achieve this allocation.

II. SYSTEM MODEL

The 1-D two-cell model considered is illustrated in Fig. 1. A
user location is specified by the distance from the closest base
station where . To facilitate our analysis, we assume a
large system in which the number of users in cell , denoted as

, and the processing gain go to infinity with fixed ratios
for . The density of users along the line in each

cell is assumed to be constant for between (a refer-
ence point in the far field of the transmitter antenna) and 1. (We
assume to avoid singularities in the path loss function.)
The load in cell is denoted as , where is the
number of codes in the system. In what follows, we will assume
that .

The transmitted power to a user in cell at distance from
the base station is denoted as . We assume distance-
based attenuation represented by a path loss function . The
power received by a user at distance from the base station is

. We assume that is differentiable
and strictly decreasing. In practice, the channel attenuation is
not necessarily an increasing function of distance due to random
shadowing and multipath; however, we can view the parameter

as a “radio distance” from the base station (defined by the at-
tenuation), rather than an actual physical distance.

The codes are assumed to be orthogonal within each cell, but
correlated between cells (due to a frequency reuse factor of 1).
We assume that the multipath is negligible, or is equalized [14],
and that the receiver is a matched filter. The received SINR for
a user at distance is

(1)

where is the background noise variance, assumed to be the
same for all users, and is the received interference power
at the output of the matched filter. We can write

(2)

Fig. 2. Utility function for a fixed-rate (voice) service.

where , and is the average transmitted power per
code in cell , and is given by

(3)

As increases, both the attenuation of the desired signal and the
interference increase, so that more transmitted power is required
to achieve a target SINR. Finally, we remark that the results
in this paper can be easily extended to the case where the cell
radius can exceed one.

III. PROBLEM FORMULATION

In this section, we formulate optimal resource allocation
problems based on the notion of user utility. Namely, we assume
that each user has a utility function , where denotes the
received SINR [17]. For the voice service considered, we model

as a step, as shown in Fig. 2, rising from zero utility when
to a positive utility when . The target

SINR is assumed to be the same for all users. The height of
the step indicates the call’s priority level. More important calls
are associated with higher values of , i.e., the user is willing
to pay more to gain admission to the system. For the analytical
results in this paper, is assumed to be identical for all users;
in numerical results, we will consider the case where has a
uniform distribution across users.

Our objective is to allocate power and codes across the users
in both cells to maximize the total utility, subject to code and
power constraints in each cell. Specifically, denoting the utility
received by a user in cell at distance as , the total utility
per code in cell is given by

(4)

For the voice system considered, each active user is assigned
one code, just enough power to reach the target SINR , and
receives utility . Each inactive user receives zero power and



2258 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004

codes, and zero utility. The code allocation is, therefore, deter-
mined by the power allocation. Specifically, letting be the
fraction of requested codes in cell , we have

(5)

where if the user at radius is active, and is zero
otherwise, and denotes the measure of the set . The
optimization problem, therefore, reduces to determining the op-
timal power allocations , .

We can now state the two-cell optimal utility maximization
problem for power allocation as:

(6)

subject to (7)

(8)

(9)

where (7) and (8) are the code and power constraints, respec-
tively, and is the available power per code at each base sta-
tion.

The assumptions of a step utility function, which is the same
for all users, and distance-based attenuation allow us to state
an equivalent, but simpler version of the preceding problem.
Namely, suppose that is restricted to form a radius of
active users in cell , denoted as . That is, users at distance

are active, and users at distance
are inactive. We will refer to this type of power allocation

as a threshold allocation. The associated utility maximization
problem for threshold radius allocations is

(10)

(11)

(12)

(13)

Theorem 1: The optimal threshold allocation, determined by
solving Problem P2, is the solution to Problem P1.

Proof: Assume that the optimal policy is not a threshold
policy. Swapping the furthest active user with the closest inac-
tive user in a cell does not change the number of active users
and, hence, the total utility, but lowers the total power. Hence,
this gives a feasible allocation. Continuing to swap active and
inactive users in this fashion leads to a threshold allocation.

For a threshold allocation, we have

(14)

(15)

(16)

where is the transmission power required to
achieve the target SINR , i.e.,

(17)

We can compute

(18)

(19)

where . That is, increases
monotonically with , and decreases with . In what
follows, unless otherwise stated, we will restrict ourselves to
the class of threshold allocations.

IV. FEASIBLE REGION

Define the feasible region as the set of threshold radii
for which the SINR, code, and power constraints can

be satisfied, i.e.,

and for

(20)

Note that is a compact set. The shape of depends on the
load, available power to noise ratio , and the path loss
function . In what follows, we denote the boundary of a
closed set as . In the remainder of this section, we relate the
shape of to the code and power constraints.

A. Boundary Constraints

Each point in corresponds to a set of binding constraints.
Specifically, for a given point in , we call cell code-limited
(CL) if the code constraint is binding, power-limited (PL) if the
power constraint is binding, and demand-limited (DL) if the cell
size constraint is binding, i.e., . Finally, we call cell
interference-limited (IL) if both the code and power constraints
are loose, but cell cannot increase without decreasing to
satisfy the SINR constraints. That is, the interference generated
by cell prevents it from activating more users, assuming that
the number of active users in cell is held constant.

Each point in can be classified according to the binding
constraints, e.g., a boundary point is (PL, IL) if cell 1 is PL and
cell 2 is IL. Note that not all combinations are possible. For
example, if cell is IL, then cell must be PL. Otherwise, it
would be possible to increase , at least incrementally, without
decreasing (i.e., by increasing the power in both cells).

Points in for which and are in the Pareto set
[17]. That is, there is no other allocation, which can increase
without decreasing . We are interested in classifying the shape
of the Pareto set, which depends on the associated set of binding
constraints.
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B. Classification of Feasible Regions

We can view as the intersection of the regions defined
by each constraint. Specifically, let be the threshold radius
at which the code constraint becomes binding, i.e.,

. The code/demand region is given
by

(21)

That is, is a rectangle, which contains the points that satisfy
the cell size and code constraints only. Similarly, we define the
power region as

such that

for for (22)

and the power curve as the boundary of , denoted as . For
any point in , we have for some . The feasible
region is then , and the Pareto set is . That is,
the Pareto set is the section in for which at least one cell is
PL.

We now partition the set of feasible regions into three sub-
sets, or classes. The class contains all feasible regions for
which . That is, is a rectangle defined only by the
code and cell size constraints, as shown in Fig. 3. The Pareto set
includes only the corner point, , at
which each cell is either DL or CL, denoted as D/CL. Note that

if and only if the point is
feasible.

A feasible region is in the class if it is convex, and is not
in . That is, there exists a boundary point at which at least
one cell is PL. Examples of feasible regions in are shown in
Fig. 4. Although the example in Fig. 4(d) looks essentially the
same as the one shown in Fig. 4(a), it has been added because
the point at which the utility is maximized is not at the (PL, PL)
(corner) point. (See the discussion in Section V-A.) Finally, a
feasible region is in the class if it is nonconvex. Examples
are shown in Fig. 5. In Figs. 4 and 5, is the threshold radius
at which the power constraint becomes binding, i.e., .
This radius depends on both and , and reaches its max-
imum value when , and its minimum value
when . The middle point is, therefore,
(PL, PL).

If is in or , then . Fig. 4(a) shows an
for which . For , is concave, whereas

for , is not concave.
Theorem 2: The power curve consists of two differen-

tiable segments intersecting at the (PL, PL) point,
. At the (PL, PL) point, the difference between left-

and right-handed derivatives is

(23)

where as .
Proof: From (15) and (17), we can write

, , where for fixed and dif-
ferentiable , is a differentiable function of ,

. Fixing , and increasing from zero to

Fig. 3. Feasible region in the class T .

, therefore, traces a differentiable curve in the plane
from to . Similarly, fixing ,
and decreasing from to zero traces a differentiable
curve from to .

At the (PL,PL) point, the left- and right-handed derivatives
are

(24)

(25)

where and is defined after (19).
Since , where

, it follows that , and equality
holds only for . Therefore,
and . Combining with (25) gives the
theorem.

For , the two segments of are concave, as shown
in Fig. 4. For , these segments may be partly concave
and convex, as shown in Fig. 5(a) and (b), or convex, as shown
in Fig. 5(c). The Pareto set, , is shown as the segment
between points and in both Figs. 4 and 5. At point , cell
2 is either PL, or is both PL and D/CL . Similarly,
at point , cell 1 is either PL or .

There is a unique point on the power curve at which both cells
are PL, although this point may or may not be feasible. Points
on the AB segment to left of the (PL, PL) point are (IL, PL),
whereas points on the AB segment to the right of the (PL, PL)
point are (PL, IL).

C. Variation With Power Supply

In this section, we study how changes with the power
supply . We start with two examples. Fig. 6 shows with
different values of . For the first example, shown in Fig. 6(a),
the loads , , the path loss function

, and the SINR target dB. The available power
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Fig. 4. Examples of feasible regions in the class T .

Fig. 5. Examples of feasible regions in the class T . The power curves in (a) and (b) are neither convex nor concave, whereas the power curve in (c) is convex.

to noise ratio ranges from 20 to 38 dB. As increases, we
observe that transits from class (for the smallest two values
of ) to . When and 23 dB, the power curve is
concave and the (PL, PL) point is optimal, as in Fig. 4(a). For

dB, is concave near the ends, and convex near
the middle, as in Fig. 5(a). When dB, consists
of the intersection of a similar power curve with the code-de-

mand boundary, as in Fig. 5(b). When dB, the
intersection of the power curve with consists of two strictly
convex segments which intersect at the (PL, PL) point, as in
Fig. 5(c).

For the second example, shown in Fig. 6(b), the loads
, , the path loss function , and the

SINR target dB. The value of ranges from 30
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Fig. 6. Boundary ofR for different values of P . The asterisks correspond to the maximum value of L r + L r . (a) (P=� ) = 20; 23; 26; 29; 32;35and38
dB; (b) (P=� ) = 30;33;36;39;42;45; and 48 dB.

to 48 dB. In this example, transits from class to when
dB. In all cases, the intersection of the power

curve with is concave. In all cases except for the largest two
values of , the (PL, PL) point is feasible, as in Fig. 4(a). For

the (PL, PL) point is above point , as shown in
Fig. 4(b).

To explain the transitions shown in Fig. 6, we note that as
, both and approach . As ,

, and converges to a finite value, given by .
This observation motivates the following two theorems, which
state that as increases, the shape of the power curve segments
change from concave to convex.

Theorem 3: If for any , then there
exists a power level such that for , the two power
curve segments are concave and, therefore, is a convex region.

Theorem 4: Suppose that
is an increasing function of . Then, there exists

a power level such that for , the two power
curve segments are convex.

The proofs are given in Appendix A.
Note that the condition that

is an increasing function of is satisfied by
, .

The progression from concave to convex power curve seg-
ments corresponds to an increase in other-cell interference rela-
tive to the background noise. Namely, for small , the other-cell
interference is relatively small, and the incremental decrease in

due to an incremental increase in (caused by the asso-
ciated incremental interference) decreases with . In contrast,
for large , the interference dominates the noise, and the incre-
mental decrease in due to an incremental increase in is
more severe for smaller .

V. OPTIMAL RESOURCE ALLOCATION

The results in the preceding section are now used to charac-
terize the optimal resource allocation. We will compare coordi-

nated optimization, where the cells coordinate to maximize total
utility, with uncoordinated optimization, where each cell max-
imizes its own utility without regard to the effect on the other
cell.

A. Coordinated Resource Allocation

For the case where all users receive the same utility and the
channel gain is determined by distance-based attenuation, we
have the following result.

Theorem 5: The solution to P2 maximizes , the
number of active users per code, and is in .

Proof: The first statement follows directly from the opti-
mality of a threshold allocation, (6), and (16). Since
increases with and , the solution must be on the boundary
of .

Contours of the objective in the plane are
lines with slope . Hence, we seek the furthest such line
from the origin, which intersects . Note that all intersection
points must be in the Pareto set, since otherwise an allocation
exists that increases the utility in one cell without decreasing
the utility in the other cell. For convex , any point in , which
is tangent to a line with slope , is optimal. In Figs. 3–5,
optimal points are labeled with an asterisk. Note in particular,
that the optimal points in Fig. 4(a) and (d) differ due to the dif-
ferent choices of loads in the two cells. In Fig. 4(d),
so that at the optimal point cell one is IL.

In what follows, we let , and combine
the cell size and code constraint into a single constraint .
Applying the Kuhn-Tucker theorem [16, Ch. 6] to Problem P2
gives the following set of necessary conditions for the optimal
allocation:

and (26)



2262 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004

and

(27)

where ( , , , ) is the set of nonnegative shadow
costs for the code/radius and power constraints in each cell, and
(27) is a complementary slackness condition that ensures each
shadow cost is strictly positive iff the associated constraint is
binding. In Appendix B, we give expressions for the shadow
costs, which satisfy (26) and (27), in terms of , the
system parameters and path loss function.

If is convex (i.e., in or ), then the Kuhn-Tucker condi-
tions specify a unique global optimum. This is because the ob-
jective function is linear and, therefore, concave.
If , then there may be more than one local optimum, i.e.,
more than one point in , which is tangent to a line with slope

. Empirical evidence suggests that there are typically a
small set of local optima [c.f. Fig. 5(a)–(c)]. We have observed at
most three such local optima, the (PL, PL) point, and one point
each on the (IL, PL) and (PL, IL) segments. When we
conjecture that the optimal point is either the (PL, PL) point or
the local optimum on the (IL, PL) segment.

The shape of changes continuously with , , and .
This is illustrated in Fig. 6, where the optimal point on each
power curve is marked with an asterisk. When is small, and

is convex, the (PL, PL) point is optimal, and moves continu-
ously with . In some cases, e.g., in Fig. 6(a), at moderate values
of , the power curve becomes a combination of concave and
convex segments, and the optimal point may jump from the (PL,
PL) point to a tangent point on the (IL, PL) segment. As con-
tinues to increase, the optimal point moves continuously with

, following the tangent point.

B. Uncoordinated Resource Allocation

In this section, we assume that each cell maximizes its own
utility, ignoring the effect this has on the other cell. Specifically,
the optimization problem is for

(28)

(29)

(30)

where the SINR in cell and both depend on , which
results from the optimization in cell . The corresponding equi-
librium, in which cell cannot increase its utility given fixed
interference from cell and vice versa, is called a Nash equilib-
rium.

Theorem 6: At the Nash equilibrium, each cell is either DL,
CL, or PL.

Proof: This follows from the observation that the solution
to Problem Unc is obtained by increasing until one of the
constraints is binding.

Note, in particular, that a cell cannot be IL at the Nash equi-
librium. That is, a cell can always increase by increasing

. Note also that if coordinated optimization gives cells
which are any combination of D/CL and PL, then the optimal
point is a Nash equilibrium.

We, therefore, conclude that if , , and are chosen so
that , then no coordination is needed between the cells
to maximize the total utility. For , no coordination is
needed unless one of the cells is IL at the optimal point, as il-
lustrated in Fig. 4(d). For the latter case, and for , coor-
dination is needed to reduce the power in the IL cell.

VI. RESOURCE ALLOCATION VIA PRICING

In this section, we present a distributed solution to Problem
P2, motivated by the application of pricing to resource alloca-
tion. We first observe that for continuous, decreasing , any
point corresponds to a unique point in the
plane, and vice versa. Problem P2 is, therefore, equivalent to
finding the point in the plane, which maximizes
the total utility. The corresponding Lagrangian is given by

(31)

where the multipliers , , are chosen to satisfy
the power constraints , , where
is the optimal power in cell . Note that differs from the
shadow cost in (26) since if , whereas

since it is selected to enforce the more restrictive power
constraint (e.g., if the cell is IL). In contrast, the price per code

.
Substituting for , , and in (30) from (4), (15),

and (5), respectively, it follows that to maximize for a fixed
, the user at radius should choose the transmitted

power to maximize . For the step
utility function considered, this implies that the user at radius
is active iff the received utility , where

is the transmitted power needed to achieve the target
SINR. We, therefore, interpret and as prices for power
and codes, respectively, in cell .

A set of prices defines a threshold allocation, since
increases with . The threshold radius

satisfies

(32)

We can select prices to achieve any point in , since for
any fixed , can be achieved with any

that satisfy , and
can be achieved by taking . Any

is achievable since is a continuous,
increasing function of . The optimal set of prices is not unique
in general. For example, when both cells are CL, there are an
infinite number of price combinations, which give the optimal

.
We, therefore, conclude that the following pricing scheme can

achieve the solution to Problem P2:

• the base station in cell announces a price per code
and a price per unit transmitted power ;

• each user responds by requesting the transmitted power
, which achieves the target SINR, provided that

.
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Fig. 7. Optimal prices and shadow costs associated with resource constraints versus the load in cell 2. (a) L = 0:7, (P=� ) = 23 dB. (b) L = 1:2, (P=� ) =
23 dB.

As previously observed, the two base stations may or may not
need to coordinate in order to maximize the total utility. If the
Nash equilibrium is optimal, then coordination is unecessary,
and each base station can independently adjust its prices to in-
crease the utility within its cell until a resource is exhausted. If
at the optimal allocation one of the cells is IL, then the corre-
sponding base station must enforce the constraint by
charging a higher price for power than it would without coordi-
nation.

For the case where neither of the cells are D/CL at the optimal
allocation, it is easily shown that . Fur-
thermore, the shadow cost

(33)

where is the (nonnegative) exter-
nality price for power in cell , which accounts for the interfer-
ence to cell . For the case where cell is IL, , hence the
marginal increase in due to an increase in is equal
to the corresponding marginal decrease in .

The externality prices and represent the information,
which must be exchanged between the cells, to achieve the op-
timal allocation. Specifically, suppose that in Problem Unc, the
objective is replaced by

(34)

In that case, can be chosen so that the shadow costs associ-
ated with the Kuhn-Tucker conditions match those for the coor-
dinated problem. Specifically, to achieve radius

if cell is CL

if cell is not CL
(35)

Hence “uncoordinated” optimization of in each cell, with
appropriate externality prices, is equivalent to coordinated opti-
mization.

A. Optimal Prices Versus Load

In this section, we present a set of numerical examples, in
which we fix the load and vary . In contrast to the pre-
ceding sections in which the utility per active user was as-
sumed to be identical for all users, we now assume that is
drawn from a uniform distribution on the interval 0–20, inde-
pendently for each user. The optimal resource allocation can no
longer be described by a set of threshold radii , since
at some distances only users with sufficiently high utility will
be active. For this more general case, Kuhn-Tucker conditions
again give shadow costs on power and codes within each cell, so
that the pricing scheme in Section VI can achieve the maximum
utility.

The utility maximizing prices, ( , , , ), were
found using a gradient search, and are plotted in Fig. 7(a) and
(b). In each pair of graphs, dB, the SINR target

dB, and is shown in the figure caption. In addition to
the prices, we also plot the shadow costs ( , , , ).
As discussed in the preceding section, and is
the sum of the shadow cost and the externality price .

In the first set of examples, shown in Fig. 7(a), . At
low loads all demand can be accommodated.
Hence, all prices are zero, and both cells are DL. At moderate
loads cell 2’s power constraint becomes
binding, and the cells are (IL, PL). Correspondingly, the shadow
cost on cell 2’s power constraint increases with load, along
with the power prices and . The number of active users
in each cell is now limited by other-cell interference, so that the
externality prices increase.

At high loads, , cell 2’s code constraint
becomes binding, and the cells are (IL, ). Correspond-
ingly, the shadow cost on cell 2’s code constraint, , increases
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with load, as does the price per code . This charge for a
code somewhat lessens the demand for power in both cells, and,
hence, the power prices decrease in this load range.

In the second set of examples, shown in Fig. 7(b), cell 1 is
over-loaded . At low loads in cell 2, ,
all demand can be accommodated in cell 2, but cell 1 has already
run out of codes. The cells are therefore (CL, DL), and

. For , cell 1 exhausts its power supply;
the cells are (C PL, IL), and the externality and power prices
are both positive. This reduces the demand for codes in cell 1,
so that for , the code constraint in cell 1 is no
longer binding, and the cells are (PL, IL). For ,
the code constraint in cell 2 is binding, and the cells are (PL,
PL). Finally, for , the code constraint in cell 2
is also binding, and the cells become (PL,P CL).

VII. CONCLUSION

We have studied downlink code and power allocation across
users in two adjacent CDMA cells. Our model accounts for the
interference between the two cells. The performance objective
is total utility summed over all users, where the utility function
assigned to each user is a step function, corresponding to a fixed-
rate (voice) service.

For the case where each user has the same utility function, the
optimal resource allocation is specified by the set of threshold
radii in each cell. We have characterized the shape of the fea-
sible region, i.e., set of possible threshold radii, in terms of the
resource constraints, target SINR, load, and path loss function.
As the power constraint in each cell increases, we have shown
that this region makes a transition from convex to nonconvex.
If this region is convex, and with equal loads in each cell, then
both cells are resource limited at the optimal point. With un-
equal loads, it is possible for one cell to be interference-limited
at the optimal point, i.e., it is restricted to a lower power than
what is available in order to reduce the associated externality
due to interference. When the feasible region is nonconvex, one
cell is typically interference-limited at the optimal point.

The optimal code and power allocation can be achieved with
a pricing scheme. Namely, each base station announces a price
per code and a price per unit transmitted power, and each user
within the cell is active provided that the received utility ex-
ceeds the total charge for code and power. The resource alloca-
tion problem is then equivalent to finding the prices that maxi-
mize the total utility. If the two cells do not coordinate, or ex-
change information, then the corresponding Nash equilibrium
may or may not be optimal, depending on the load and con-
straints. Specifically, if one cell is interference-limited at the op-
timal allcation, then the Nash equilibrium is not optimal. In that
case, the optimal allocation can be achieved by adding an exter-
nality charge to the power price.

The utility-based framework for resource allocation pre-
sented here can be applied to different traffic, utility, and
system models. For example, related work on two-cell resource
allocation for data traffic, and for voice traffic with multiple
priorities is presented in [15], [18]. Other propagation models,
which account for random fading, could also be incorporated
into the path loss function. Extending this analysis to a two-di-

mensional cellular model, or a one-dimensional multicell
model with more than two cells appears to be difficult in
general, although performance measures such as total utility
can be studied numerically. We expect that for many cases of
interest, results analogous to those presented here also apply to
those more general models.

APPENDIX

A. Proofs of Theorems 3 and 4

Using (15) and (17), we can directly compute the following
derivative at any point in the (IL, PL) segment of :

(36)

where . We have used the fact that
for any point in the (IL,PL) segment. As , ,

, and , , all go to zero. Focusing on the
terms in brackets, we first observe that for small enough and

, we must have and
. Also, since for small , we can ignore

the right terms in the brackets.
As for the remaining terms, with , and

it can be shown that ,
, ,

, and
. Substituting

into (35), it can be shown that the three terms on the right-hand
side of (35) are , ,
and , respectively. Since and

, the first term dominates for small enough
. This term is strictly negative, hence Theorem 3 is valid for

the (IL, PL) segment of . A similar argument shows that
Theorem 3 is valid for the (PL, IL) segment. Furthermore, the
condition on the derivatives of the segments at the intersection
point stated in Theorem 2 implies that the intersection of the
regions defined by the two boundary segments is convex.
Taking the intersection of this region with the code/demand
rectangle gives a convex feasible region, which completes the
proof of Theorem 3.

To prove Theorem 4, we solve for in (15) and (17), i.e.,

(37)
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Along the power curve, as , we have for at
least one . It follows that

(38)

Since is bounded and differentiable, we can take the deriva-
tive of (37) with respect to to show that as

(39)

If is increasing with , then as in-
creases and decreases, decreases. Hence, for large
enough , the two power curve segments in Theorem 2 must be
convex.

B. Expressions for Shadow Costs

Here, we give expressions for the shadow costs that satisfy
(26), (27), assuming . We consider different cases cor-
responding to the different possible sets of binding constraints
at the optimal allocation.

If the cells at the optimum allocation are (D/CL, D/CL), then

(40)

This case is illustrated in Fig. 3. The utility can be increased only
by increasing the cell radius (if DL) or the number of codes (if
CL).

If the cells are (PL, PL), then

(41)

This case is illustrated in Fig. 4(a). The utility can be in-
creased only by increasing the power limit. It can be shown
from these expressions that

, and hence the (PL, PL) point intersects a line
with slope .

If cell is PL and cell is D/CL, then

(42)

This case is illustrated in Fig. 4(b) [for (PL, D/CL)] and Fig. 4(c)
[for (D/CL, PL)]. At the optimal point
and .

If the cells are (IL, PL), then

(43)

This case is illustrated in Fig. 5(a). At the optimal point
.

If the cell phases at the optimum are (IL, PL D CL), then

(44)

This case is illustrated in Fig. 5(b) and (c). Here, both the
code/radius and power constraints are binding in cell 2. At the
optimal point and .
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