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Abstract

This paper summarizes work on a parallel algorithm
for an interacting particle model, derived from the
model by Czirok, Vicsek, et. al. [13] [3] [14] [4] [5].
Our model is particularly geared toward simulating the
behavior of fish in large shoals. In this paper, the back-
ground and motivation for the problem are given, as
well as an introduction to the mathematical model. A
discussion of implementing this model in MATLAB and
CT* follows. The parallel implementation is discussed
with challenges particular to this mathematical model
and how the authors addressed these challenges. Both
static and dynamic load balancing were performed and
are discussed. Finally, a performance analysis follows,
using a performance metric to compare the MATLAB,
C*t*, and parallelized code.

1 Introduction

The capelin is a species of pelagic fish which lives
in the northern oceans. There are several stocks in the
Northern Atlantic ocean; we are particularly interested
in the stock which migrates in the seas around and
north of Iceland. This stock forms large shoals off the
northern coast of Iceland generally made up of billions
of individuals. Each year, the mature portion of this
stock undertakes an extensive migration to feed on the
zooplankton whose population swells during the vernal
phytoplankton bloom to the northeast of Jan Mayen
[15] [16]. In the fall, the fish return to the northern

coast of Iceland and the portion of the stock which un-
dertook the feeding migration swims around Iceland to
the southern coast. The fish then spawn and the adults
die. The young drift with the tidal current to mature
off the northern coast.

The goal of our work is to model the life cycle and
migration route of this particular stock of capelin with
schools of up to a million individuals. The Icelandic
fishing industry is interested in an accurate model of
the migration of this stock because the capelin is im-
portant to the region both economically and ecolog-
ically. The fishing industry fishes the stock for ex-
port, but this stock is one of the main food sources
for many of the larger, more economically valuable fish
in the vicinity. Hence, it is important that the stock
not be overfished. Because the migration route of the
capelin seems to be highly dependent on ocean temper-
ature and currents, it is difficult to find the stock at a
given time and therefore difficult to gauge the number
of capelin during a given year [2]. The stock in other
oceans has been catastrophically depleted by miscalcu-
lation of the number of fish in a stock when the fishing
industry has happened across very dense pockets of fish
during years when the stock is small. It is therefore ex-
tremely important to keep careful track of the location
of the various parts of the stock of the capelin to avoid
similar catastrophes in this region.

Other groups are also working on numerical sim-
ulations to reproduce this migration, see [8] [10] [9].
These groups have obtained reasonable spawning mi-
grations using a comparatively small number of inter-



acting particles representing superindividuals. Their
models include currents, temperature gradients, and a
forcing term which simulate a homing instinct to draw
the fish to the feeding and spawning grounds at the
correct times. We are interested in simulating the mi-
gration with a quantitatively accurate number of fish
and without these forcing terms. This paper addresses
necessary architecture for simulating

One problem which is common to models of inter-
acting particles is that it is computationally expensive
to simulate a suitably large number of particles. Sim-
ulating many particles is important, however, because
local information can become global information via lo-
cal interaction if there are adequately many particles.
In this paper, we address one possible solution to this
problem. Our model is based on the model described
in [1], which in turn is derived from the model in [8]. In
this paper, we discuss transitioning the code from the
MATLAB implementation discussed in [1] to sequen-
tial C** and eventually to MPI. We discuss the var-
ious challenges we encountered parallelizing the code
and the strategies we used to address these challenges,
including geographic division of our space, ghost fish,
shadow oceans, and static and dynamic load balancing.

This paper is organized as follows. In the next
section, we describe our mathematical model and
present the necessary background on the fish intera-
tion schemes in our model, and the formulas govern-
ing it. In Section 3, we describe our computational
implementation of the mathematical model, including
the serial model in Matlab and C++, as well as the
parallel model in MPI. Section 4 discusses the major
challenge in any interacting particle model, including
our model. In this section, we detail our approach to
the load balancing problem, including our statis and
dynamic mythodologies we employed. We quantify the
performance of our model in section five, and conclude
the paper in the following section.

2 Background

2.1 Fish interaction

In our model, fish interact with each other locally.
All fish are identical and there are no fish which are
designated as “leaders,” i.e. having more information
or behaving differently from the other fish. Each fish
interacts only with fish within a certain finite region
and ignore information from all other fish. Generally
speaking, each fish tries to head away from fish which
are too close, align with fish which are reasonably close,

and head toward fish which are too far away. Avoid-
ing fish which are too close averts collisions, aligning
with neighbors allows the fish to form cohesive schools
to help avoid predation and offer hydrodynamic ad-
vantages, and getting closer to fish which are far away
helps fish avoid being alone and encourages the forma-
tion of schools [11]. This type of behavior has been
observed in schooling fish by biologists and has been
shown to be motivated by vision and the lateral line,
a sense organ which detects pressure changes and runs
down the side of many species of fish including the
capelin[12].

2.2 Zones of interaction

In our model, we simulate these effects using the
zones of interaction shown in Figure 1. Three zones are
defined by three concentric circles around every fish:
the zone of repulsion, the zone of orientation, and the
zone of attraction. The smallest circle is the zone of
repulsion of the fish at the center of the diagram. The
annulus between the zone of repulsion and the larger
circle is the zone of orientation and the annulus out-
side the zone of repulsion and inside the largest circle is
called the zone of attraction. Fish try to head toward
fish in their zone of attraction, try to align in speed
and direction with fish in their zone of orientation, and
try to head away from fish in their zone of repulsion.
They do this by taking an average of all these (often
conflicting) desires; for details, see Section 2.3. In our
implementation, each zone is given equal weighting and
the radii of the different zones is a parameter which can
be adjusted to create individual variations among the
fish.

2.3 Mathematical Model

Our model is derived from the interacting particle
model first presented by Cgzirdk, Vicsek, et. al., see
[13] [3] [14] [4] [5], and later adapted by [8] and then
[1]. Fish change their directional heading and speed at
each time step by reacting to nearby fish through the
spherical zones of interaction described in Section 2.2.
The algorithm for updating the kth fish’s speed is

1 N
vr(t+ At) = > wilt)

where there are N fish inside the zone of orientation
of fish k. Letting ¢ be the directional heading of the
kth fish, we update its directional heading at each time
step according to the following rule:



Zone of Attraction
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Figure 1. This figure depicts the zones of interaction of a fish in our simulation.
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Here, R, N, and A are the number of fish in the kth
fish’s zone of repulsion, orientation, and attraction, re-
spectively. The indices r, n, and a run through all the
fish in their respective zones. The algorithm uses the
speed and directional heading from these calculations
to move each fish according to its velocity as follows:

zp(t+ AL\ [ xp(t) cos(¢ (1))
( ye(t + At) ) = ( e (t) )”’*’”( sin(6x (1)) )At'
(1)
3 Interaction Simulation Model
3.1 Matlab and CTt Models

In [1], Barbaro, Birnir and Taylor implement the
model described in Section 2.3 in MATLAB. For com-
pleteness, we began our analysis with this implemen-
tation. In this code, there is no sorting of the fish, and
every fish computes its distance to every other fish at

every time step to see if it needs to react to the other
fish. This slows the code significantly as the number
of fish increases, making it prohibitively expensive to
model the number of individuals necessary for realis-
tic simulations of shoals of the capelin. It is therefore

necessary to move the code to another platform such
as Ct+.

3.1.1 Class Architecture

Our model consists of three main classes: Fish,
Ocean and World. The Fish class stores coordinate
and velocity data for a fish, the Ocean is meant to
represent a single body of water, whereas a World is
a bigger body of water composed of several connected
oceans. Each fish stores an x and y coordinate for its
location in the world. A fish stores its velocity as the
cosine and sine of its direction angle together with a
non-negative speed. The Ocean class has a member



variable “fish” which is an array of Fish living on that
ocean. For a performance improvement, we sort the
list of fish on an ocean by = coordinate, and when fish
on an ocean interact, they need only compare their po-
sitions with fish nearby in the sorted list. This saves
us from an “all-to-all” comparison for proximity de-
tection. The Ocean class has member functions which
iterate through the fish, updating their velocities and
moving them. The Ocean class does not handle any
MPI communication. The World class contains a 2-
dimensional array of oceans. Member functions of the
World class iterate through the oceans and instruct
each ocean to interact or move its fish. The World
class handles the communication of the fish between
oceans both locally and over a network with MPI. In
our implementation the oceans in a world are either
connected in a torus or not according to a flag in the
World class. If the torus flag is set to false, fish which
traverse the boundary of the world disappear from the
simulation. When the torus flag is set to true, the top
edge of the world is identified with the bottom edge
of the world and likewise left and right, so fish which
traverse a boundary of the world teleport to the other
side of the world.

3.1.2 Local Communication

Even if a World is instantiated on a sequential ma-
chine, the oceans in that world do a network-style com-
munication of fish. The motion and interaction of fish
in a time step is computed one ocean at a time. Be-
tween time steps, the oceans inform each other of per-
tinent fish.

There are two phases of communication per time
step:

1. Before the fish can interact, each ocean needs to
be informed of sufficiently nearby fish on neigh-
boring oceans. We do this by adding a copy
of each fish in the neighboring ocean (provided
it’s within the largest radius of attraction of the
boundary) with a flag set to indicate that the
fish is a “ghost”. These fish need to be present
to affect other fish, but in the interaction phase
of computation, ghost fish need not have their
velocity updated.

2. When fish migrate to an ocean from a neighbor-
ing ocean, the migrant fish need to be removed
from the source ocean’s list and added to the re-
ceiving ocean’s list.

In communication phase (1) where ghost fish are
sent from ocean to ocean, we employ a trick that uses

sorting to save computational effort. Each ocean needs
to communicate ghost fish to its eight neighboring
oceans in the 2-dimensional model. The sets of ghost
fish destined for the various neighbors tend to intersect
nontrivially. For instance, the ghost fish which need to
get sent to the neighbor in the upper-right corner of
an ocean also need to get sent to the ocean directly to
the right. To avoid redundant computation, we first
divide the ocean up into regions We assign to each fish
the number of the region in which that fish is currently
located. We then sort the entire array of fish by region
number. Because of the ordering of the region num-
bers, the fish that need to get sent to any neighboring
ocean will be contiguous in the sorted list. In commu-
nication phase (2), when migrating fish are transported
to their target oceans, we use a similar scheme, except
that this time we assign a number to the fish according
to its destination ocean.

3.2 Parallelization

The challenges of parallelization lie mainly in (1)
and (2) above. To address these challenges, when run-
ning in parallel each thread instantiates one world,
the structure of which mimics the worlds on all other
threads. To divide the work among threads, each
thread is assigned a connected set of oceans to com-
pute. On each thread, the oceans in the world which
are not assigned to that thread begin each time step
empty of fish. We call such an ocean a shadow ocean.
During each time step, we first allow the fish in the
world to interact, then we move the fish according to
the rules described in Section 2.3. When moving the
fish, the processor simply iterates through all its as-
signed oceans, and for each ocean advances every fish
in that ocean by its velocity. This might move fish into
the processor’s shadow oceans, so a network commu-
nication pass follows which moves the fish in each of a
processor’s shadow oceans into the identical ocean on
the proper thread. Before the fish interact with each
other to update their velocities, the oceans need to be
informed of ghost fish. So, on each thread, the world
iterates through all oceans, and performs a local com-
munication of ghost fish. Ghost fish spill into shadow
oceans, so a network communication pass follows which
sends the ghost fish in each shadow ocean into the iden-
tical ocean on the proper thread. Once all ghost fish
are in place, the real fish can update their velocities.
Once updated, all ghost fish are removed before the
next time step.

By organizing the procedure in this way, we made
a healthy barrier between the computation of fish mo-
tion and the inter-thread communication of fish. The
movement and interaction code can run blind to the



fact that network communication need be performed,
and shadow oceans automatically do the job of accu-
mulating ghost fish or migrant fish (depending on the
phase of computation) into a list. All the communica-
tion code does is transmit the entire contents of each
shadow ocean to the thread to which that ocean be-
longs. In fact, transmission of the entire contents of an
ocean from one thread to another is exactly what our
dynamic load balancing scheme requires, so the same
code can be used for that as well, see Section 4.

4 Load balancing

One of the major challenges in any interacting parti-
cle implementation is the distribution of the workload
among different parallel threads at runtime. There-
fore, one crucial design decesion in our implementation
was to add load balancing capability to our simulation.
Due to the dynamic nature of the problem in hand,
the workload assigned to each thread in the system is
neither balanced at startup time of the application as
different ocean gets varing number of fish, nor during
its run time as fish migrate from one ocean to another.
Therefore, adding static and dynamic load balancing to
the simulation was essential in allowing a larger number
of fish simulation with limited computational resources.

4.1 Static Load Balancing

As we outlined earlier, each thread owns a number of
oceans, and its workload is determined by the number
of fish interacting inside those ocean, and their total
communication characteristics. Based on the simula-
tion instance and the startup configurations, the work-
load between the different threads at startup may be
not balanced. Static load balancing in our model is,
therefore unavoidable in order to distribute the work-
load among the different threads before the fish start
to interact.

In nature, the load balancing challenge in compu-
tational models of interacting particles is a subset of
the weighted graph-partitioning problem. The prob-
lem is NP complete, but there exits different approx-
imation that would solve the problem at reasonable
orders of complexity [6, 7]. To simplify the problem,
we opt to distribute the workload among thread in a
snake-like distribution, where each group of oceans has
a reasonably comparable portion of the total workload.
The goal of our simplified solution was to decrease
the communication between the different threads run-
ning on different processors without losing compu-
tational advantages. Figure 6(i) illustrates how we
distributed different oceans to different processors at
start-up. Oceans having the same color run on the
same thread. The oceans’ distribution tries to mini-
mize the number of edges between different threads,

and thus minimize the network communication be-
tween them. Another possible work distribution theme
was to distribute the oceans in blocks, as shown in
Figure 6(ii). However, to implement this distribution
we had to enforce restrictions on the x and y dimen-
sions of the world dependent on the number of oceans
and the number of threads. Furthermore, we aimed for
a sub-optimal load-balanced distribution of the initial
workloads among processors, since our dynamic load
balancing -which we discuss in more details in the fol-
lowing subsection- would do more load balancing to the
different threads workloads.

4.2 Dynamic Load Balancing

Because of the interactions between the fish de-
scribed in Section 2.2, the fish gather into schools and
then move through the world as schools. This means
that in order to avoid having some processors being
overloaded while other processors remain idle, we had
to deploy some implementation of dynamic load bal-
ancing to our simulation. Our goal for dynamic load
balancing is for each processor to do a relatively com-
parable amount of work during each iteration.

We first decided what constitutes “work.” Because
the majority of the computations during each time
step occur while updating each fish’s velocity, we chose
to create a variable, interactionCounter, which keeps
track of the number of interactions that occur during a
given time step in each ocean. At the beginning of ev-
ery time step, interactionCounter is set to zero on each
ocean and we increment it whenever a fish finds another
fish within its zone of attraction, since then the fish in-
teracts with this fish. This definition of work is more
informative than keeping track of the number of fish
in a given ocean, since fish which are far enough apart
will not interact and thus will not affect the amount
of time the processor is spending on computations as
much as the same number of fish placed close together.

<

Once “work” is defined, there are several options
for how to dynamically load balance the simulation.
We could divide the world into differently-sized oceans
depending on the density of fish within each region.
However, the data structure which would need to be
communicated between processes would be very com-
plex, because it would have to be able to capture an
arbitrary division of the world into oceans. Also, it
might result in quite a bit of communication since a
processor would most likely be given only a small piece
of a very densely populated region, and fish on that
processor would be interacting with many fish on other
processors, requiring a larger number of ghost fish to
be sent between processors.

What we chose instead was to start with a preset



(ii)

Figure 6. The figure illustrates possible distribution of oceans to different MPI threads at application
start-up. Oceans in the same color run on same thread. (i) Left figure shows our snake-like dis-
tribution, while (ii) right figure shows another theme of distributing the oceans by blocks amoung

threads

array of oceans and to initially deal them out as de-
scribed in Section 4.1. We keep this array through-
out the simulation, but we allow ourselves to reassign
oceans to processors as time goes on. We choose a
counting number N, and run our dynamic load bal-
ancing code every N time steps. Our dynamic load
balancing algorithm is run by a master node which it-
erates through the processors and computes how much
work is done by each processor by adding up the in-
teractionCounter from the previous time step of every
ocean belonging to that processor. It then finds which
processor is doing the most work and calls that pro-
cessor processorHigh. Then it computes the amount of
work done by processorHigh’s neighbors, i.e. the pro-
cessors which have an ocean bordering an ocean belong-
ing to processorHigh. The neighboring processor which
is doing the least amount of work is labeled as proces-
sorLow. The algorithm runs through each ocean be-
longing to processorHigh which shares an edge with an
ocean on processorLow and finds out which ocean pro-
cessorHigh can give to processorLow in order to make
the work done by these two processors closest to equal.

It is important that processorHigh gives its ocean
away to a processor bordering this ocean since their
sharing an edge means that ghost fish and migrating
fish at this edge will not have to be communicated via
the network. This choice therefore reduces the amount
of communication necessary between processors. Giv-

ing away only one ocean each time the dynamic load
balancing module runs means that the communication
overhead for the dynamic load balancing algorithm is
fairly low. A large choice for N will mean that whole
oceans are communicated less frequently, which will re-
duce this overhead; however, it is important to balance
the cost of this communication with the benefit of hav-
ing each processor work at equal capacity. We present
the performance of the load balancing module, and its
communicational requirements in the following section.

5 Performance Analysis

The ultimate goal for this application was to enable
us to simulate the interaction of fish in large shoals
in a shorter execution time. Therefore, we decided to
define an application-specific metric of performance to
reflect the motivation for the simulation. The metric
measure the amount of time taken to execute one fish
interaction with surrounding fish per iteration. We also
measure the total execution time of the simulation as
a functions of the total number of fish in the world and
the number of iterations. We show the impact of port-
ing our implementation on leveraging the simulation
time per fish per iteration between the matlab code,
the C++ code and the MPI code with load balancing.

We evaluated the sequential performance of both
Matlab and C++ as a base performance measure for
our experimentation. In the Sequential performance
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Figure 7. The performance comparison between Matlab code and C++ implementation. The upper
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experiments, we deployed our code on a Intel Pen-
tium 4 with a dual core; each core is 2.60GHz CPU,
512KB L2 cache size and 1GB of main memory. Fur-
thermore, we deployed our C++ sequentional code on
Datastar machine. DataStar is an IBM terascale ma-
chine at San Diego Supercomputing Center (SDSC).
The machine has Power4 processors, with pipelined 64-
bit RISC chips with two Floating-point Units. Each
Power4 is a 1.5GHz with 16 GB of main memory, and
has a two-way L1 (32 KB) cache, a L2 (0.75 MB) cache
which is four-way set associative. There is also an 8-
way L3 cache on each node (16 MB per processor).
Although Matlab code was more compact and less
in number of lines than C++ code, Its performance
lagged behind the more complicated C++ code. Fig-
ure 5 portrays the performance distinction. The figure
comprise of six subfigures. The first row of subfigures
represent the total execution time of the simulation
(on y-axis) as a function of the total number of fish
in the world, while the second row portrays the time
per fish per iteration (on the y-axis) as a function of
the total number of fish in the world (on z-axis). The
red, blue and green curve reflect the 10, 100 and 1000

iterations simulations respectively. The two left-most
subfigures are the matlab performance, while the two
middle subfigures and the two left-most subfigures are
the C++ performance on the Intel Pentium machine,
and on SDSC Datastar respectively. Notice that the
y-axis scale of the subfigures is not the same.

From figure 5, we can clearly observe that the mat-
lab code on Pentium machine was 10X slower than
C++ code performance o both Pentium and Datastar
machines. Using a curve fitting methodology, the slope
of the two curve are different (what are the slopes?).
However, we observe that the performance difference
between the curves for the different number of iter-
ations is constant and is not impacted by the total
number of fish in the world. In addition, regarding
the subfigure in the bottom left corner of figure 5, the
matlab code is observed to have a non-linear growing
time of simulating fish per iteration, which reflects the
poor scalability of the matlab code. On the other hand,
the middle and right-hand bottom subfigure reflect a
stepper and slower growth of the performance time per
fish per iteration as the number of fish increases for the
C++ code. This performance analysis illustrate the ef-
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ficency of C++ to our problem domain in comparison
to matlab code.

In addition to the sequential performance charac-
teristics, we present the performance attributes of the
MPI parallel code. Figure 5 presents the performance
of the MPI code with different number of MPI threads,
and different iterations. The figure comprise of six sub-
figures. The first row of subfigures represent the total
execution time of the simulation (on y-axis) as a func-
tion of the total number of fish in the world, while the
second row portrays the time per fish per iteration (on
the y-axis) as a function of the total number of fish
in the world (on z-axis). The two left-most subfigures
are the performance characteristics for 10 iterations of
the fish iteration simulation, while the two middle sub-
figures and the two right-most subfigures reflect the
performance for 100 and 1000 iterations respectively.
For each of the subfigures, we show the performance
using different number of MPI processes. The red,
blue, green and purple curves demonstrate the perfor-
mance of 2, 4, 8 and 16 MPI processes respectively.
All of those parallel performance measurements were
collected on SDSC Datastar machine.

From figure 5, we observed that the number of it-
erations impact the scalability of the mpi code, as we

notice the variability of the slopes between the three
figures on the upper row. As the number of iterations
increase, the slope of the curve become steeper. This
is caused by the increase in communicational load in-
crease as the number of iterations increase. This im-
pacts the efficiency of the MPI communications, and its
interleaving with the computational load. This in turn
impact the overall total execution time of the simula-
tion as the number of iterations grow. Furthermore,
notice that the 16-processes performance lags behind
the other curves, especially that the problem instance
has 16 oceans (i.e., every MPI process is executing one
ocean). As the small number of fish and small num-
ber of oceans in the world are divided among the 16
processes, the computations is exceedingly short rela-
tive the amount of communication between the oceans.
This imbalance in the communication and computa-
tions load results in the performance retardation, which
is noticed by the purple curve of the 16 processes. How-
ever, as the number of fish in the world increases, the
computational load of every ocean on each processor
increase, and slowly attains the balance between the
communications and computational loads.

The lower row of subfigures in figure 5 presents the
time of execution per fish per iteration as a function of



the total number of fish in world. These curves shows
that MPI code has a better scalability than the mat-
lab and C++ codes, as shown in figure 5. In addition,
the curves have a a knee, before and after which the
time of simulation per fish per iteration is higher. This
point is at 2048, 1024 and 512 fish for 10, 100 and 100
iterations respectively. At these points, the simulation
achieves the most balanced state between the computa-
tional load and communicational load for this number
of iterations. In addition, as the number of iteration
increase, the balance point is achieved at a lower num-
ber of fish. This is also explained by the fact that the
communication overhead increases by the number of
iteration, and not at the same rate of increase of the
computational load. This characteristics are specific to
the architecture we run our simulation on, and would
be different from one super-machine to another.

6 Conclusions

In this paper, we implemented a parallel version of
the model of fish schooling described in [1]. Some of
the challenges addressed in this implementation were
ways to divide the problem domain among processors
for parallelization, how to communicate between pro-
cessors effectively and at minimal cost, and how to
distribute work dynamically without excessive com-
muncation overhead. Our architecture is an innovative
compromise between fixed spatial allocation and com-
pletely variable-sized spatial allocation. Load balanc-
ing in the way described in section 4 allows us to keep
messages between processors simple, but also equallizes
the work done by the processors. A series of tests gave
us emperical results indicating that not only is our C*+
implementation a plasing improvement over the previ-
ous MATLAB implementation, and that our dynamic
load balancing scheme actually gives a significant fur-
ther performance benefit.
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