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A decomposition of surprisal tracks the N400 and P600 brain potentials
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University of California Irvine
Irvine, CA 92617

{jiaxuan.li,rfutrell}@uci.edu

Abstract

The functional interpretation of language-related ERP compo-
nents has been a central debate in psycholinguistics for decades.
We advance an information-theoretic model of human language
processing in the brain, in which incoming linguistic input is
processed at two levels, in terms of a heuristic interpretation and
in terms of error correction. We propose that these two kinds of
information processing have distinct electroencephalographic
signatures, corresponding to the well-documented N400 and
P600 components of language-related event-related potentials
(ERPs). Formally, we show that the information content (sur-
prisal) of a word in context can be decomposed into two quanti-
ties: (A) heuristic surprise, which signals the processing diffi-
culty of word given its inferred context, and corresponds with
the N400 signal; and (B) discrepancy signal, which reflects
divergence between the true context and the inferred context,
and corresponds to the P600 signal. Both of these quantities
can be estimated using modern NLP techniques. We validate
our theory by successfully simulating ERP patterns elicited
by a variety of linguistic manipulations in previously-reported
experimental data from four experiments. Our theory is in prin-
ciple compatible with traditional cognitive theories assuming
the existence of a ‘good-enough’ heuristic interpretation, but
with a precise information-theoretic formulation.

Introduction
Human language comprehension is linked to (at least) two
distinct and robust event-related potential (ERP) components
detectable through electroencephalography—the N400 and
P600. The N400 is a negative-going waveform that peaks at
around 400 ms after the onset of linguistic signal, whereas the
P600 is a positivity at around 600 ms. Since their discovery, a
great deal of research has attempted to ascertain the functional
interpretation of the N400 and P600 signals in order to shed
light on the neural mechanisms of human language process-
ing (Kutas & Hillyard, 1980; Hagoort et al., 1993; Hoeks et
al., 2004; Kim & Osterhout, 2005; Van Herten et al., 2005;
Van Petten & Luka, 2012; Kuperberg, 2007, 2016; Van Petten
& Luka, 2012).

Traditionally, the N400 and P600 ERP components have
been linked to semantic and syntactic anomalies in sentences,
and thus taken to indicate some degree of modularity with re-
spect to syntactic and semantic processing (Kutas & Hillyard,
1980; Hagoort et al., 1993). However, a number of studies have
found P600 effects in response to semantic violations, with
or without a corresponding N400 (Kim & Osterhout, 2005;
Kuperberg, 2007; Chow et al., 2016; Brouwer et al., 2012;
Ryskin et al., 2021; Ito et al., 2016; Van Petten & Luka, 2012).
In response to these data, recent psycholinguistic theories

have proposed a heuristic interpretation stage of language
comprehension, where comprehenders form a plausible inter-
pretation based on a subset of information in the input signal
(Van Herten et al., 2005, 2006; Kuperberg, 2016; Brouwer et
al., 2012; Ferreira et al., 2002; Ferreira & Stacey, 2000; Fer-
reira & Patson, 2007), along with an error monitoring process.
In such theories, the N400 reflects how well the heuristic in-
terpretation is semantically well-formed, whereas P600 reflect
deviance between heuristic and literal interpretations. How-
ever, none of the theories have succeeded in explaining the
full range of empirical results (see Brouwer et al., 2012, for
detailed discussion).

Prior work has suggested to formalize this heuristic interpre-
tation/error monitoring process within a noisy-channel frame-
work. The noisy-channel model posits that comprehenders
rationally infer a probabilistic distribution on the intended
meaning given the received input while taking into account
the fact that the input may contain errors (generically termed
“noise”). Rational inference in this setting involves a trade-off
between the prior of how likely the intended message is con-
veyed, and the likelihood of how likely the intended message
is to be distorted into the perceived message. Prior work has
established that there is a reduced N400 and a larger P600
when a correct sentence can be recovered from original sen-
tence with a semantic error (Gibson et al., 2013; Ryskin et al.,
2021). Further, computational models have been developed
where the amplitudes of N400 and P600 signal reflect distinct
aspects of language processing over the inferred heuristic in-
terpretation (Li & Ettinger, 2023). However, these studies
have subjective decisions about possible candidates for heuris-
tic interpretations, making it difficult to scale up and account
for other studies. In addition, these studies do not have a
principled information-theoretic quantification of cognitive
effort, and are not integrated with more general computational
neuroscientific models of other cognitive processes (Ortega &
Braun, 2013; Gershman, 2020; Futrell & Hahn, 2022; Zénon
et al., 2019).

We propose an information-theoretic computational-level
model of the N400 and P600 ERP components in language
processing. Our model formalizes the noisy-channel frame-
work described above and situates it as a generalization of
Surprisal Theory, a probabilistic model of online language
comprehension (Hale, 2001; Levy, 2008). We argue that sur-
prisal can be decomposed into two parts: (A) the heuristic
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surprise of the current word within an inferred heuristic dis-
tribution of utterances, predicting the magnitude of the N400
signal, and (ii) a discrepancy signal reflecting the difference
between the surprisal of the veridical input and the surprisal
of the heuristically-inferred utterance, predicting the magni-
tude of the P600 signal. We run qualitative simulations over
previously-reported data from three experiments, featuring
semantic and syntactic violations, event structure violations,
semantic relatedness priming. We further perform quantita-
tive analyses on one additional experiment, where we show
that our quantities for heuristic surprise and discrepancy sig-
nal track the N400 and P600 components respectively. Our
model successfully explains a wide range of ERP patterns
and integrates multiple strands of psycholinguistic research
into a quantitative model. By linking ERP components to Sur-
prisal Theory, our model creates a precise formal link between
theories of ERPs and other behavioral measures of language
processing. Furthermore, we leverage recent computational
models from the field of natural language processing to imple-
ment our theory, which allows us to formalize the probabilistic
process of language comprehension with statistical properties
of real experimental inputs.

Model
Our model builds on Surprisal Theory, an empirically success-
ful theory of behavioral signatures of language comprehension
such as reading time (Hale, 2001; Levy, 2008; Frank & Bod,
2011; Smith & Levy, 2013; Wilcox et al., 2020), which is
in line with recent computational neuroscientific proposals
to quantify cognitive effort information-theoretically (Zénon
et al., 2019). Surprisal Theory holds that the magnitude of
processing effort for a word xt given a context of previous
words x<t should be proportional to the information content
or surprisal St of the word given its context:

St =− ln p(xt | x<t). (1)

Our model maintains the idea that the total amount of process-
ing effort is given by surprisal, but we partition the surprisal
into two parts, corresponding to different forms of information
processing and to the two distinct ERP signals. Fig. 1 shows
an overview of model architecture.

Surprisal decomposition Consider a comprehender perceiv-
ing a sentence at time t, currently observing word xt in the
context of (a memory trace of) previously-observed words
x<t . We formalize the idea of a ‘heuristic interpretation’ in the
generative model shown in Figure 2. Here the comprehender
is trying to infer the value of a variable T representing the
speaker’s intended structure, for example a complete parse
tree. Crucially, the link between the intended structure T and
the input words x is not deterministic: speakers may make
errors in production, or environmental noise may disrupt the
signal, or there may be errors in perception, and comprehen-
ders should be able to correct for these factors. We formalize
this idea by introducing random variables for heuristic words

Figure 1: Overview of model architecture. A speaker intends
to convey “The hearty meal was devoured”, but the compre-
hender’s observed input is “The hearty meal was devouring”.

T

w<t wt

x<t xt

Figure 2: The comprehender’s generative model. T is the
speaker’s intended structure. At time t, the structure T contains
words w<t and (the past context) and wt (current word). The
comprehender observes a noisy form of the past context x<t
and the current word xt .

w<t and wt , corresponding to the values of past words and the
current word within the speaker’s intended structure T . The
heuristic words give rise to the input words through a noise
model, a distribution pN(x | w) representing all kinds of errors
that might occur during language production and transmission.

We propose that, with each incoming word, the compre-
hender is updating her representations of the heuristic words
W and structure T . Within the generative model of Figure 2,
the surprisal St (− ln p(xt | x<t)) can be partitioned into two
parts,1 corresponding to (A) the new information content of
the heuristic words themselves, termed heuristic surprise,
and (B) the update to beliefs about the heuristic words given
the input words, termed discrepancy signal:

St = E [− ln p(wt | w<t)]︸ ︷︷ ︸
heuristic surprise,=A

+E
[

ln
p(wt | w<t)

p(xt | x<t)

]
︸ ︷︷ ︸

discrepancy signal,=B

, (2)

where the expectations are with respect to the probability
distribution p(w≤t | x≤t). The heuristic surprise is an upper

1Our decomposition of surprisal is distinct from the decompo-
sition into lexical and syntactic surprisal proposed by Roark et al.
(2009).
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bound on the information provided by the heuristic words
about the structure T . We propose that the N400 magnitude is
proportional to the heuristic surprise A and the P600 magnitude
is proportional to the discrepancy signal B for distinct positive
scalars α and β in:

N400 = αA,P600 = βB. (3)

Noise model The model quantities A and B are both averages
with respect to the comprehender’s probability distribution on
heuristic words given input words, p(w | x). This distribution
can be written using Bayes’ rule as

p(w | x) ∝ pN(x | w)p(w). (4)

To fully specify the model, therefore, requires us to specify
(1) a noise model pN representing likely errors in production
and/or transmission, and (2) a prior probability distribution
p(w), which reflects the probability that a speaker would want
to produce a sequence of words w.

Implementation We assume a noise model based on the
relationship between heuristic words w and input words x in
terms of both form and meaning:

pN(x | w) ∝ exp{−λ [d(x,w)+ γs(x,w)]}, (5)

where d(x,w) is a phonological or orthographic distance from
w to x and s(x,w) is the semantic similarity of x and w. These
two factors reflect common sources of errors in speech (Dell
& Reich, 1981). The scalar free parameters are λ, represent-
ing the overall (inverse) rate of errors, and γ, representing the
relative importance of form-based and meaning-based factors.
The value of γ is held constant across experiments simulated
below, while the overall inverse noise rate λ varies from ex-
periment to experiment, reflecting differences in experimental
task, number of implausible stimuli, etc.

In order to compute Eq. 2, we need a way to average over
all the possible heuristic word strings w given the input word
strings x. This averaging is technically difficult as there are in
principle an infinite number of possible w underlying any given
input x. Therefore, we compute averages approximately, limit-
ing the support of w to only a subset of likely candidates gen-
erated by prompting GPT-3 (specifically text-davinci-002
Brown et al., 2020). For each experimental stimulus, we input
prompts with instructions and four examples on how to correct
sentences to recover its intended meaning2, and ask GPT-3
to generate one best correction. We generate ten corrections
for each sentence when the model parameter is encouraged

2Prompt: The final word in each of the following sentences is
wrong: someone typed the wrong word. Please type in a different
word, the one that was probably intended. Input: The hearty meal
was devouring. Correction: The hearty meal was devoured. Input:
The hearty meal was devoured. Correction: The hearty meal was
devoured. Input: Mary went to the library to borrow a hook. Cor-
rection: Mary went to the library to borrow a book. Input: Mary
went to the library to borrow a plant. Correction: Mary went to the
library to borrow a plant. Input: Experimental Sentence Correction:

to generate different corrections (GPT-3 model temperature:
0.95).

Once a set of candidate heuristic word strings w is gener-
ated in this way, we calculate the likelihood of each string
by following Eq. 5 applied independently to the individual
words in the string. For the form-based distance d(x,w) we
use orthographic Levenshtein edit distance; for the semantic
distance s(x,w) we use cosine distance calculated using GPT-2
embeddings (Radford et al., 2019). For the prior p(w), we
calculate contextualized probability at target word position
using the GPT-2 language model.

Empirical Validation
Datasets
We selected four ERP studies as our dataset. The studies
include manipulations featuring a variety of semantic and
syntactic violations. Table 1 shows a list of conditions with
sample stimuli and empirical ERP patterns across experiments.
The ERP effects in the experimental conditions are all calcu-
lated in terms of differences to the ERP signal in the control
condition. We conducted qualitative analysis on the first three
experiments and quantitative analysis for the last one.

The first study (hereby AD-98) (Ainsworth-Darnell et al.,
1998) includes four conditions: one control condition (Con-
trol); one condition with violation of semantic content (Seman-
tic); one with syntactic manipulation that shows a P600 effect
(Syntactic); and one with both semantic and syntactic violation
(Double). The conditions with semantic violation (Semantic
and Double) elicited an N400 effect relative the Control condi-
tion, whereas the conditions with syntactic violation (Syntactic
and Double) triggered a P600 effect.

In the second study (hereby Kim-05), from Kim & Osterhout
(2005), there are three conditions: Attractive, Non-attractive,
Control. In experimental conditions the animacy of the subject
is violated. Additionally, the semantic association between
subject and target verb is manipulated such that subject and
verb could form a plausible event (in Attractive condition) or
not (in Non-attractive). While Attractive condition elicited a
greater P600 response compared to the control condition, the
Non-attractive condition elicited a greater N400.

The third study (hereby Ito-16) from Ito et al. (2016) in-
cludes four conditions. The three experimental conditions
all change one target word in the Control condition into a
semantically implausible one. In Semantic-related condition,
the semantic violation is semantically related to the target in
Control condition. In Form-related condition, the semantic
error shares orthographic form with the Control target. In
Unrelated condition, the violation is not related to the target in
the Control condition. All three experimental manipulations
triggered N400 effects. In addition, the size of N400 effect to
semantically related violation was reduced, and form-related
violation triggered a P600 effect as well.

The last experiment (hereby Ryskin-21) from Ryskin et al.
(2021) has four conditions, one with a semantic violation (Se-
mantic), one with a syntactic violation (Syntactic), one seman-
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Experiment Condition Sentence Empirical ERP

AD-98

Syntactic The victims reported robbery markets. P600
Semantic The victims reported robbery to water. N400
Double The victims reported robbery water. Biphasic
Control The victims reported robbery to markets. NA

Kim-05
Attractive The hearty meal was devouring. . . P600
Non-attractive The dusty tabletop was devouring. . . N400
Control The hearty meal was devoured. . . NA

Ito-16

Semantic-related The student is going to the library to borrow a page. . . Reduced N400
Form-related The student is going to the library to borrow a hook. . . Biphasic
Unrelated The student is going to the library to borrow a sofa. . . N400
Control The student is going to the library to borrow a book. . . NA

Ryskin-21

Semantic The storyteller could turn any incident into an amusing hearse. N400
Syntactic The storyteller could turn any incident into an amusing anecdotes. P600
Recoverable The storyteller could turn any incident into an amusing antidote. Biphasic
Control The storyteller could turn any incident into an amusing anecdote. NA

Table 1: List of conditions, sample sentences and ERP patterns in dataset.

tic critical condition (Recoverable) with a semantic violation
which could be attributed to noise, and a control sentence
without any error (Control). In the N400 time window, there
is a significant N400 effect in Semantic and Recoverable con-
ditions, where the N400 effect in Recoverable condition is
reduced. In the P600 time window, there is a significant P600
effect in Syntactic and a smaller but significant P600 effect in
Recoverable condition (see Fig. 4b).

Free parameters
We have two free parameters in the model: an experiment-
dependent parameter λ that reflects variations in experimental
set-up, and an experiment-independent parameter γ that ac-
counts for relative importance of semantic and form similarity
between heuristic and true interpretations.

We first set γ to be 1 and explored the effect of λ with a grid
search from 100 to 600, with a step size of 10, and with two
marginal conditions (λ = 0 and λ = 1000). When λ = 0, the
heuristic surprise is the surprisal of the most predictable word
given the context, regardless of the true target received. As
λ increases, it becomes more difficult to do error correction,
resulting in an increased heuristic surprise and a decreased
discrepancy signal. For each experiment, we selected the λ

based on visual inspection of the simulated ERP pattern. Ta-
ble 2 shows a list of λ values used in simulating the presented
results. This parameter reflects experiment-specific tendency
to arrive at a heuristic interpretation that is different from
literal input. Many factors have been reported to affect the
size of N400/P600 effect, including the proportion of plau-
sible/implausible sentences in the stimuli, the nature of task
demands and presentation latency (Gunter et al., 1997; Hahne
& Friederici, 1999; Zwaan & Radvansky, 1998; Chow et al.,
2018).

Next, having set λ to the values, we performed a grid search

AD-98 Kim-05 Ito-16 Ryskin-21

λ 180 150 590 320

Table 2: λ values across experiments

of γ from 0 to 1 with a step size of 0.1. We did another round
of visual inspection of the simulated ERP patterns and selected
γ = 0.8 for all experiments.

Qualitative results

Fig. 3a shows the simulated ERP patterns in AD-
98 (Ainsworth-Darnell et al., 1998). As expected, our model
successfully simulated a larger N400 effect in conditions
where there is a semantic violation (Semantic and Double
conditions), and a larger P600 effect in Syntactic and Double
conditions. However, we want to acknowledge that model
might have underestimated the size of P600 effect in Double
condition, due to our generation of alternatives with GPT-3.
In our prompt design, GPT-3 is only incentivized to correct
sentence if the correction could form a plausible interpreta-
tion with a small number of edits, but unlikely to dissociate
semantic and syntactic violations and correct syntactic viola-
tions. For example, GPT-3 corrected the sentence with double
violation“The victim reported the robbery markets” into “The
victim reported the robbery masterminds” instead of “The vic-
tim reported the robbery to markets”. Therefore, our heuristic
words w generated by GPT-3 tend to remain the same as orig-
inal input, and does not reflect the distribution of heuristic
interpretations in humans.

Fig. 3b shows N400 and P600 effects in Kim-05 (Kim
& Osterhout, 2005). Consistent with human experimental
results, the model simulated a greater N400 amplitude to Non-
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(a) AD-98 (Model)

(b) Kim-05 (Model)

(c) Ito-16 (Model)

Figure 3: N400 (left) and P600 (right) amplitudes from model
simulation in (a) AD-98 (upper), (b) Kim-5 (middle) and (c)
Ito-16 (bottom). Blue * indicates a significant N400 effect in
the human experiment, and orange * indicates a significant
P600 effect

attractive animacy violation, and a greater P600 response
in Attractive condition, relative to Control condition. The
success of the model relies on the fact that a larger proportion
of sentences in Attractive condition have been error corrected
to more plausible heuristic alternatives than in Non-attractive
condition.

In Ito-16 (Ito et al., 2016) (see Fig. 3c), the model correctly
predicts an N400 effect in Form-related, Semantic-related and
Unrelated conditions, relative to Control conditions, and a
P600 effect in Form-related condition. Importantly, consis-
tent with human ERP patterns, the N400 effect is reduced for
Semantic-related and Form-related conditions, where N400 ef-
fect to Semantic-related conditions being smallest. Our results
provide convincing and distinct explanation for observed ERP
effects in Semantic-related and Form-related conditions. In
the Semantic-related condition, the semantic similarity term
s(x,w) prevents semantic-related words to be corrected into

plausible targets. The N400 reduction for semantic-related
words is induced by associative pre-activation the semantic
meaning, as reflected in the reduction of veridical surprisal of
target word. In contrast, in the Form-related condition, the
phonological distance term d(x,w) encourages form-related
errors to be corrected. The N400 reduction in the Form-related
condition is a result of assigning a more plausible interpre-
tation to errors similar to the true prediction in the surface
form.

Quantitative Validation
We performed a quantitative analysis on the Ryskin-21
dataset (Ryskin et al., 2021). Fig. 4a shows the model simu-
lated ERP effects across conditions, and Fig. 4b shows empiri-
cal ERP effects in human experiments. The model successfully
simulates an N400 for semantic violations, a P600 effect for
syntactic violations, and a biphasic effect for recoverable se-
mantic violations. More importantly, the model tracks the
order of magnitude of N400 and P600 effects, with a greater
N400 effect in Semantic than Syntactic condition, and a greater
P600 effect in Syntactic than Recoverable condition.

(a) Model

(b) Human

Figure 4: N400 (left) and P600 (right) amplitudes from model
simulation (upper) and from human ERP experiments (lower)
in Ryskin-21. Blue * indicates a significant N400 effect in the
human experiment, and orange * indicates a significant P600
effect.

We statistically confirmed the relationship between the em-
pirical ERP amplitudes (N400 and P600) and our information-
theoretic measures (heuristic surprise A and discrepancy sig-
nal B) in maximal linear mixed-effects models including by-
subject and by-item intercepts and slopes (Barr et al., 2013).
We use heuristic surprise as a single predictor to predict ERP
amplitude in the N400 time window, and discrepancy signal
to predict ERP amplitude in the P600 time window. We addi-
tionally include two models where veridical surprisal is used
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to predict N400 and P600 amplitude as a comparison. The
models have by-subject and by-item random intercept and
slopes. The operationalization of N400 and P600 amplitude is
based on analysis in original studies (Ryskin et al., 2021). We
selected averaged ERP amplitudes from eight central-parietal
electrodes, and averaged across 300-500ms N400 time win-
dow and 600-800 P600 time window. The surprisal of target
word is calculated with GPT-2.

Table 3 shows the results. We find a significant main effect
of heuristic surprise on N400 amplitude (t =−6.77, p < .01),
and a significant main effect of discrepancy signal on P600 am-
plitude (t = 2.88, p < .01). In comparison, we find no signifi-
cant effect of veridical surprisal on P600 (t = 0.20, p = 0.20),
suggesting that our proposed decomposition of surprisal pro-
vides a better fit of the overall ERP components than veridical
surprisal alone. This finding is not contradictory to the fact that
veridical surprisal calculated with large-scale pre-trained lan-
guage models can predict N400 effects in many cases (Frank et
al., 2015; Michaelov et al., 2021; Michaelov & Bergen, 2020):
In many cases, heuristic surprisal and veridical surprisal are
similar.

N400 P600

heuristic surprise verid. surprisal discrepancy signal verid. surprisal

-0.68 (-6.77**) -0.59 (-5.78***) 0.59 (2.88**) 0.02 (0.20)

Table 3: The effects of veridical surprisal St (the surprisal of
the veridical input xt given veridical context x<t ), heuristic sur-
prise A (the average surprisal of the heuristic inputs wt given
heuristic contexts w<t ), and discrepancy signal B on ERP am-
plitudes in the N400 and P600 time range in the experiment
from (Ryskin et al., 2021). Numbers are β values (t-values).
p < 0.05*, p < 0.01**, p < 0.001***. A negative effect in
the N400 range indicates the standard N400 effect; a positive
effect in the P600 range indicates the standard P600 effect.

Discussion
The functional interpretation of N400 and P600 has been a
central debate in psycholinguistics. We presented a neuro-
computational model of N400 and P600 ERP components in
language processing. We modeled the ERP components based
on a generalized theory of surprisal. We argue that surprisal of
word can be decomposed into two parts— a heuristic surprise
and a discrepancy signal, which correspond to N400 and P600
respectively. The two measures have a clear cognitive interpre-
tation. The heuristic surprise signals the processing difficulty
associated with the information provided by the heuristic word,
and the discrepancy signal represents the effort of error identi-
fication and correction. We derive the distribution on heuristic
interpretations via noisy-channel inference, and implement it
with large-scale language models. Our model can not only
simulate ERP patterns featuring a variety of linguistic manipu-
lation, but also track the amplitude of N400 and P600 at the
item level.

What distinctive characteristics contributes to the success
of our model? How is our model related to a broader ERP
landscape? Our model assumes a heuristic interpretation stage
in language processing. Both behavioral and neural studies
have suggested that comprehenders might use shallow and
heuristic cues to form a plausibility-based “good-enough” in-
terpretation (Ferreira et al., 2002). However, the nature of
the heuristic interpretation and the strategies use of linguistic
cues has been under-specified. The noisy-channel model for
heuristic interpretations abstracts away how different linguis-
tic cues are weighted and combined by evaluating the heuristic
interpretation based on a balance between prior belief and its
divergence with new evidence. Furthermore, we leverage re-
cent computational models from the field of natural language
processing to implement our theory, which allows us to take
into account the statistical variations in real experimental in-
puts. While our implementation of heuristic interpretation
provides a good fit to empirical data, we want to acknowledge
that this model is on a computational level, and further work
could be done on the precise algorithmic nature of the heuristic
interpretation generation process.

Our model interprets the N400 signal as an index of con-
textualized word processing difficulty over heuristic interpre-
tations. Theoretical views of N400 have diverged in whether
N400 indexes pre-activation of upcoming linguistic inputs,
or integration effort of the target word given previous rep-
resentation, or a combinatory process of both (see Kutas &
Federmeier, 2011, for more discussion). Our use of contextu-
alized word probability metrics is compatible with all these
theoretical perspectives, and also consistent with other com-
putational work on N400 (Rabovsky et al., 2018; Brouwer
et al., 2017, 2021; Fitz & Chang, 2019; Li & Ettinger, 2023;
Michaelov & Bergen, 2020; Michalon & Baggio, 2019). More
importantly, our model argues that N400 is associated with
cognitive processes on a heuristic representation that could
differ from the true literal meaning of the input. This allows
our model to provide good predictions of emerging experimen-
tal evidence on N400 blindness to semantic anomalies with
a plausible alternative (Chow et al., 2016; Kim & Osterhout,
2005; Kuperberg, 2016; Van Herten et al., 2006).

Our model hypothesizes that P600 indexes the effort of con-
flict resolution or discourse update between inferred heuristic
interpretation and the true literal interpretation, in line with
multiple strands of theoretical frameworks (Kim & Osterhout,
2005; Van Herten et al., 2005; Leckey & Federmeier, 2020;
Van Petten & Luka, 2012). Our model argues that syntactic
and semantic P600 operate under the same cognitive mecha-
nisms of belief update with respect to previous interpretations.

Our model links neural signatures to behavioral measures
via Surprisal Theory. Our model predicts that N400 and
P600 index different aspects of processing difficulties, and
the summed ERP amplitudes correspond to word process-
ing difficulties indexed by other behavioral measures such as
reading time. The work calls for co-registration of brain and
behavioral experiments.
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