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1 Introduction

This paper presents a dynamic political economy theory of public spending, taxation and debt.

The theory is designed to shed light on fiscal policy in political systems in which legislators have

primary loyalty to the districts they represent as opposed to a national political party. The theory

yields positive predictions concerning the dynamic evolution of public debt, taxation, and the

allocation of public revenues between national public goods and pork-barrel spending. It also

provides predictions concerning the size of the coalitions that pass legislation. Furthermore, the

theory delivers insights into the normative performance of political decision-making and the case

for fiscal restraints in the form of balanced budget requirements.

The theory considers a political jurisdiction in which policy choices are made by a legislature

comprised of representatives elected by single-member, geographically-defined districts. The leg-

islature can raise revenues in two ways: via a proportional tax on labor income and by borrowing

in the capital market. Borrowing takes the form of issuing one period bonds. The legislature

can also purchase bonds and use the interest earnings to help finance future public spending if

it so chooses. Public revenues are used to finance the provision of a public good that benefits

all citizens and to provide targeted district-specific transfers, which are interpreted as pork-barrel

spending. The value of the public good to citizens is stochastic, reflecting shocks such as wars or

natural disasters. The legislature makes policy decisions by majority (or super-majority) rule and

legislative policy-making in each period is modelled using the legislative bargaining approach of

Baron and Ferejohn (1989). The level of public debt acts as a state variable, creating a dynamic

linkage across policy-making periods.

There exists a unique political equilibrium and the equilibrium distribution of public debt

converges to a unique invariant distribution. There are two regimes of government policy-making:

business-as-usual (BAU) in which legislators bargain over the allocation of pork and responsible-

policy-making (RPM) in which legislators choose to forsake their parochial interests for the national

good. In the BAU regime, the level of public debt and the tax rate are state independent. Public

good spending is responsive to changes in the value of the public good, but these spending changes

are financed entirely by adjustments in pork-barrel spending. Legislation is passed by minimum

winning coalitions. In the RPM regime, legislators allocate all revenues to providing the public

good and servicing the debt. No pork is provided and legislation is passed unanimously. Changes
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in the value of the public good lead to changes in taxes and debt as well as public good spending.

The prevailing regime is determined by both the current stock of public debt and the value

of the public good. Specifically, there is a cut-off value of the public good that is decreasing in

the stock of debt. Below this cut-off the legislature is in the BAU regime, while above it RPM

prevails. The structure of the equilibrium reflects the fact that revenues are costly to raise since

they must ultimately be financed by distortionary income taxation. When the value of the public

good and/or the stock of debt to be repaid is high, the opportunity cost of allocating revenues to

pork-barrel spending is large and hence legislators refrain from such spending.

Transitions between the two regimes are brought about by shocks in the value of the public

good. Periods of BAU are brought to an end by a high realization of the value of the public good.

This triggers an increase in public debt and taxes to finance higher public good spending as well

as a cessation of pork-barrel spending. Once in the RPM regime, further high realizations of the

value of the public good result in additional increases in debt and taxes. The economy returns

to BAU only after a suitable sequence of low realizations of the value of the public good. The

larger the amount of public debt that has been built up, the greater the expected time before

returning to BAU. In this way, the economy cycles through periods of BAU and periods of RPM.

Both policy-making regimes are persistent in the sense that the probability of remaining in them

is greater than the probability of transitioning from them.

When the level of public debt chosen in the BAU regime is positive, the economy is in perpetual

deficit, with the extent of the deficit spiking up after a sequence of high values of the public good.

However, legislators do not necessarily borrow in the BAU regime. In some environments, they

purchase bonds with the aim of financing future public good spending with the interest earnings.

In such environments, the government will run budget surpluses in the BAU regime and deficits

will arise only after a suitably long sequence of high public good values. The key feature of the

environment determining whether the legislature borrows or saves in the BAU regime is the size of

the tax base relative to the economy’s desired public good spending. Paradoxically, it is economies

with relatively large tax bases that experience perpetual deficits.

With respect to citizen welfare, the equilibrium policy choices generate a strictly lower level of

utility than those that would be made by a benevolent planner. The planning solution involves

the government gradually accumulating a stock of bond holdings sufficient to allow it to finance

first best public good provision in all states, without income taxation (Aiyagari et al (2002)). By
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contrast, in equilibrium, the level of public debt never converges to a deterministic steady state

and is bounded below by the level of debt that legislators choose in the BAU regime. Even when

this is negative, so that legislators acquire bonds in the BAU regime, these bond holdings are

insufficient to finance first best public good provision in all states. Thus, in equilibrium, taxes are

too high and public good provision too low in the long run. Moreover, taxes are too volatile.

The theory also has implications for the desirability of balanced budget requirements. We study

a fiscal restraint that requires the legislature to ensure that tax revenues equal public spending

in every period. We suppose the government initially has no debt, so that under the restraint

spending is just on public goods and transfers. We ask when will citizens’ welfare be enhanced by

the constraint that public spending be financed solely by tax revenues? The key determinant of

the desirability of a balanced budget requirement is again the size of the tax base relative to the

economy’s desired public good spending. When the tax base is relatively large, a balanced budget

requirement will enhance citizen welfare, but when it is relatively small, the opposite conclusion

applies.

The organization of the remainder of the paper is as follows. In the next section we discuss

related literature. Section three presents the model. Section four characterizes the political

equilibrium and develops the positive predictions of the theory. Section five studies the efficiency

of political equilibrium and section six studies the desirability of a balanced budget requirement.

Section seven offers a brief conclusion. The Appendix contains the proofs of the propositions.

2 Related literature

Our theory builds on the well-known tax smoothing theory of fiscal policy stemming from Barro

(1979). According to this view, the government should use budget surpluses and deficits as a

buffer to prevent tax rates from changing too sharply. Thus, the government should run a deficit

in times of high government spending needs and a surplus when needs are low. Underlying this

theory are the assumptions that government spending needs fluctuate over time and that the

deadweight costs of income taxes are a convex function of the tax rate.

In an important paper, Aiyagari et al (2002) point out that the tax smoothing logic does not

necessarily imply the counter-cyclical theory of deficits and surpluses that it had been presumed

to. In the absence of “ad hoc” limits on government bond holdings, they prove that in some
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environments the optimal policy is for the government to gradually acquire sufficient bond holdings

so as to eventually be able to finance any level of spending with the interest earnings from these

holdings. This permits the financing of government spending without distortionary taxation.

Interest earnings in excess of spending needs are rebated back to citizens via lump-sum transfers.

The economic environment underlying our theory is similar to that in Aiyagari et al (2002).1

The only differences are (i) that we specify a stochastic value of public goods as opposed to a

stochastic government spending level and (ii) that we include district-specific transfers in the policy

space. Our main departure from the tax smoothing literature is that policy decisions are made by

a legislature of elected representatives rather than a benevolent planner. This innovation produces

a theory of fiscal policy consistent with the original intuitions from the literature, but without

ad hoc limits on government bond holdings. Thus, while the optimal policy in our environment

involves the government gradually acquiring sufficient bond holdings to finance all spending needs

with interest earnings, in political equilibrium the level of public debt fluctuates in accordance

with the value of the public good and serves to smooth income taxes.

Our theory also relates to the political economy of deficits literature.2 A key theme of this

literature is that deficits can arise because of “redistributive uncertainty” (Alesina and Tabellini

(1990), Lizzeri (1999)).3 Such uncertainty arises when citizens do not know whether they will

benefit from redistributive transfers in the future. When faced with such uncertainty, citizens

will favor the transfer of resources from the future to the present if they are certain that these

resources will be used to their benefit. This can result in deficits. In our model, legislators face

uncertainty as to whether in the next period they will be in the BAU or RPM regimes. In addition,

conditional on being in the BAU regime, they face uncertainty as to whether they will be included

in the minimum winning coalition of districts that receive pork. This redistributive uncertainty

means that if those legislators who are currently in the minimum winning coalition could simply

1 Following Lucas and Stokey (1983), Aiyagari et al (2002) consider an infinite-horizon general equilibrium model
with no capital, a linear tax on labor income, and stochastic government expenditures. Their model departs from
Lucas and Stokey in assuming that the government cannot issue state-contingent debt.

2 For more on this literature see Alesina (2000), Alesina and Perotti (1995), Persson and Svensson (1989), and
Persson and Tabellini (2000).

3 More generally, such redistributive uncertainty can explain many inefficient decisions in dynamic political
economy models. For example, public investments that are potentially Pareto improving may not be undertaken
because those currently holding political power are uncertain as to whether those holding political power in the
future will share the fruits of the investment (Besley and Coate (1998)). For further discussions of political failure
in dynamic models see Acemoglu (2003), Besley and Coate (1998), Coate and Morris (1999) and Hassler et al
(2003).
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transfer a dollar costlessly from the future to the present period, they would want to do so. This in

turn explains why it is the case that the equilibrium level of public debt (even when it is negative)

is always above the efficient level.

The contribution of our paper relative to the political economy of deficits literature is that

we imbed a sophisticated model of political decision-making into a dynamic general equilibrium

model that incorporates the key assumptions of the tax smoothing literature. Thus, our underlying

economic model incorporates an infinite horizon, stochastic public good preferences, distortionary

income taxation, district-specific transfers, and public debt. This allows us to integrate the polit-

ical economy and tax smoothing literatures by developing a theory of fiscal policy with a rich set

of economic and political predictions. Moreover, the theory permits a welfare analysis of both the

efficiency properties of equilibrium and the case for fiscal restraints.4

Finally, our paper relates to the literature on the efficiency of legislative policy-making in

political systems in which legislators have geographically-defined constituencies. In a well-known

paper, Weingast, Shepsle and Johnsen (1981) argue that pork-barrel spending will lead to a

government that is too large. They do not model the process of passing legislation, assuming

instead that legislative policy-making is governed by a “norm of universalism”. Under this norm,

each legislator unilaterally decides on the level of spending he would like on projects in his own

district and the aggregate level of taxation is determined by the need to balance the budget.

Policy-making then becomes a pure common pool problem. A number of authors have argued

that this common pool logic may also explain budget deficits - see, for example, Inman (1990)

and von Hagen and Harden (1995). Velasco (2000) formally models the accumulation of public

debt as a dynamic common pool problem. While there is no social role for debt in his model,

he demonstrates the existence of an equilibrium in which deficits and debt accumulation continue

unabated until the government’s debt ceiling is reached.

A number of papers study the efficiency of legislative policy-making using the legislative bar-

4 Lizzeri (1999) considers a two period model with one good and Downsian political competition in each period.
Social welfare is unaffected by the allocation of resources across the periods. Alesina and Tabellini (1990) study the
steady states of an infinite horizon model in which in each period two political parties hold office with exogenous
probability. There are two goods that may be publicly-provided, but each party’s constituency values only one.
Accordingly, the goods can be thought of as transfers targeted to the two parties’ constituencies. Taxes are
distortionary. In each period, the winning party chooses taxes, debt and how much to spend on the publicly
provided good that its constituency cares about. Our model generalizes this set-up in two key ways. First, we
have n political decision makers with distinct constituencies who must collectively choose policy in each period via
majority rule. Second, we have a national public good with stochastic value as well as targeted transfers. The
latter assumption creates a tax smoothing role for debt.
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gaining approach employed in this paper. Baron (1991) shows that legislators may propose projects

whose aggregate benefits are less than their costs, when these benefits can be targeted to particular

districts. Related models are elaborated by Persson and Tabellini (2000) and Austen-Smith and

Banks (2005). LeBlanc, Snyder and Tripathi (2000) argue that legislatures will under-invest in

public goods. They make their argument in the context of a finite horizon model in which in each

period a legislature allocates a fixed amount of revenue between targeted transfers and a public

investment that serves to increase the amount of revenue available in the next period. In a paper

that lays some of the analytical ground work for the theory presented in this paper, Battaglini and

Coate (2005) develop an infinite horizon model of legislative policy-making in which the legislature

can raise revenues via a distortionary income tax and these revenues can be used to finance invest-

ment in a national public good and pork-barrel spending. They explore the dynamics of legislative

policy choices, focusing on the efficiency of the steady state level of taxation and the allocation of

tax revenues between pork and investment. They obtain conditions under which the equilibrium

size of government is too large and the level of public goods too low. However, they also show

that there are conditions under which legislative decisions are efficient and/or government is too

small. In contrast to the present paper, there is no public debt, and it is investment in the public

good that creates the dynamic linkage across policy-making periods. Moreover, the value of the

public good is deterministic.

3 The model

A continuum of infinitely-lived citizens live in n identical districts indexed by i = 1, ..., n. The size

of the population in each district is normalized to be one. There are three goods - a public good

g; consumption z; and labor l. The consumption good is produced from labor according to the

technology z = wl and the public good can be produced from the consumption good according

to the technology g = z/p. Each citizen’s per period utility function is z +Agα − l(1+1/ε)

ε+1 , where

α ∈ (0, 1) and ε > 0. The parameter A measures the relative importance of the public good to

the citizens. Citizens discount future per period utilities at rate δ.

The assumptions on technology imply that the competitive equilibrium price of the public

good is p and the wage rate is w. Moreover, the quasi-linear utility specification implies that the

interest rate is ρ = 1/δ − 1. At this interest rate, citizens will be indifferent as to their allocation

of consumption across time and hence their welfare will equal that which they would obtain if
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they simply consumed their net earnings each period. At wage rate w, each citizen will work an

amount l∗(w) = (εw)ε in each period, so that ε is the elasticity of labor supply. The associated

per period indirect utility function is given by

u(w, g;A) =
εεwε+1

ε+ 1
+Agα. (1)

The value of the public good varies across periods in a random way, reflecting shocks to the

society such as wars and natural disasters. Specifically, in each period, A is the realization of a

random variable with range [A,A] (where 0 < A < A) and cumulative distribution function G(A).

The function G is continuously differentiable and its associated density is bounded uniformly

below by some positive constant ξ > 0, so that for any pair of realizations such that A < A0, the

difference G(A0)−G(A) is at least as big as ξ(A0−A). Thus, G assigns positive probability to all

nondegenerate sub-intervals of [A,A].

Public decisions are made by a legislature consisting of representatives from each of the n

districts. One citizen from each district is selected to be that district’s representative. Since all

citizens are the same, the identity of the representative is immaterial and hence the selection

process can be ignored. The legislature meets at the beginning of each period. These meetings

take only an insignificant amount of time, and representatives undertake private sector work in

the rest of the period just like everybody else. The affirmative votes of q ≤ n representatives are

required to enact any legislation.

The legislature can raise revenues in two ways: via a proportional tax on labor income and

via borrowing in the capital market. Borrowing takes the form of issuing one period bonds with

interest rate ρ.5 Thus, if the government borrows an amount b in period t, it must repay

b(1 + ρ) in period t + 1. Public revenues can be used to finance the provision of public goods

but can also be diverted to finance targeted district-specific transfers, which are interpreted as

(non-distortionary) pork-barrel spending.6 The legislature can also hold bonds if it so chooses,

so that b can be negative.

To describe how legislative decision-making works, suppose the legislature is meeting at the

beginning of a period in which the current level of public debt is b and the value of the public

5 Thus we do not consider state-contingent debt as in Lucas and Stokey (1983). We feel that this is the
appropriate assumption for a positive analysis.

6 The district-specific transfers could be either direct grants to particular localities or earmarks for specific public
projects that the districts would undertake anyway. In the latter case, the earmarks would be non-distortionary
and equivalent to a direct transfer.
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good is A. One of the legislators is randomly selected to make the first policy proposal, with

each representative having an equal chance of being recognized. A proposal is described by an

n+3-tuple {r, g, x, s1, ...., sn}, where r is the income tax rate; g is the amount of the public good

provided; x is the proposed new level of public debt; and si is the proposed transfer to district i’s

residents. The revenues raised under the proposal are x+R(r) where

R(r) = nrwl∗(w(1− r)) = nrw(εw(1− r))ε, (2)

denotes the tax revenue function. The proposal must satisfy the budget constraint that revenues

must be sufficient to cover expenditures. Letting

B(r, g, x; b) = x+R(r)− pg − (1 + ρ)b (3)

denote the difference between revenues and spending on public goods and debt repayment, this

requires that B(r, g, x; b) ≥
X

i
si. The set of constraints is completed by the non-negativity

constraints that si ≥ 0 for each district i (which rules out financing public spending via district-

specific lump sum taxes).

If the first proposer’s plan is accepted by q legislators, then it is implemented and the legislature

adjourns until the beginning of the next period. At that time, the legislature meets again with

the difference being that the initial level of public debt is x and there is a new realization of the

value of public goods. If, on the other hand, the first proposal is not accepted, another legislator is

chosen to make a proposal. There are T ≥ 2 such proposal rounds, each of which takes a negligible

amount of time. If the process continues until proposal round T , and the proposal made at that

stage is rejected, then a legislator is appointed to choose a default policy. The key restriction on

the choice of a default policy is that it must involve a uniform district-specific transfer.

There are limits on both the amount the government can borrow and the amount of bonds

it can hold. Thus, x ∈ [x, x] where x is the maximum amount that the government can borrow

and −x is the maximum amount of bonds that it can hold. The limit on borrowing is determined

by the unwillingness of borrowers to hold government bonds that they know will not be repaid.

If the government were borrowing an amount x such that the interest payments exceeded the

maximum possible tax revenues; i.e., ρx > maxr R(r), then it would be unable to repay the debt

even if it provided no public goods. Thus, the maximum level of debt is certainly less than this

level, implying that x ≤ maxr R(r)/ρ. In fact, we will assume that x is slightly smaller than
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maxr R(r)/ρ. This is because if x equals maxr R(r)/ρ then if government debt ever reached x it

would stay there forever, because the legislature could never pay it off. For our dynamic results,

it is convenient to assume away this (relatively uninteresting) possibility.

The limit on the amount of bonds that the government can hold is determined constitutionally.

The government is allowed to hold no more than the amount of bonds that would allow it to finance

the Samuelson level of the public good from interest earnings. Thus, x = −pgS(A)/ρ, where gS(A)

is the level of the public good that satisfies the Samuelson Rule when the value of the public good

is A.7 The Samuelson Rule is that the sum of marginal benefits equal the marginal cost, which

means that gS(A) satisfies the first order condition that nαAg
α−1 = p.

4 Political equilibrium

We look for a symmetric stationary equilibrium in which any representative selected to propose at

round τ ∈ {1, ..., T} of the meeting at some time t makes the same proposal and this depends only

on the current level of public debt (b) and the value of the public good (A). Such an equilibrium is

characterized by a collection of functions: {rτ (b,A), gτ (b,A), xτ (b,A), sτ (b,A)}Tτ=1. Here rτ (b,A)

is the income tax rate that is proposed at round τ when the state is (b,A); gτ (b,A) is the level of

the public good; and xτ (b,A) is the new level of public debt. The proposer also offers a transfer

of sτ (b,A) to the districts of q − 1 randomly selected representatives where (recall) q is the size

of a minimum winning coalition.8 Any remaining surplus revenues are used to finance a transfer

for the proposer’s own district. We focus, without loss of generality, on equilibria in which at each

round τ , proposals are immediately accepted by at least q legislators, so that on the equilibrium

path, no meeting lasts more than one proposal round. Accordingly, the policies that are actually

implemented in equilibrium are described by {r1(b,A), g1(b,A), x1(b,A), s1(b,A)}.

To be more precise, {rτ (b,A), gτ (b,A), xτ (b,A), sτ (b,A)}Tτ=1 is an equilibrium if at each

proposal round τ and all states (b,A), the equilibrium proposal maximizes the proposer’s payoff

subject to the incentive constraint of getting the required number of affirmative votes and the

appropriate feasibility constraints. To state this more formally, let v1(b,A) denote the legislators’

7 The substantive conclusions of the paper would be unaffected by assuming that the government could hold
more bonds than this or even that there was no upper limit on government bond holdings. It is, however, important
for our conclusions concerning the nature of the planner’s solution that the government can hold at least this level
of bonds (see Aiyagari et al (2002)).

8 It should be clear that there is no loss of generality in assuming that the proposer only offers transfers to q−1
representatives.
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round one value function which describes the expected future payoff of a legislator at the beginning

of a period in which the state is (b,A). In addition, let vτ+1(b,A) denote the expected future payoff

of a legislator in the out-of-equilibrium event that the proposal at round τ is rejected. Then, for

each proposal round τ and all states (b,A), (rτ (b,A), gτ (b,A), xτ (b,A), sτ (b,A)) must solve the

problem

max
(r,g,x,s)

u(w(1− r), g;A) +B(r, g, x; b)− (q − 1) s+ δEv1(x,A
0)

s.t. u(w(1− r), g;A) + s+ δEv1(x,A
0) ≥ vτ+1(b,A),

B(r, g, x; b) ≥ (q − 1)s, s ≥ 0 & x ∈ [x, x].

(4)

The first constraint is the incentive constraint and the remainder are feasibility constraints.

The legislators’ round one value function is defined recursively by

v1(b,A) = u(w(1− r1(b,A)), g1(b,A);A) +
B(r1(b,A), g1(b,A), x1(b,A); b)

n
+ δEv1(x1(b,A), A

0).

(5)

To understand this recall that a legislator is chosen to propose in round one with probability 1/n.

If chosen to propose, he obtains a payoff in that period of

u(w(1− r1(b,A)), g1(b,A);A) +B(r1(b,A), g1(b,A), x1(b,A); b)− (q − 1)s1(b,A). (6)

If he is not chosen to propose, but is included in the minimum winning coalition, he obtains u(w(1−

r1(b,A)), g1(b,A);A)+s1(b,A) and if he is not included he obtains just u(w(1−r1(b,A)), g1(b,A);A).

The probability that he will be included in the minimum winning coalition, conditional on not

being chosen to propose, is (q−1)/(n−1). Taking expectations, the pork barrel transfers s1(b,A)

cancel and the period payoff is as described in (5).

For all proposal rounds τ = 1, .., T − 1 the expected future payoff of a legislator if the round τ

proposal is rejected is

vτ+1(b,A) = u (w(1− rτ+1(b,A)), gτ+1(b,A);A) + B(rτ+1(b,A),gτ+1(b,A),xτ+1(b,A);b)
n

+δEv1(xτ+1(b,A), A
0).

(7)

This reflects the assumption that the round τ + 1 proposal will be accepted. Recall that if the

round T proposal is rejected, the assumption is that a legislator is appointed to choose a default
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tax rate, public goods level, level of debt and a uniform transfer. Thus,

vT+1(b,A) = max
(r,g,x)

½
u(w(1− r), g;A) + B(r, g, x; b)

n
+ δEv1(x,A

0) : B(r, g, x; b) ≥ 0 & x ∈ [x, x]
¾
.

(8)

Given an equilibrium {rτ (b,A), gτ (b,A), xτ (b,A), sτ (b,A)}Tτ=1, we call the interval of debt

levels [inf(b,A) x1(b,A), x] the policy domain. Levels of debt outside this range will never be ob-

served except when exogenously assumed at date zero. An equilibrium is said to be well-behaved

if the associated round one legislators’ value function satisfies the following three properties: (i)

v1 is continuous on the state space; (ii) for all A, v1(·, A) is concave on [x, x] and strictly concave

on the policy domain; and (iii) for all b, v1(·, A) is differentiable at b for almost all A. We will

restrict attention to well-behaved equilibria in what follows, showing that there exists a unique

such equilibrium. Henceforth when we refer to an equilibrium it should be understood to be well-

behaved. Finally, note that economy-wide aggregate utility in an equilibrium at the beginning of

some period in which the state is (b,A) is given by nv1(b,A). This follows from the fact that each

district has a population of size 1 and representatives obtain the same payoffs as their constituents.

4.1 The equilibrium policy proposals

The basic structure of the equilibrium policy proposals is easily understood. To get support for

his proposal, the proposer must obtain the votes of q − 1 other representatives. Accordingly,

given that utility is transferable, he is effectively making decisions to maximize the utility of q

legislators. The optimal policy will depend upon the state (b,A). If the level of public debt (b)

and/or the value of the public good (A) are sufficiently high, then even though the proposer is

only taking into account the well-being of q legislators, he will still not want to divert resources

to pork. Pork requires reducing public good spending or increasing taxation in the present or

the future (if financed by issuing additional debt). When b and/or A are sufficiently high, the

marginal benefit of spending on the public good and the marginal cost of increasing taxation are

both too high to make pork attractive. The proposer will therefore choose a policy package that

does not involve pork and the outcome will be as if he is maximizing the utility of the legislature

as a whole. If b and/or A are lower, then the opportunity cost of pork is lessened and the collective

utility of the q legislators will be maximized by diverting some resources to pork. Accordingly,

the proposer will propose pork for the districts associated with his minimum winning coalition.

In equilibrium, therefore, there will exist a cut-off value of the public good, inversely related
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to the level of public debt, that divides the state space into two ranges. Above the cut-off, the

legislature will be in the responsible-policy-making regime (RPM) and, in every proposal round,

the proposer will propose a no-pork policy package that maximizes aggregate legislator (and also

citizen) utility. These proposals will be supported by the entire legislature. Below the cut-off,

the legislature will be in the business-as-usual regime (BAU) and, in every proposal round the

proposer chooses a policy package that provides pork for his own district and those of a minimum

winning coalition of representatives. The tax rate-public good-public debt triple maximizes the

aggregate utility of q legislators, given that they appropriate all the surplus revenues. The transfer

paid out to coalition members is just sufficient to make them favor accepting the proposal. Thus,

only those legislators whose districts receive pork vote for these proposals.

To develop this more precisely, consider the problem of choosing the tax rate-public good-

public debt triple that maximizes the collective utility of q representatives under the assumption

that they divide any surplus revenues among their districts and that the constraint that these

revenues be non-negative is non-binding. Formally, the problem is:

max(r,g,x) u(w(1− r), g;A) + B(r,g,x;b)
q + δEv1(x,A

0)

s.t. x ∈ [x, x] .
(9)

Using the first-order conditions for this problem together with equations (1) and (2), it can easily

be verified that the solution is (r∗, g∗(A), x∗) where the tax rate r∗ satisfies the condition that

1

q
=
1

n
[

1− r∗
1− r∗(1 + ε)

], (10)

the public good level g∗(A) satisfies the condition that

αAg∗(A)α−1 =
p

q
, (11)

and the public debt level x∗ satisfies

1

q
≥ −δE[∂v1(x

∗, A0)

∂x
] (= if x∗ < x). (12)

To interpret these conditions, note that (1 − r)/(1 − r(1 + ε)) measures the marginal cost of

taxation - the social cost of raising an additional unit of revenue via a tax increase. It exceeds

unity whenever the tax rate (r) is positive, because taxation is distortionary. For a given tax

rate, the marginal cost of taxation is higher the more elastic is labor supply; that is, the higher

12



is ε. Condition (10) therefore says that the benefit of raising taxes in terms of increasing the

per-legislator transfer (1/q) must equal the per-capita cost of the increase in the tax rate (1 −

r)/n(1− r(1 + ε)). Condition (11) says that the per-capita benefit of increasing the public good

must equal the per-legislator reduction in transfers that providing the additional unit necessitates.

Condition (12) says that the benefit of increasing debt in terms of increasing the per-legislator

transfer must equal the per-capita cost of an increase in the debt level. This cost is that there is a

higher initial level of debt next period. This condition can hold as an inequality, if the debt level

is at its ceiling.

Now define the function A∗(b, x) as follows:

A∗(b, x) =

⎧⎪⎪⎨⎪⎪⎩
max{A : B(r∗, g∗(A), x; b) ≥ 0} if B(r∗, 0, x; b) ≥ 0

0 if B(r∗, 0, x; b) < 0

. (13)

Intuitively, A∗(b, x) is the largest value of A consistent with the triple (r∗, g∗(A), x) satisfying the

constraint that B(r∗, g∗(A), x; b) ≥ 0. It follows that if A ≤ A∗(b, x∗), the proposer proposes the

triple (r∗, g∗(A), x∗) together with a transfer just sufficient to induce members of the coalition to

accept the proposal and the legislature is in the BAU regime. If A > A∗(b, x∗), then the constraint

that B(r, g, x; b) ≥ 0 must bind and the solution equals that which maximizes aggregate legislator

utility. This follows from the observation that if the solution to the problem of maximizing the

utility of q representatives does not involve transfers, then this solution must also solve the problem

of maximizing the utility of n representatives. The legislature is therefore in the RPM regime.

Thus, we have:

Proposition 1: Let {rτ (b,A), gτ (b,A), xτ (b,A), sτ (b,A)}Tτ=1 be an equilibrium with associated

value function v1(b,A). Then, there exists some debt level x
∗ such that for any proposal round τ

if A > A∗(b, x∗)

(rτ (b,A), gτ (b,A), xτ (b,A)) = argmax

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEv1(x;A
0)

B(r, g, x; b) ≥ 0 & x ∈ [x, x]

⎫⎪⎪⎬⎪⎪⎭
and sτ (b,A) = 0, while if A ≤ A∗(b, x∗)

(rτ (b,A), gτ (b,A), xτ (b,A)) = (r
∗, g∗(A), x∗)
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and

sτ (b,A) =

⎧⎪⎪⎨⎪⎪⎩
B(r∗,g∗(A),x∗;b)

n if τ = 1, ...., T − 1

vT+1(b,A)− u(w(1− r∗, g∗(A);A)− δEv1(x
∗, A0) if τ = T

.

In the RPM regime (i.e., when A > A∗(b, x∗)), Proposition 1 implies that the equilibrium tax

rate-public good-public debt triple is implicitly defined by the following three conditions:

nαAgα−1 = p[
1− r

1− r(1 + ε)
], (14)

[
1− r

1− r(1 + ε)
] ≥ −δnE[∂v1(x,A

0)

∂x
] (= if x < x), (15)

and

B(r, g, x; b) = 0. (16)

Condition (14) says that the level of the public good should be such that the social marginal benefit

equals the price p times the marginal cost of taxation. The social benefit of raising additional

revenue by issuing more public debt is that it saves raising that revenue by taxes. Thus, condition

(15) says that the level of public debt should be such that the marginal social benefit of raising

public debt equals the expected marginal social cost. In the Appendix (section 8.2), we show that

in the RPM regime, the tax rate, public debt level, and the level of the public good all depend

positively on the value of the public good (A). In addition, the tax rate and level of public debt

depend positively on the current level of debt (b), while the level of the public good depends

negatively on b.

It is important to note that at A = A∗(b, x∗) the triple (r∗, g∗(A), x∗) maximizes aggregate

legislator utility. To see this, note that B(r∗, g∗(A), x∗; b) equals zero at A = A∗(b, x∗). Fur-

thermore, using the definition of r∗ in (10) we may write the first order conditions (11) and (12)

as

nαAg∗(A)α−1 = p[
1− r∗

1− r∗(1 + ε)
], (17)

and

[
1− r∗

1− r∗(1 + ε)
] ≥ −δnE[∂v1(x

∗, A0)

∂x
] (= if x∗ < x). (18)

Thus, the equilibrium policy proposal is a continuous function of the state (b,A). Moreover, given

the monotonicity properties of the solution in the RPM regime, it follows that when A > A∗(b, x∗),

14



the equilibrium policy proposal involves a tax rate higher than r∗, the provision of a public good

level below g∗(A), and a level of debt that exceeds x∗. The level of debt x∗ therefore forms a lower

bound on the government’s debt holdings.

Further progress can be made by characterizing the debt level x∗. Proposition 1 tells us that,

in equilibrium,

v1(x,A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
max{r,g,z}

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,z;x)

n + δEv1(z,A)

B(r, g, z;x) ≥ 0 & z ∈ [x, x]

⎫⎪⎪⎬⎪⎪⎭ if A > A∗(x, x∗)

u(w(1− r∗), g∗(A);A) + B(r∗,g∗(A),x∗;x)
n + δEv1(x

∗, A0) if A ≤ A∗(x, x∗)

.

(19)

Thus, by the Envelope Theorem:

∂v1(x,A)

∂x
=

⎧⎪⎪⎨⎪⎪⎩
−( 1−r1(x,A)

1−r1(x,A)(1+ε))(
1+ρ
n ) if A > A∗(x, x∗)

−( 1+ρn ) if A ≤ A∗(x, x∗)
. (20)

The discontinuity that arises in the derivative of the value function reflects the fact that a higher

future level of debt reduces pork if the legislature is in the BAU regime and increases taxes if the

legislature is in the RPM regime. Increasing taxes is more costly than reducing pork because of

the marginal cost of public funds.

Using (20), we have that the expected marginal social cost of debt is

−δnE[∂v1(x,A)
∂x

] = G(A∗(x, x∗)) +

Z A

A∗(x,x∗)

(
1− r1(x,A)

1− r1(x,A)(1 + ε)
)dG(A) (21)

Combining this with equations (10) and (18), the debt level chosen in the BAU range x∗ must

satisfy

n

q
≥ G(A∗(x∗, x∗)) +

Z A

A∗(x∗,x∗)

(
1− r1(x∗, A)

1− r1(x∗, A)(1 + ε)
)dG(A) (= if x∗ < x). (22)

Our assumption concerning the maximum debt level x implies that A∗(x, x) < A. Thus, since

taxes exceed r∗ in the RPM regime, the expected marginal social cost of debt must exceed n/q

when x∗ = x. It follows that x∗ < x and condition (22) holds as an equality.

Condition (22) provides important insights into the determinants of the debt level x∗. When

q < n, it implies that A∗(x∗, x∗) must lie strictly between A and A. Intuitively, this means that the

debt level x∗ must be such that the legislature will transition out of BAU with positive probability
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and stay in it with positive probability. Recall that A∗(x∗, x∗) is implicitly defined by the equation

R(r∗) − ρx∗ = pg∗(A). Thus, if R(r∗) > pg∗(A), interest payments must be positive to soak up

the excess tax revenues and hence x∗ is positive. On the other hand, if R(r∗) < pg∗(A), then

interest earnings are required to supplement scarce tax revenues and x∗ must be negative. The

key determinant of the magnitude of x∗ is therefore the size of the tax base as measured by R(r∗)

relative to the economy’s desired public good spending as measured by pg∗(A). The greater the

relative size of the tax base, the larger is the debt level chosen in the BAU regime.

4.2 Existence and uniqueness of equilibrium

The foregoing analysis of equilibrium policy proposals presumes that an equilibrium exists. The

key to validating this presumption is to demonstrate the existence of a round one value function

v1(b,A) with the desired properties. In general, establishing the existence of a value function

in dynamic games is much more difficult than establishing the existence of a value function for

a planner’s problem, because the equilibrium policy proposals do not necessarily maximize the

players’ value function. However, we can exploit the structure of the equilibrium unveiled in the

previous section to make the problem tractable.

To prove the existence of an equilibrium we start by defining F ∗ to be the set of all real valued

functions v defined over the state space that are continuous and concave in x for all A. Then, for

all z ∈ [x, x], we define an operator Tz on F ∗ as follows:

Tz(v)(b,A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEv(x,A0)

B(r, g, x; b) ≥ 0, g ≤ g∗(A), r ≥ r∗, & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭ (23)

Thus, given that future payoffs are described by δEv(x,A0), the problem is to maximize average

legislator utility, but subject to the constraint that the tax rate must be at least r∗, the public

debt level must be at least z and the public good level can be no more than g∗(A). By standard

arguments (see Stokey, Lucas and Prescott (1989)), Tz is a contraction and Tz(v) belongs to F
∗.

Thus, for all z, there exists a unique fixed point vz which is continuous and concave in x for all A.

From Proposition 1 and the subsequent discussion, it should be clear that if v1 is an equilibrium

round one value function and x∗ is the level of public debt that is chosen in the BAU regime, then

v1 = vx∗ . Moreover, it must be the case that x
∗ maximizes x/q + δEvx∗(x,A). The next step,
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therefore, is to define the correspondence

M(z) = argmax{x
q
+ δEvz(x,A)}, (24)

and to demonstrate that there exists z∗ such that z∗ belongs to M(z∗). We then show that

the policy functions associated with the value function vz∗ are unique and define an equilibrium.

Moreover, for all A, vz∗(·, A) is strictly concave on the policy domain [z∗, x] and for all x the

function vz∗(·, A) is differentiable at x for almost all A. In this way, we establish:9

Proposition 2: There exists an equilibrium.

Importantly, we can also prove that there can be at most one equilibrium. The argument

proceeds via contradiction. Suppose that there were two equilibria with associated round one

value functions v0 and v1. Let x∗0 and x
∗
1 be the corresponding debt levels chosen in the BAU

regimes associated with each equilibrium and suppose that x∗0 < x
∗
1. Then, we demonstrate that

it must be the case that for any ρ0 ∈ (0, ρ) and any x ∈ [x∗1, x]

−δnE[∂v
1(x,A)

∂b
] ≥ −δnE[

∂v0(x− x∗1−x∗0
1+ρ0 , A)

∂b
]. (25)

Thus, the expected marginal social cost of borrowing with an initial debt level x in the high debt

equilibrium exceeds that in the low debt equilibrium with an initial debt level x−(x∗1−x∗0)/(1+ρ0).

From equation (22), we know that the expected marginal social costs of borrowing at x∗1 and x
∗
0

respectively, must equal n/q; that is,

−δnE[∂v
1(x∗1, A)

∂b
] = −δnE[∂v

0(x∗0, A)

∂b
] =

n

q
. (26)

Combining these two equations, yields the conclusion that x∗0 ≥ x∗1 − (x∗1 − x∗0)/(1+ ρ0) - which is

a contradiction. In this way, we obtain:

Proposition 3: There exists at most one equilibrium.

4.3 Dynamics

Having understood the structure of equilibrium policy proposals and established the existence of

a unique equilibrium, we are now ready to explore the dynamic evolution of fiscal policy. We will

show that, irrespective of the economy’s initial debt level, the same distribution of debt emerges in

9 Our strategy for proving existence suggests a simple two-step algorithm to computing an equilibrium. First,
find the value function vz associated with each z. Then, solve for a fixed point of the correspondenceM(z) in [x, x].
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the long run. Moreover, this distribution of debt is non-degenerate: even in the long-run, shocks

in the value of the public good induce persistent cycles between the two policy-making regimes.

This is in sharp contrast to the planner’s solution for the economy in which, as we will show in the

next section, the level of debt converges to a unique degenerate value. Political decision-making

therefore fundamentally alters the dynamic pattern of fiscal policy.

Let {r1(b,A), g1(b,A), x1(b,A)} be the equilibrium round one policy functions and let x∗

be the level of public debt chosen in the BAU regime. The equilibrium policies determine a

distribution of public debt levels in each period. Let ψt(x) denote the distribution function of the

current level of debt at the beginning of period t. The distribution function ψ1(x) is exogenous

and is determined by the economy’s initial level of debt b0. To describe the distribution of debt

in periods t ≥ 2, we must first describe the transition function implied by the equilibrium. First,

define the function bA : [x, x]× (x∗, x]→ [A,A] as follows:

bA(b, x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A if x < x1(b,A)

min{A ∈ [A,A] : x1(b,A) = x} if x ∈ [x1(b,A), x1(b,A)]

A if x > x1(b,A)

. (27)

Intuitively, bA(b, x) is the smallest value of public goods under which the equilibrium debt level

would be x given an initial level of debt b. Then, the transition function is given by

H(b, x) =

⎧⎪⎪⎨⎪⎪⎩
G( bA(b, x)) if x ∈ (x∗, x]
G(A∗(b, x∗)) if x = x∗

. (28)

Intuitively, H(b, x) is the probability that in the next period the initial level of debt will be less

than or equal to x ∈ [x∗, x] if the current level of debt is b. Using this notation, the distribution

of debt at the beginning of any period t ≥ 2 is defined inductively by

ψt(x) =

Z
b

H(b, x)dψt−1(b). (29)

Our main interest is to understand how the equilibrium debt distribution evolves over time. In

particular, does it converge to some limit distribution? We say that the sequence of distributions

hψt(x)i converges to the distribution ψ(x) if for all x ∈ [x∗, x], we have that limt→∞ ψt(x) = ψ(x).10
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Moreover, ψ∗(x) is an invariant distribution if

ψ∗(x) =

Z
b

H(b, x)dψ∗(b). (30)

We can now establish:

Proposition 4: Let {r1(b,A), s1(b,A), g1(b,A), x1(b,A)} be the round one equilibrium policy func-

tions. Then, the implied sequence of debt distributions hψt(x)i converges to a unique invariant

distribution ψ∗(x).

Thus, no matter what the economy’s initial debt level, the same distribution of debt emerges

in the long run. The lower bound of the support of this distribution is x∗ - the level of public

debt chosen in the BAU regime. There is a mass point at this debt level, since the probability of

remaining at x∗ having reached it is G(A∗(x∗, x∗)) - which is positive. However, the distribution

of debt is non-degenerate because there is a positive probability of leaving the BAU regime (since

G(A∗(x∗, x∗)) < 1). If x∗ is positive, the economy is in perpetual deficit, with the extent of the

deficit spiking up after a sequence of high values of the public good. When x∗ is negative, the

government will run budget surpluses in good times (i.e., when A is low) and deficits only after a

suitable sequence of high realizations of the value of the public good.

To get an intuitive feel for the long run dynamics of the system, suppose that the legislature

is in the BAU regime in period t − 1, implying that the level of debt is x∗ at the beginning of

period t. If At is less than A
∗(x∗, x∗), then the legislature remains in BAU in period t. The tax

rate will be r∗ and the amount of public good provided will be g∗(At). Government debt will be

just rolled over and expenditures on pork will be R(r∗) − pg∗(At) − ρx∗. On the other hand, if

At exceeds A
∗(x∗, x∗), then the legislature will transition to RPM. To meet the costs of the public

good pg1(x
∗, At), the legislature will raise taxes and borrowing; that is, the tax rate r1(x

∗, At) will

exceed r∗ and the level of debt x1(x
∗, At) will exceed x

∗. Moreover, it will cease all pork barrel

spending.

Assuming that At exceeds A
∗(x∗, x∗), the legislature will remain in RPM in period t + 1 if

At+1 exceeds the threshold A
∗(x1(x

∗, At), x
∗). The probability of remaining in RPM exceeds

the probability of transitioning to it in period t since A∗(x∗, x∗) exceeds A∗(x1(x
∗, At), x

∗). If

At+1 is such that the legislature returns to BAU, the tax rate will be reduced to r
∗, the debt level

10 In the present environment, this definition is equivalent to the requirement that the sequence of probability
measures associated with hψt(x)i converges weakly to the probability measure associated with ψ(x) (see Stokey,
Lucas and Prescott (1989) Theorem 12.8).
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Figure 1: The dynamics of the political equilibrium.

reduced to x∗ and the amount of public good provided will be g∗(At+1). The retirement of the

additional debt is financed solely by a reduction in pork (as opposed to a cut back in public good

spending or an increase in taxes). On the other hand, if At+1 is such that the legislature remains

in RPM, the higher current level of debt will make the legislature less inclined to spend, in the

sense that g1(x1(x
∗, At), A) is less than g1(x

∗, A) for all A. Moreover, both taxes and borrowing

will be higher for any given value of the public good (i.e., r1(x1(x
∗, At), A) exceeds r1(x

∗, A) and

x1(x1(x
∗, At), A) exceeds x1(x

∗, A) for all A). Thus, if the value of the public good remains as in

period t, citizens will experience a decrease in public good spending and further increases in taxes

and debt.

For a graphical analysis of the dynamics of the system, let AL be less than A
∗(x∗, x∗) and
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AH larger than A∗(x∗, x∗). Again, suppose that the legislature is in BAU in period t− 1 so that

the level of debt is x∗ at the beginning of period t. Further suppose that in periods t through tL

the value of the public good is AL; in periods tL + 1 through tH the value of the public good is

AH ; and in periods tH +1 the value of the public good returns to AL. Then, the dynamic pattern

of public debt, tax rates and public good provision is as represented in Figure 1. At date tL + 1

debt, taxes and public good levels jump up in response to the increase in A. During periods tL+1

through tH , debt and taxes continue to rise, while public good provision falls. In period tH + 1,

public good provision drops in response to the fall in A, overshooting its natural level g∗(AL).

After period tH + 1 debt and taxes start to fall and public good provision increases. Eventually,

the legislature returns to BAU.

To summarize: in the long-run, legislative policy-making oscillates between BAU and RPM.

Periods of BAU are brought to an end by a high realization of the value of public goods. This

triggers an increase in public debt and taxes to finance higher public good spending and a cessation

of pork-barrel spending. Once in the RPM regime, further high realizations of the value of the

public good trigger further increases in debt and higher taxes. Policy-making returns to BAU

only after a suitable sequence of low realizations of the value of the public good. The larger the

amount of public debt that has been built up, the greater the expected time before returning to BAU.

Both policy-making regimes are persistent in the sense that the probability of remaining in them

is greater than the probability of transitioning from them.

5 The efficiency of political equilibrium

To understand the theory’s implications concerning efficiency, we focus on a comparison of the

political equilibrium and the policies that would be chosen by a social planner whose objective

is to maximize aggregate utility. We refer to the planner’s solution as “the efficient solution”.

This is motivated by the fact that the planner’s solution is the unique Pareto efficient policy

sequence in the set of policy sequences that provide all citizens with the same expected payoff.

Since all citizens have the same expected payoff in political equilibrium, divergencies between

the equilibrium and the planner’s policy sequences represent Pareto inefficiencies and thereby

constitute “political failures” in the sense defined by Besley and Coate (1998).
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5.1 The efficient solution

While the efficient solution could be derived from first principles, it is instructive to derive it

as a special case of our equilibrium model. The efficient solution is exactly that which would

emerge in equilibrium if the legislature operated under a rule of unaminity; that is, if q = n.

As noted earlier, representatives obtain the same payoffs as their constituents and when q = n,

the equilibrium policy sequence maximizes aggregate legislator utility. It follows that the efficient

solution has the same form as the equilibrium, except that the equilibrium variables are those

associated with q = n. Thus, the tax rate in the BAU regime (r∗) equals 0 and the level of public

goods provided is the Samuelson level (g∗(A) = gS(A)) (see equations (10) and (11)). Because

q = n, the level of debt x∗ that is chosen in this regime satisfies the first order condition (see

equation (22))

1 = G(A∗(x∗, x∗)) +

Z A

A∗(x∗,x∗)

(
1− r1(x∗, A)

1− r1(x∗, A)(1 + ε)
)dG(A). (31)

This equation implies that at debt level x∗, the future tax rate must be 0 with probability one.

Since r1(x
∗, A) exceeds 0 for all A > A∗(x∗, x∗), this requires that A∗(x∗, x∗) = A. This in turn

implies that x∗ = x. At this debt level, the government’s interest earnings on its bond holdings

are always sufficient to finance the Samuelson level of public goods, implying that no taxation is

necessary.

We conclude that the efficient solution has the following form. When the state is such that

A ≤ A∗(b, x), the tax rate is zero, the public good level is the Samuelson level and the debt

level is x. Surplus revenues (which will be positive assuming A < A∗(b, x)) are redistributed to

citizens via (uniform) district-specific transfers. When the state is such that A > A∗(b, x), the

optimal policy involves positive levels of taxation, the provision of a public good level below the

Samuelson level and a level of debt that exceeds x. There are no surplus revenues and hence no

district-specific transfers.

It is clear from this discussion that the distribution that puts point mass on the debt level x is an

invariant distribution. For once the government has accumulated this level of bonds, it can provide

Samuelson levels of the public good without distortionary taxation. Any surplus interest payments

can be redistributed as a uniform district-specific transfer. These transfers are lump-sum and

create no distortion. The legislature has no incentive to run down accumulations by redistributing

revenues via additional transfers because this would necessitate the use of distortionary taxation
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in the future.

It follows from Proposition 4 that the distribution of debt implied by the efficient solution

converges to the distribution that puts point mass on the debt level x. Intuitively, whenever the

government’s holdings of bonds are less than x, the planner must anticipate using income taxation

to finance public good provision in some states of the world either currently or in the future. By

accumulating more bonds when the current value of public goods is low, he can reduce the need

to levy income taxes. This is always beneficial and hence the trend towards an increase in bond

holdings.

To summarize: the efficient solution converges to a steady state in which bond holdings are

maintained at level x. In this steady state, there is no taxation and the Samuelson level of the public

good is provided in each period. Public good spending is financed entirely from interest earnings.

Interest earnings in excess of public good spending are distributed to citizens via transfers.

5.2 Political failure

Comparing the efficient solution with the equilibrium, we obtain:

Proposition 5: If q < n the equilibrium policy sequence is inefficient. Specifically, in the long

run, the level of debt held by the government is too high relative to the efficient level, tax rates are

too high, and public good levels are too low. Moreover, tax rates are too volatile.

The fundamental reasons for the inefficiency can be understood most easily by seeing what

would happen if the intial level of public debt were equal to the efficient level x. Then, the

minimum winning coalition of legislators controlling policy could levy zero taxes, provide the first

best level of public goods and maintain the level of debt, all while providing transfers to their

districts with the surplus interest earnings. However, they will not do this. They will impose a

positive tax rate (equal to r∗) because the cost to their districts from imposing the tax is smaller

than the benefits from the additional transfers the tax can finance. They will provide less than the

first best level of public goods (g∗(A) rather than gS(A)) because the cost to their districts from

under-provision is smaller than the benefits from the additional transfers the reduction in public

good spending allows. They will increase the government’s debt level (to x∗ from x) because the

future cost to their districts from reducing the government’s bond holdings is smaller than the

benefits from the additional transfers the reduction in bond holdings allows.

The distortions in the tax rate and the public good level are static inefficiencies in the sense
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that within any period in which pork is provided aggregate citizen welfare would be higher if the tax

rate were reduced and the public good level increased. These distortions arise because the decisive

majority does not fully internalize the costs of raising taxes or reducing public good spending to

finance transfers to its members. The distortion in the debt level is a dynamic inefficiency in the

sense that the future benefits to citizens from lower debt offset the costs of lower revenues in the

present. The cause of this distortion is “redistributive uncertainty” (Lizzeri 1999). To see this,

suppose that with an initial debt level x the minimum winning coalition reduces bond holdings

by one unit and uses it to finance transfers to coalition members. This would gain 1/q units for

each legislator in the minimum winning coalition and would lead to a one unit reduction in pork

in the next period (assuming that A∗(x, x∗) ≥ A). This has an expected cost of only 1/n in the

next period because members of the current minimum winning coalition are not sure if they will

be included in the next period. The critical role of redistributive uncertainty can be appreciated

by noting that the inefficiency would disappear if the identity of the minimum winning coalition

were constant through time.

The conclusion that tax rates are too volatile should be interpreted with some care. Conditional

on the tax rate being at least r∗, the public good level being no greater than g∗(A), and the debt

level being no smaller than x∗, the equilibrium policy sequence is indeed efficient.11 Thus, the

statement that tax rates are too volatile should be understood as a comparison between the first

best level of volatility (which is zero) and the equilibrium. In a second best sense, the volatility

in equilibrium tax rates is optimal.

Perhaps the most important difference between the equilibrium and the planner’s solution

is that in the former the long run distribution of debt is stochastic. Consistent with the tax-

smoothing principle, in equilibrium, debt is accumulated when the value of the public good is

high and decumulated when it is low. The planner’s solution displays the same pattern only

when an exogenous limit (smaller than −x) is placed on the amount of bonds the government can

hold (see Aiyagari et al (2002)). It is tempting to suppose that such an ad hoc limit could arise

“naturally” when policies are determined via the political process and our equilibrium analysis

provides support for this idea. Nonetheless, it is important to note that the equilibrium policy

sequence does not equal that which would be chosen by a planner with a set of feasible debt levels

11 As was noted in section 4.2, the equilibrium round one value function v1 is a fixed point of the operator Tx∗
defined in equation (23).
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[x∗, x]. As is clear from equation (23), the equilibrium solves a planning problem with constraints

on the tax rate and public good level as well as on public debt. The influence of the political

process on policy determination can be captured only if all policy variables are appropriately

constrained. Accordingly, our analysis does not provide a justification for imposing a debt limit

on the planner’s problem and declaring the solution a positive prediction.

6 The desirability of a balanced budget requirement

To illustrate the potential usefulness of the theory for policy analysis, we explore its implications for

the desirability of balanced budget requirements. There has been considerable debate in academic

and policy circles concerning this issue.12 Many of the U.S. states have some form of balanced

budget requirement and there is evidence that they do have an effect.13 Proponents argue

that they dampen politicians’ ability to borrow to spend inappropriately. Opponents point out

that they restrict the state’s ability to adjust to revenue shocks and/or spending shocks without

having to raise taxes. Both positions seem reasonable, but to provide sharper policy guidance

it is necessary to understand the features of the environment that determine when the benefits

outweigh the potential costs.

We consider a fiscal restraint that requires the legislature to ensure that tax revenues equal

public spending in every period. We assume that in the first period the government begins with

no debt, so that spending is just public goods and transfers. We seek to understand when citizens’

welfare will be enhanced by the constraint that public spending be financed solely by tax revenues.

Let (rc(A), gc(A)) denote the equilibrium tax rate and public good level when the value of the

public good is A under the balanced budget requirement. Then, following the logic of Proposition

1, we have that

(rc(A), gc(A)) =

⎧⎪⎪⎨⎪⎪⎩
argmax{u(w(1− r), g;A) + B(r,g,0;0)

n : B(r, g, 0; 0) ≥ 0} if A > A∗(0, 0)

(r∗, g∗(A)) if A ≤ A∗(0, 0)
.

(32)

Thus, if A ≤ A∗(0, 0), the legislature is in the BAU regime and districts receive pork, while if

12 For relevant discussion see Bohn and Inman (1996), Brennan and Buchanan (1980), Niskanen (1992), Poterba
(1994), (1995) and Poterba and von Hagen (1999).

13 For example, Poterba (1994) shows that states with restraints were quicker to reduce spending and/or raise
taxes in response to negative revenue shocks than those without.
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A > A∗(0, 0), the legislature is in the RPM regime. The solution is stationary because government

cannot issue debt or acquire bonds. If vc(A) denotes expected citizen welfare under the balanced

budget requirement given that the current value of the public good is A, then

vc(A) = u(w(1− rc(A)), gc(A);A) +
B(rc(A), gc(A), 0; 0)

n
+ δEvc(A

0). (33)

Expected citizen welfare under the constraint is Evc(A) and equation (33) implies that

Evc(A) =

Z A

A

[u(w(1− rc(A)), gc(A);A) +
B(rc(A), gc(A), 0; 0)

n
]dG(A)/(1− δ). (34)

Let {r1(b,A), g1(b,A), x1(b,A)} be the equilibrium policy functions when there is no balanced

budget requirement, let x∗ be the BAU level of public debt, and let v1(b,A) be the equilibrum

(round one) value function. Starting from a situation in which the government has no debt,

expected citizen welfare in the unconstrained equilibrium is Ev1(0, A). Thus, a balanced budget

requirement will be desirable if and only if Evc(A) > Ev1(0, A).

Our first result is that when the revenues raised by the tax rate r∗ are never sufficient to cover

the cost of the optimal level of public goods, a balanced budget requirement is not desirable.

Proposition 6: If R(r∗) ≤ pg∗(A), a balanced budget requirement is not desirable.

To see this, recall that the condition of the proposition implies that x∗ must be non-positive,

so that in the BAU region, the winning proposals involve the purchase of bonds. These bond

holdings allow the legislature to lower taxes and provide higher levels of public goods in the long

run. Moreover, the legislature only issues debt in the RPM regime which means that borrowing

will be used only when it will raise aggregate utility. Such borrowing must therefore be socially

beneficial.

An interesting feature of this case, is that under a balanced budget requirement, the legislature

never engages in pork barrel spending. (This follows from the fact that the condition implies that

A∗(0, 0) ≤ A.) By contrast, in the unconstrained equilibrium, the legislature does provide pork in

the BAU regime. Thus, the balanced budget requirement is undesirable despite eliminating pork.

This underscores the lesson that there is nothing necessarily undesirable about pork - indeed, in

the efficient solution the government provides pork, redistributing excess revenues from its interest

earnings back to the citizens.

Our second result is the mirror image of the first: when the revenues raised by the tax rate r∗

are always sufficient to cover the cost of the optimal level of public goods when the tax rate is r∗,
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a balanced budget requirement is desirable.

Proposition 7: If R(r∗) ≥ pg∗(A), a balanced budget requirement is desirable.

To see this, note that with a balanced budget restraint, the equilibrium will involve the tax rate

r∗ and the public good level g∗(A) in every period. Without the restraint, the equilibrium will

involve the legislature immediately borrowing x∗ and using the revenues to finance extra pork.

The amount x∗ must be sufficiently large that in future periods there is positive probablity that

the tax rate will exceed r∗ and the public good level will be less than g∗(A). There is no offsetting

benefit, and hence eliminating the ability to borrow, increases citizen welfare.

If R(r∗) ∈ (pg∗(A), pg∗(A)) but x∗ ≤ 0, then the argument underlying Proposition 6 remains

and imposing a balanced budget requirement will be harmful. However, if x∗ > 0 the picture is

murkier because there are offsetting effects from imposing the requirement. On the one hand, the

government does not need to service the debt and hence long run taxes and public good levels

must be lower on average with the requirement. On the other, the government’s ability to smooth

tax rates and public good levels by varying the debt level is lost.

Intuitively, it seems natural to suppose that the larger the size of the tax base as measured by

R(r∗) the more likely is a balanced budget requirement to be desirable. After all, the larger the

tax base, the less the need to borrow to meet desired public good spending and the greater the

debt level that will need to be financed when there is no restraint. This idea can be investigated

formally by noting that the size of R(r∗) is determined by the magnitude of the private sector wage

w. From (2), we see that R(r∗) equals pg∗(A) if and only if w = [pg∗(A)/nr∗εε(1−r∗)ε] 1
1+ε . Thus,

as we increase w between [pg∗(A)/nr∗εε(1−r∗)ε] 1
1+ε and [pg∗(A)/nr∗εε(1−r∗)ε] 1

1+ε , we move the

size of the tax base through the interval (pg∗(A), pg∗(A)). Our conjecture is that there must exist

a critical wage w∗ greater than [pg∗(A)/nr∗εε(1−r∗)ε] 1
1+ε but less than [pg∗(A)/nr∗εε(1−r∗)ε] 1

1+ε

such that a balanced budget requirement is desirable if and only w > w∗. Unfortunately, however,

the argument that this is indeed the case has so far proven elusive.

To summarize: the theory suggests the key determinant of the desirability of a balanced budget

requirement is the size of the tax base relative to the economy’s desired public good spending.

When this size is large, a balanced budget requirement is a good idea and when it is small, the

opposite conclusion holds. The relative size of the tax base will be reflected in the magnitude of

the debt level that is chosen in the BAU regime. Thus, the theory supports the common sense
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conclusion that economies with large and perpetual deficits should introduce balanced budget

requirements.

7 Conclusion

This paper has presented a dynamic theory of public spending, taxation and debt. The theory

brings together ideas from the optimal taxation and political economy literatures. From the

former, the theory adopts the basic framework underlying the tax smoothing approach to fiscal

policy. From the latter, the theory employs the legislative bargaining approach to modelling

policy-making and draws on ideas in the political economy of deficits literature. The result is a

tractable dynamic general equilibrium model that yields a rich set of predictions concerning the

dynamics of fiscal policy and permits a rigorous analysis of the normative properties of equilibrium

policies.

The empirical predictions of the theory are consistent with the fact that historically the

debt/GDP ratio in the U.S. and the U.K. tends to have increased in periods of high govern-

ment spending needs (such as wars) and decreased in periods of low needs (Barro (1979), (1986),

and (1987)). The theory is also consistent with the findings of Bohn (1998) who studies the re-

lationship between the U.S. primary surplus (tax revenues minus non-interest expenditures) and

the debt/GDP ratio. He finds that this relationship is positive and, further, that it is non-linear

and increasing. Intuitively, the idea is that the higher the debt level, the more legislators rein in

spending and/or increase taxes. Our theory delivers this prediction in the sense that an increase in

the debt level always increases the primary surplus and, moreover, increases it more when the debt

level is high enough to put the legislature in the RPM regime.14 While these predictions are also

consistent with the tax smoothing paradigm, our theory does not require either the assumption

that policy is chosen by a benevolent planner or that the government faces an ad hoc debt limit.

In sharp contrast to the tax smoothing paradigm, the theory is potentially able to explain

14 In our model, the primary surplus PS(b,A) is the difference between tax revenues and spending on the public
good and pork. Using the budget constraint, we may write this as PS(b,A) = (1 + ρ)b− x1(b,A). For a given A,
consider a small increase ∆b in b. If A < A∗(b, x∗) and the legislature is in the BAU regime, then x1(b,A) = x∗

and ∆PS(b,A)/∆b = (1 + ρ). On the other hand, if A > A∗(b, x∗) and the legislature is in the RPM regime,
then ∆PS(b,A)/∆b = (1+ ρ)−∆x1(b,A)/∆b which exceeds 1 + ρ since x1(b,A) is decreasing in b. In both cases,
therefore, the relationship between the primary surplus and debt is positive, but the effect is larger when debt is
higher. We have not proven that in the RPM regime x1(b,A) is concave and so we cannot conclude that primary
surplus is globally convex in b. However, this is not what Bohn (1998) shows. In one specification, he considers
a piecewise linear regression with a cutpoint at the average level of debt b: he shows that the linear intercept for
b ≥ b is higher than for b < b.

28



why countries have very different average debt/GDP ratios (see Alesina and Perotti (1995) for

discussion). In the model, this variation could arise from differences in the level of debt that is

chosen in the BAU regime (x∗). An increase in this debt level serves to shift the support of the

debt distribution to the right. As we have noted, x∗ is determined by the size of an economy’s tax

base relative to its desired public good spending. Differences in the relative size of the tax base

may arise even in very similar economies, if (say) the elasticity of labor supply varies because of

different labor market insititutions or social welfare arrangements. Alternatively, differences in x∗

could reflect the fact that different political institutions translate into differences in the required

majority to pass legislation.15

The theory also provides novel predictions on the dynamic evolution of the composition of

public spending. It is of course difficult to empirically distinguish spending on national public

goods and pork, so directly testing whether the allocation of spending follows the dynamic pattern

suggested by the model may be problematic. However, voting behavior might be used to test the

model. According to the theory, winning coalitions on budget bills should be minimal in periods

of BAU, but should turn to super-majorities in the presence of exceptional events such as wars or

natural disasters.

The normative analysis provides a clean account of how politically determined policy choices

diverge from efficient policies in an environment that incorporates the key assumptions of the

tax smoothing theory of fiscal policy. Equally importantly, the framework permits a non-trivial

analysis of an important policy question - namely, is a fiscal restraint in the form of a balanced

budget requirement desirable? Obviously, such restraints are never optimal in a model in which

policy is chosen by a planner because they limit the available policy options. The theory suggests

that the key determinant of the desirability of a balanced budget requirement is the size of the tax

base relative to the economy’s desired public good spending. When this size is large, a balanced

budget requirement is a good idea and when it is small, the opposite conclusion holds.

There are numerous ways the theory might usefully be extended. One important extension

would be to introduce cyclical fluctuations in tax revenues due to the business cycle. This could

be achieved by specifying a stochastic process for the private sector wage. One could then derive

predictions concerning the cyclical behavior of fiscal policy. While the tax smoothing paradigm

15 Recall that r∗ depends negatively on q and hence the size of the tax base as measured by R(r∗) is decreasing
in q.
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suggests that deficits might be observed in recessions and surpluses in booms, observed fiscal pol-

icy is often procyclical (Alesina and Tabellini (2005)). It would be interesting to know what the

theory developed here predicts. A further important set of extensions concerns the implications

of different political institutions for the dynamics of fiscal policy. For example, one could model

decision making in a bicameral legislative system or a presidential system with veto power. Un-

derstanding how these different institutions impact the equilibrium and its dynamics would be

helpful in interpreting cross-country (or cross-state) variation in the time series on debt and other

key fiscal variables (see Woo (2003)). Finally, it would be interesting to study the implications of

different decision-making procedures or consitutional rules governing policy-making (see von Ha-

gen (2002) for discussion). For example, suppose that tax rates were determined before spending

decisions or that tax increases must be approved by a majority of voters in a referendum. Under-

standing how these different budgetary rules or protocols impact fiscal policy could contribute to

debates concerning piecemeal institutional reform.
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8 Appendix

8.1 Proof of Proposition 1

We begin by establishing the claim made in the text that, given that utility is transferable, the

proposer is effectively making decisions to maximize the collective utility of q representatives under

the assumption that they get to divide any surplus revenues among their districts.

Lemma A.1: Let {rτ (b,A), gτ (b,A), xτ (b,A), sτ (b,A)}Tτ=1 be an equilibrium with associated value

function v1(b,A). Then, for all states (b,A), the tax rate-public good-public debt triple (rτ (b,A),

gτ (b,A), xτ (b,A)) proposed in any round τ solves the problem

max(r,g,x) u(w(1− r), g;A) + B(r,g,x;b)
q + δEv1(x,A

0)

s.t. B(r, g, x; b) ≥ 0 & x ∈ [x, x] .

Moreover, the transfer to coalition members is given by

sτ (b,A) = vτ+1(b,A)− u(w(1− rτ (b,A), gτ (b,A);A)− δEv1(xτ (b,A), A
0).

Proof: We begin with proposal round T . Let (b,A) ∈ Z be given. Multiplying the objective

function through by q, we need to show that if (rT , sT , gT , xT ) solves the round T proposer’s

problem when the state is (b,A), (rT , gT , xT ) solves the problem

max(r,g,x) q[u(w(1− r), g;A) + δEv1(x,A
0)] +B(r, g, x; b)

s.t. B(r, g, x; b) ≥ 0 & x ∈ [x, x]
, (35)

and sT = vT+1(b,A) − u(w(1 − rT ), gT ;A) − δEv1(xT , A
0). Recall that the round T proposer’s

problem is:

max
(r,g,x,s)

u(w(1− r), g;A) +B(r, g, x; b)− (q − 1) s+ δEv1(x,A)

s.t. u(w(1− r), g;A) + s+ δEv1(x,A) ≥ vT+1(b,A),

B(r, g, x; b) ≥ (q − 1)s, s ≥ 0 & x ∈ [x, x].

It is easy to see that sT = vT+1(b,A)− δEv1(xT , A0)−u(w(1− rT ), gT ;A), for if this were not the

case it would follow from the definition of vT+1(b,A) that sT > 0 and we could create a preferred

proposal by just reducing sT . It follows that we can write the proposer’s payoff as

q [u(w(1− rT ), gT ;A) + δEv1(xT , A
0)] +B(rT , gT , xT ; b).
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Now suppose that (rT , gT , xT ) does not solve problem (35). Let (r0, g0, x0) solve problem (35)

and s0 = vT+1(b,A) − u(w(1 − r0), g0;A) − δEv1(x
0, A0). Then, the proposer’s payoff under the

proposal (r0, g0, x0, s0) is q [u(w(1− r0), g0;A) + δEv1(x
0, A0)]+B(r0, g0, x0; b). By construction, the

incentive constraint is satisfied and, by definition of vT+1(b,A), s
0 ≥ 0. Moreover, x0 ∈ [x, x].

Finally, note that

B(r0, g0, x0; b)− (q − 1)s0 = (q − 1)[u(w(1− r0), g0;A) + δEv1(x
0, A0)] +B(r0, g0, x0; b)

−(q − 1)vT+1(b,A) ≥ 0

where the last inequality follows from the fact that (r0, g0, x0) solves problem (35) and the definition

of vT+1(b,A). It follows that (r
0, g0, x0, s0) is feasible for the proposer’s problem and yields a higher

payoff than (rT , gT , xT , sT ) - a contradiction.

Now consider the round T − 1 proposer’s problem

max
(r,g,x,s)

u(w(1− r), g;A) +B(r, g, x; b)− (q − 1) s+ δEv1(x,A
0)

s.t. u(w(1− r), g;A) + s+ δEv1(x,A
0) ≥ vT (b,A),

B(r, g, x; b) ≥ (q − 1)s, s ≥ 0 & x ∈ [x, x].

(36)

From what we know about the round T proposer’s problem,

vT (b,A) = u(w(1− rT ), gT ;A) +
B(rT , gT , xT ; b)

n
+ δEv1(xT , A

0),

where (rT , gT , xT ) solves problem (35).

We need to show that if (rT−1, sT−1, gT−1, xT−1) is the solution to the round T − 1 proposer’s

problem, (rT−1, gT−1, xT−1) solves problem (35) and

sT−1 = vT (b,A)− u(w(1− rT−1), gT−1;A)− δEv1(xT−1, A
0).

The result would follow from our earlier argument if we could show that

sT−1 = vT (b,A)− u(w(1− rT−1), gT−1;A)− δEv1(xT−1, A
0),

so suppose that sT−1 > vT (b,A)−u(w(1− rT−1), gT−1;A)− δEv1(xT−1, A0). Then it must be the

case that sT−1 = 0, or we could obtain a preferred proposal by simply reducing sT−1. It follows

that

vT (b,A) < u(w(1− rT−1), gT−1;A) + δEv1(xT−1, A
0). (37)
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This implies that (rT−1, gT−1, xT−1) solves

max
(r,g,x)

u(w(1− r), g;A) +B(r, g, x; b) + δEv1(x,A)

s.t. B(r, g, x; b) ≥ 0 & x ∈ [x, x].

Now consider the proposal (rT , gT , xT ,
B(rT ,gT ,xT ;b)

n ). Clearly, this proposal satisfies all the

constraints of the proposer’s problem. The payoff to the proposer under this policy is

q[u(w(1− rT ), gT ;A) + δEv1(xT , A
0)] +B(rT , gT , xT ; b)− (q − 1)vT (b,A).

From (37), this payoff is strictly larger than

q[u(w(1− rT ), gT ;A) + δEv1(xT , A)] +B(rT , xT , gT ; b)

−(q − 1)[u(w(1− rT−1), gT−1;A) + δEv1(xT−1, A)].

The payoff to the proposer under the optimal policy (rT−1, gT−1, xT−1) is

u(w(1− rT−1), gT−1;A) +B(rT−1, xT−1, gT−1; b) + δEv1(xT−1, A).

Thus, it must be the case that

u(w(1− rT−1), gT−1;A) +B(rT−1, xT−1, gT−1; b) + δEv1(xT−1, A
0)

> q[u(w(1− rT ), gT ;A) + δEv1(xT , A
0)] +B(rT , xT , gT ; b)

−(q − 1)[u(w(1− rT−1), gT−1;A) + δEv1(xT−1, A
0)],

implying that

q[u(w(1− rT−1), gT−1;A) + δEv1(xT−1, A
0)] +B(rT−1, xT−1, gT−1; b)

> q[u(w(1− rT ), gT ;A) + δEv1(xT , A
0)] +B(rT , xT , gT ; b).

This contradicts the fact that (rT , gT , xT ) solves problem (35).

Application of the same logic to proposal rounds τ = T − 2, ..., 1 implies the lemma. ¥

The argument in the text together with Lemma A.1 implies that for any proposal round τ if

A > A∗(b, x∗)

(rτ (b,A), gτ (b,A), xτ (b,A)) = argmax

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEv1(x,A
0)

B(r, g, x; b) ≥ 0 & x ∈ [x, x]

⎫⎪⎪⎬⎪⎪⎭ ,
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while if A ≤ A∗(b, x∗)

(rτ (b,A), gτ (b,A), xτ (b,A)) = (r
∗, g∗(A), x∗).

Turning to the equilibrium transfers, if A ≤ A∗(b, x∗) it follows that for all proposal rounds

τ = 1, ..., T − 1 we have that

vτ+1(b,A) = u(w(1− r∗), g∗(A);A) +
B(r∗, g∗(A), x∗; b)

n
+ δEv1(x

∗, A0).

Thus, Lemma A.1 implies that the transfers to coalition members are given by:

sτ (b,A) =

⎧⎪⎪⎨⎪⎪⎩
B(r∗, g∗(A), x∗; b)/n τ = 1, ..., T − 1

vT+1(b,A)− u(w(1− r∗, g∗(A);A)− δEv1(x
∗, A0) τ = T

.

If A > A∗(b, x∗) it follows that for all proposal rounds τ = 1, ..., T − 1 we have that

vτ+1(b,A) = max{u(w(1− r), g;A) + B(r, g, x; b)
n

+ δEv1(x;A
0) : B(r, g, x; b) ≥ 0 & x ∈ [x, x]}

= u(w(1− rτ (b,A), gτ (b,A);A) + δEv1(xτ (b,A), A
0).

Thus, by Lemma A.1, sτ (b,A) = 0. ¥

8.2 Properties of the equilibrium policy functions

We need to show that when A > A∗(b, x∗) , the tax rate, public debt level and the level of the

public good depend positively on the value of the public good (A), the tax rate and level of public

debt depend positively on the current level of debt (b) and the level of the public good depends

negatively on b. From Proposition 1 we know that when A > A∗(b, x∗), the equilibrium tax

rate-public good-public debt triple (rτ (b,A), gτ (b,A), xτ (b,A)) solve

max(r,g,x) u(w(1− r), g;A) + B(r,g,x;b)
n + δEv1(x,A

0)

s.t. B(r, g, x; b) ≥ 0 & x ∈ [x, x]
.

Moreover, from the discussion in the text, (rτ (b,A), gτ (b,A), xτ (b,A)) is implicitly defined by

equations (14), (15) and (16).

Lemma A.2: Let b ∈ [x, x] and let A0, A1 ∈ [A,A] be such that A∗(b, x∗) < A0 < A1. Then, it

is the case that gτ (b,A0) < gτ (b,A1) and rτ (b,A0) < rτ (b,A1). Moreover, it is also the case that

xτ (b,A0) ≤ xτ (b,A1) with strict inequality if xτ (b,A0) < x.
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Proof: We begin by showing that gτ (b,A0) < gτ (b,A1). Let ϕ(A
0; b,A) be the value of the

objective function for the problem when the state is A0 and the policies are those that are optimal

given state (b,A); that is,

ϕ(A0; b,A) = u(w(1−rτ (b,A), gτ (b,A);A0)+
B(rτ (b,A), gτ (b,A), xτ (b,A); b)

n
+δEv1(xτ (b,A), A

0).

Then, we have that ϕ(A0; b,A0) > ϕ(A0; b,A1) and ϕ(A1; b,A1) > ϕ(A1; b,A0) (the strict inequal-

ity follows from the fact that the problem has a unique solution).

Moreover, using the definition of the indirect utility function u(w(1 − r), g;A) (see equation

(1)) and letting ∆A = A1 − A0, we can write ϕ(A0; b,A0) = ϕ(A1; b,A0) − ∆Agτ (b,A0) and

ϕ(A0; b,A1) = ϕ(A1; b,A1) − ∆Agτ (b,A1). Since ϕ(A0; b,A0) > ϕ(A0; b,A1), this means that

ϕ(A1; b,A0)−∆Agτ (b,A0) > ϕ(A1; b,A1)−∆Agτ (b,A1), and hence

∆A[gτ (b,A0)− gτ (b,A1)] < ϕ(A1; b,A0)− ϕ(A1; b,A1) < 0.

Since ∆A > 0, this implies that gτ (b,A0) < gτ (b,A1) as required.

We next show that rτ (b,A0) < rτ (b,A1). Suppose to the contrary that rτ (b,A0) ≥ rτ (b,A1).

Then the first order condition for x and the concavity of v1 imply that xτ (b,A0) ≥ xτ (b,A1). But

then it follows that

B(rτ (b,A0), gτ (b,A0), xτ (b,A0); b) > B(rτ (b,A1), gτ (b,A1), xτ (b,A1); b) = 0

which is a contradiction.

Finally, we show that xτ (b,A0) ≤ xτ (b,A1) with strict inequality if xτ (b,A0) < x. This follows

immediately from the first order condition for x and the concavity of v1 given that rτ (b,A0) <

rτ (b,A1). ¥

Lemma A.3: Let b0, b1 ∈ [x, x] be such that b0 < b1 and let A ∈ [A,A] be such that A∗(b0, x∗) < A.

Then, it is the case that rτ (b0, A) < rτ (b1, A) and gτ (b0, A) > gτ (b1, A). Moreover, it is also the

case that xτ (b0, A) ≤ xτ (b1, A) with strict inequality if xτ (b0, A) < x.

Proof: We first show that rτ (b0, A) < rτ (b1, A). Suppose to the contrary that rτ (b0, A) ≥

rτ (b1, A). Then the first order conditions for g and x and the concavity of v1 imply that gτ (b0, A) ≤

gτ (b1, A) and xτ (b0, A) ≥ xτ (b1, A). But then it follows that

B(rτ (b0, A), gτ (b0, A), xτ (b0, A); b0) > B(rτ (b1, A), gτ (b1, A), xτ (b1, A); b1) = 0
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which is a contradiction.

The fact that gτ (b0, A) > gτ (b1, A) follows immediately from the first order condition for g

and the fact that rτ (b0, A) < rτ (b1, A). In addition, the fact that xτ (b0, A) ≤ xτ (b1, A) with strict

inequality if xτ (b0, A) < x follows immediately from the first order condition for x, the concavity

of v1 and the fact that rτ (b0, A) < rτ (b1, A). ¥

8.3 Proof of Proposition 2

Step 1: Let F denote the set of all real valued functions v(·, ·) defined over the compact set

[x, x]×
£
A,A

¤
. Let F ∗ be the subset of these functions that are continuous and concave in x for

all A. For any z ∈ [R(r
∗)−pg∗(A)

ρ , x] and v ∈ F ∗ consider the maximization problem

max(r,g,x) u(w(1− r), g;A) + B(r,g,x;b)
n + δEv(x,A0)

s.t. B(r, g, x; b) ≥ 0, r ≥ r∗, g ≤ g∗(A) & x ∈ [z, x]
.

For all µ > 0, let

Xµ
z (v) = argmax

x
{x
µ
+ δEv(x,A0) : x ∈ [z, x]}

and let xµz (v) be the largest element of the compact set X
µ
z (v). Notice that x

µ
z (v) is non-increasing

in µ.

Suppose that (r, g, x) is a solution to the maximization problem. It is straightforward to show

that (i) if A ≤ A∗(b, xnz (v)) then (r, g) = (r∗, g∗(A)) and x ∈ Xn
z (v) ∩ {x : B(r∗, g∗(A), x; b) ≥ 0};

(ii) if A ∈ (A∗(b, xnz (v)), A∗(b, xqz(v))] then (r, g) = (r∗, g∗(A)) and B(r∗, g∗(A), x; b) = 0; and (iii)

if A > A∗(b, xqz(v)) (r, g, x) is uniquely defined and the budget constraint is binding. Moreover,

r > r∗ and g < g∗(A). Note that in all cases the tax rate and public good level are uniquely

defined.

Step 2: For any z ∈ [R(r
∗)−pg∗(A)

ρ , x], define the operator Tz : F
∗ → F as follows:

Tz(v)(b,A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEv(x,A0)

B(r, g, x; b) ≥ 0, g ≤ g∗(A), r ≥ r∗ & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭
It can be verified that Tz(v) ∈ F ∗ and that Tz is a contraction. Thus, there exists a unique

fixed point vz(b,A) which is continuous and concave in b for all A. This fixed point satisfies the
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functional equation

vz(b,A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEvz(x,A
0)

B(r, g, x; b) ≥ 0, r ≥ r∗, g ≤ g∗(A) & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭ .
Let (b,A) be given and let (r, g, x) denote an optimal policy. By Step 1, we have that (i) if

A ≤ A∗(b, xnz (vz)) then (r, g) = (r∗, g∗(A)) and x ∈ Xn
z (vz) ∩ {x : B(r∗, g∗(A), x; b) ≥ 0}; (ii)

if A ∈ (A∗(b, xnz (vz)), A∗(b, xqz(vz))] then (r, g) = (r∗, g∗(A)) and B(r∗, g∗(A), x; b) = 0; and (iii)

if A > A∗(b, xqz(vz)) (r, g, x) is uniquely defined and the budget constraint is binding. Moreover,

r > r∗ and g < g∗(A). Again, in all cases the tax rate and public good level is uniquely defined.

Let these be given by (rz(b,A), gz(b,A)) - these are also continuous functions on the state space.

Step 3: For any z ∈ [R(r
∗)−pg∗(A)

ρ , x], the expected value function Evz(·, A) is strictly concave

on the set
©
b ∈ [x, x] : A∗(b, xqz(vz)) < A

ª
.

Proof: It suffices to show that for any v ∈ F ∗, the function ETz(v)(·, A) is strictly concave on

the set {b ∈ [x, x] : A∗(b, xqz(v)) < A}. Since Tz(v) ∈ F ∗, we know already that the function

Tz(v)(·, A) is concave for all A. We now show that for all A, the function Tz(v)(·, A) is strictly

concave on {b ∈ [x, x] : A∗(b, xqz(v)) < A}. In this case, the budget constraint is strictly binding

and gz(b,A) < g
∗(A), rz(b,A) > r

∗. We can therefore write:

Tz(v)(b,A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEv (x,A0)

B(r, g, x; b) ≥ 0 & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭
Take two points b1 and b2 in the set {b ∈ [x, x] : A∗(b, xqz(v)) < A} and assume that b1 < b2. Let λ

be a point in the interval [0, 1]. Define (ri, gi, xi) to be the optimal policies associated with (bi, A)

for i = 1, 2 (as noted above these are unique). Let bλ = λb1 + (1− λ) b2, rλ = λr1 + (1− λ) r2,

gλ = λg1 + (1− λ) g2 and xλ = λx1 + (1− λ)x2. Since v (x,A
0) + x/n is weakly concave in x,

u(w(1− r), g;A)+ [R(r)− pg]/n is strictly concave in (r, g), and (r1, g1, x1) 6= (r2, g2, x2), we have

that:

λTz(v)(b1, A) + (1− λ)Tz(v)(b2, A) = λ

⎡⎢⎢⎣ u(w(1− r1), g1;A)

+B(r1,g1,x1;b1)
n + δEv (x1, A

0)

⎤⎥⎥⎦

+(1− λ)

⎡⎢⎢⎣ u(w(1− r2), g2;A)

+B(r2,g2,x2;b2)
n + δEv (x2, A

0)

⎤⎥⎥⎦
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< u(w(1− rλ), gλ;A) +
B(rλ, gλ, xλ; bλ)

n
+ δEv (xλ, A

0)

Since R(r) is concave in r, we have that B(rλ, gλ, xλ; bλ) > 0 and, in addition, xλ ∈ [z, x].

Therefore:

u(w(1− rλ), gλ;A) +
B(rλ, gλ, xλ; bλ)

n
+ δEv (xλ, A

0)

≤ max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;bλ)

n + δEv (x,A0)

B(r, g, x; bλ) ≥ 0 & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭ = Tz(v)(bλ, A).

We conclude that λTz(v)(b1, A) + (1− λ)Tz(v)(b2, A) < Tz(v)(bλ, A) as required.

Now take any two points b1 and b2 in the set {b ∈ [x, x] : A∗(b, xqz(v)) < A} and assume that

b1 < b2. Then, we have that

λETz(v)(b1, A) + (1− λ)ETz(v)(b2, A)

= λ{
Z A∗(b1,x

q
z(v))

A

Tz(v)(b1, A)dG(A) +

Z A

A∗(b1,x
q
z(v))

Tz(v)(b1, A)dG(A)}

+(1− λ){
Z A∗(b2,x

q
z(v))

A

Tz(v)(b2, A)dG(A) +

Z A

A∗(b2,x
q
z(v))

Tz(v)(b2, A)dG(A)}

=

Z A∗(b1,x
q
z(v))

A

[λTz(v)(b1, A) + (1− λ)Tz(v)(b2, A)]dG(A)

+

Z A

A∗(b1,x
q
z(v))

[λTz(v)(b1, A) + (1− λ)Tz(v)(b2, A)]dG(A)

<

Z A∗(b1,x
q
z(v))

A

Tz(v)(bλ, A)dG(A) +

Z A

A∗(b1,x
q
z(v))

Tz(v)(bλ, A)dG(A) = ETz(v)(bλ, A)

Step 4: For any z ∈ [R(r
∗)−pg∗(A)

ρ , x], let

M(z) = argmax{x
q
+ δEvz(x,A) : x ∈ [

R(r∗)− pg∗(A)
ρ

, x]}.

Then there exists z∗ ∈ [R(r
∗)−pg∗(A)

ρ , x] such that z∗ ∈M(z∗).

Proof: The result follows from Kakutani’s Fixed Point Theorem if M(z) is non-empty, upper

hemi-continuous, and convex and compact-valued. We have:

Claim: M(z) is non-empty, upper hemi-continuous, and convex and compact-valued.
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Proof: Let Fz denote the set of all bounded and continuous real valued functions ϕ(·, ·, ·) defined

over the compact set [R(r
∗)−pg∗(A)

ρ , x]× [x, x]×
£
A,A

¤
. Define the operator:

Ψ(ϕ)(z, b, A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEϕ(z, x,A0)

B(r, g, x; b) ≥ 0, g ≤ g∗(A), r ≥ r∗ & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭
It is easy to verify that Ψ maps Fz into itself and is a contraction. Thus, it has a unique fix-

point ϕ∗ = Ψ(ϕ∗) which belongs to Fz. Now note that for any z ∈ [R(r
∗)−pg∗(A)

ρ , x], vz(b,A) =

ϕ∗(z, b,A). To see this, note that for any given z, ϕ∗(z, b,A) ∈ F ∗, so we can define Tz (ϕ∗(z, b, A)).

The definition of ϕ∗, however, implies Tz (ϕ
∗(z, b, A)) = ϕ∗(z, b, A). Since Tz has a unique fixpoint,

it must be that vz(b,A) = ϕ∗(z, b, A).

Given this, we conclude that vz(b,A) is continuous in z and the Theorem of the Maximum

then implies that M(z) is non-empty, upper hemi-continuous, and compact-valued. Convexity of

M(z) follows from the fact that Evz(x,A) is weakly concave. ¥

Step 5: Let z∗ be such that z∗ ∈M(z∗). Then, xqz∗(vz∗) = z∗.

Proof: By definition, xqz∗(vz∗) is the largest element in the set X
q
z∗(vz∗). By construction, z

∗

belongs to the set

M(z∗) = argmax{x
q
+ δEvz∗(x,A) : x ∈ [

R(r∗)− pg∗(A)
ρ

, x]}.

Since z∗ obviously satisfies the constraint that x ≥ z∗, it must be the case that z∗ ∈ Xq
z∗(vz∗). If

z∗ 6= xqz∗(vz∗), then it must be the case that z∗ < x
q
z∗(vz∗) and that

xqz∗(vz∗)

q
+ δEvz∗(x

q
z∗(vz∗), A) =

z∗

q
+ δEvz∗(z

∗, A).

This implies that the expected value function Evz∗(·, A) is linear on the interval [z∗, xqz∗(vz∗)].

However, we know that

xqz∗(vz∗) > z
∗ ≥ R(r

∗)− pg∗(A)
ρ

which implies that pg∗(A) + ρxqz∗(vz∗) > R(r
∗), and hence that A∗(xqz∗(vz∗), x

q
z∗(vz∗)) < A. By

continuity, therefore, there must exist an interval [x0, xqz∗(vz∗)] ⊂ [z∗, x
q
z∗(vz∗)] such that for all

x in this interval A∗(x, xqz∗(vz∗)) < A. But by Step 3, the expected value function Evz∗(·, A) is

strictly concave on the interval [x0, xqz∗(vz∗)] - a contradiction.
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Step 6: Let z∗ be such that z∗ ∈ M(z∗). Then, the function vz∗(·, A) is differentiable for all b

such that A 6= A∗(b, z∗). Moreover:

∂vz∗(b,A)

∂x
=

⎧⎪⎪⎨⎪⎪⎩
−( 1−rz∗ (b,A)

1−rz∗(b,A)(1+ε))(
1+ρ
n ) if A > A∗(b, z∗)

−(1+ρn ) if A < A∗(b, z∗)

.

Proof: Let A ∈ [A,A] and let xo be given. By Step 5, we know that xqz∗(vz∗) = z∗ which

immediately implies that xnz∗(vz∗) = z
∗. Suppose first that A < A∗(xo, z

∗). Then, we have that

in a neighborhood of xo that

vz∗(x,A) = u(w(1− r∗), g∗(A);A) +
B(r∗, g∗(A), z∗;x)

n
+ δEvz∗(z

∗, A0).

Thus, it is immediate that the value function vz∗(x,A) is differentiable at xo and that

∂vz∗(xo, A)

∂x
= −(1 + ρ

n
).

Now suppose that A > A∗(xo, z
∗). Then, we know that the budget constraint is binding, and

that the constraints r ≥ r∗ and g ≤ g∗(A) are not binding. Thus, we have that in a neighborhood

of xo that

vz∗(x,A) = max
(r,g,y)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,y;x)

n + δEvz∗ (y,A
0)

B(r, g, y;x) ≥ 0 & x ∈ [z∗, x]

⎫⎪⎪⎬⎪⎪⎭ .
Define the function

g(x) =
R(rz∗(xo, A)) + xz∗(xo, A)− (1 + ρ)x

p

and let

η(x) = u(w(1− rz∗(xo, A)), g(x);A) +
B(rz∗(xo, A), g(x), xz∗(xo, A);x)

n
+ δEvz∗ (xz∗(xo, A), A

0) .

Notice that (rz∗(xo, A), g(x), xz∗(xo, A)) is a feasible policy when the initial debt level is x so that

in a neighborhood of xo we have that vz∗(x,A) ≥ η(x). Moreover, η(x) is twice continuously

differentiable with derivatives

η0(x) = −αAg(x)α−1(1+ρp )

η00(x) = −(1− α)αAg(x)α−2(1+ρp )
2 < 0
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The second derivative property implies that η(x) is strictly concave. It follows from Theorem

4.10 of Stokey and Lucas (1989) that vz∗(x,A) is differentiable at xo with derivative
∂vz∗ (xo,A)

∂x =

η0(xo) = −αAgz∗(xo, A)α−1(1+ρp ). To complete the proof note that (rz∗(xo, A), gz∗(xo, A)) must

solve the problem:

max
(r,g)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,xz∗ (xo,A);xo)

n

B(r, g, xz∗(xo, A);xo) ≥ 0

⎫⎪⎪⎬⎪⎪⎭ ,
which implies that αnAgz∗(xo, A)

α−1 = p[ 1−rz∗ (xo,A)
1−rz∗(xo,A)(1+ε) ]. Thus, we have that

∂vz∗(xo, A)

∂x
= −[ 1− rz∗(xo, A)

1− rz∗(xo, A)(1 + ε)
](
1 + ρ

n
).

Step 7: Let z∗ be such that z∗ ∈ M(z∗). Then, the following constitutes an equilibrium. For

each proposal round τ

(rτ (b,A), gτ (b,A), xτ (b,A)) = (rz∗(b,A), gz∗(b,A), xz∗(b,A));

for proposal rounds τ = 1, ..., T − 1

sτ (b,A) = B(rz∗(b,A), gz∗(b,A), xz∗(b,A); b)/n;

and for proposal round T

sT (b;A) = vT+1(b,A)− u(w(1− rz∗(b,A)), gz∗(b,A);A)− δEvz∗(xz∗(b,A), A
0);

where

vT+1(b,A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,x,g;b)

n + δEvz∗(x,A
0)

s.t. B(r, x, g; b) ≥ 0 & x ∈ [x, x]

⎫⎪⎪⎬⎪⎪⎭ .
Proof: Given these proposals, the legislators’ round one value function is given by vz∗(b,A). This

follows from the fact that

v1(b,A) = u(w(1− rz∗(b,A)), gz∗(b,A);A) +
B(rz∗(b,A), gz∗(b,A), xz∗(b,A); b)

n

+δEvz∗(xz∗(b,A), A
0) = vz∗(b,A).

Similarly, the round τ = 2, ..., T legislators’ value function vτ (b,A) is given by vz∗(b,A). It follows

from Steps 3 and 4 that the value function vz∗(b,A) has the properties required for an equilibrium
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to be well-behaved. Thus, we need only show: (i) that for proposal rounds τ = 1, .., T − 1 the

proposal

(rz∗(b,A), gz∗(b,A), xz∗(b,A),
B(rz∗(b,A), gz∗(b,A), xz∗(b,A); b)

n
)

solves the problem

max
(r,g,x,s)

u(w(1− r), g;A) +B(r, g, x; b)− (q − 1) s+ δEvz∗(x;A
0)

s.t. u(w(1− r), g;A) + s+ δEvz∗(x;A
0) ≥ vz∗(b;A),

B(r, g, x; b) ≥ (q − 1)s, s ≥ 0 & x ∈ [x, x],

and (ii) that for proposal round T the proposal

(rz∗(b,A), gz∗(b,A), xz∗(b,A), vT+1(b,A)−u(w(1−rz∗(b,A)), gz∗(b,A);A)− δEvz∗(xz∗(b,A), A0))

solves the problem

max
(r,g,x,s)

u(w(1− r), g;A) +B(r, g, x; b)− (q − 1) s+ δEvz∗(x;A
0)

s.t. u(w(1− r), g;A) + s+ δEvz∗(x;A
0) ≥ vT+1(b,A),

B(r, g, x; b) ≥ (q − 1)s, s ≥ 0 & x ∈ [x, x],

We show only (i) - the argument for (ii) being analogous.

Consider some proposal round τ = 1, ..., T − 1. Let (b,A) be given. To simplify notation, let

(br, bg, bx, bs) = (rz∗(b,A), gz∗(b,A), xz∗(b,A), B(rz∗(b,A), gz∗(b,A), xz∗(b,A); b)
n

).

It is clear from the argument in the text that (br, bg, bx) solves the problem
max
(r,g,x)

u(w(1− r), g;A) + B(r,g,x;b)
q + δEvz∗(x;A

0)

s.t. B(r, g, x; b) ≥ 0 & x ∈ [x, x],

and that bs = vz∗(b,A)−u(w(1−br), bg;A)−δEvz∗(bx;A0). Suppose that (br, bg, bx, bs) does not solve the
round τ proposer’s problem. Then there exist some (r0, g0, x0, s0) which achieves a higher value of

the proposer’s objective function. We know that s0 ≥ vz∗(b;A)−u(w(1−r0), g0;A)−δEvz∗(x0;A0).

Thus, we have that the value of the proposer’s objective function satisfies

u(w(1− r0), g0;A) +B(r0, g0, x0; b)− (q − 1) s0 + δEvz∗(x
0;A0)

≤ q[u(w(1− r0), g0;A) + δEvz∗(x
0;A0)] +B(r0, g0, x0; b).
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But since B(r0, g0, x0; b) ≥ 0, we know that

q[u(w(1− r0), g0;A) + δEvz∗(x
0;A0)] +B(r0, g0, x0; b)

≤ q[u(w(1− br), bg;A) + δEvz∗(bx;A0)] +B(br, bg, bx; b).
But the right hand side of the inequality is the value of the proposer’s objective function under

the proposal (br, bg, bx, bs). This therefore contradicts the assumption that (r0, g0, x0, s0) achieves a
higher value for the proposer’s problem. ¥

8.4 Proof of Proposition 3

Let {r0τ (b,A), g0τ (b,A), x0τ (b,A), s0τ (b,A)}Tτ=1 and {r1τ (b,A), g1τ (b,A), x1τ (b,A), s1τ (b,A)}Tτ=1 be

two equilibria with associated round one value functions v0(b,A) and v1(b,A). Let x∗0 and x
∗
1 be

the debt levels chosen in the BAU regimes of the two equilibria and suppose that x∗0 ≤ x∗1. We will

demonstrate that it must be the case that x∗0 = x
∗
1. To do this, we will show that the assumption

that x∗0 < x
∗
1 results in a contradiction.

As in the proof of Proposition 2, define the operator Tz : F
∗ → F as follows:

Tz(v)(b,A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEv(x,A0)

B(r, g, x; b) ≥ 0, g ≤ g∗(A), r ≥ r∗ & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭ .
We know that Tz(v) ∈ F ∗ and that Tz is a contraction. Moreover, for i ∈ {0, 1}, we have that

Tx∗i (v
i) = vi.

Now let v ∈ F ∗ be such that for all b, v(·, A) is differentiable at b for almost all A and for each

i ∈ {0, 1} consider the sequence of functions
­
vik
®∞
k=1

defined inductively as follows: vi1 = Tx∗i (v),

and vik+1 = Tx∗i (v
i
k). Notice that since Tzi is a contraction,

­
vik
®∞
k=1

converges to vi. We now

establish the following result:

Claim: Let ρ0 ∈ (0, ρ). Then, for all k and for any x ∈ [x∗1, x] we have that

−E(∂v
1
k(x,A)

∂b
) > −E(

∂v0k(x−
x∗1−x∗0
1+ρ0 , A)

∂b
).

Proof: The proof proceeds via induction. Consider first the claim for k = 1. Recall from Step 1

of the proof of Proposition 2 that if (r, g, x) is a solution to the problem

maxu(w(1− r), g;A) + B(r,g,x;b)
n + δEv(x,A0)

s.t. B(r, g, x; b) ≥ 0, g ≤ g∗(A), r ≥ r∗, x ∈ [z, x]
,
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then: (i) if A ≤ A∗(b, xnz (v)) then (r, g) = (r∗, g∗(A)) and x ∈ Xn
z (v)∩{x : B(r∗, g∗(A), x; b) ≥ 0};

(ii) if A ∈ (A∗(b, xnz (v)), A∗(b, xqz(v))] then (r, g) = (r∗, g∗(A)) and B(r∗, g∗(A), x; b) = 0; and

(iii) if A > A∗(b, xqz(v)) (r, g, x) is uniquely defined, the budget constraint is binding, r > r
∗ and

g < g∗(A). Denote the solution in case (iii) as (rz(b,A; v), gz(b,A; v), xz(b,A; v)).

It follows from this that, if A ≤ A∗(b, xnz (v))

Tz(v)(b,A) = u(w(1− r∗), g∗(A);A) +
B(r∗), g∗(A), xnz (v); b)

n
+ δEv(xnz (v), A

0)

and

−∂Tz(v)(b,A)
∂b

=
1 + ρ

n
.

If A ∈ (A∗(b, xnz (v)), A∗(b, xqz(v))], then

Tz(v)(b,A) = u(w(1− r∗), g∗(A);A) + δEv(pg∗(A) + (1 + ρ)b−R(r∗), A0)

and, since v is differentiable,

−∂Tz(v)(b,A)
∂b

= −δEv0(pg∗(A) + (1 + ρ)b−R(r∗), A0)(1 + ρ).

Notice for future reference that in this range, x ∈ (xnz (v), xqz(v)] and hence

−δEv0(pg∗(A) + (1 + ρ)b−R(r∗), A0)(1 + ρ) ∈ (1 + ρ

n
,
1 + ρ

q
].

If A > A∗(b, xqz(v)) then

Tz(v)(b,A) = max
(r,g,x)

⎧⎪⎪⎨⎪⎪⎩
u(w(1− r), g;A) + B(r,g,x;b)

n + δEv (x,A0)

B(r, g, x; b) ≥ 0 & x ∈ [z, x]

⎫⎪⎪⎬⎪⎪⎭ (38)

and

−∂Tz(v)(b,A)
∂b

=
1− rz(b,A; v)

n(1− rz(b,A; v)(1 + ε))
(1 + ρ).

Since rz(b,A; v) > r
∗, in this range we have that

−∂Tz(v)(b,A)
∂b

>
(1 + ρ)

q
.

Combining all this and using the fact that Tz(v)(b, ·) is continuous, we have that:

−nδE(∂Tz(v)(b,A)
∂b

) = G(A∗(b, xnz (v)))

−n
Z A∗(b,xqz(v))

A∗(b,xnz (v))

E[
∂v(pg∗(A) + (1 + ρ)b−R(r∗), A0)

∂b
]dG(A)

+

Z A

A∗(b,xqz(v))

[
1− rz(b,A; v)

1− rz(b,A; v)(1 + ε)
]dG(A).
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Applying this to the problem at hand, let x ∈ [x∗1, x] and f(x) = x −
x∗1−x∗0
1+ρ0 . Then, to prove

the claim for k = 1, we need to show that

G(A∗(x, xnx∗1 (v)))− n
R A∗(x,xqx∗1 (v))
A∗(x,xn

x∗1
(v)) E[

∂v(pg∗(A)+(1+ρ)x−R(r∗),A0)
∂b ]dG(A)

+
R A
A∗(x,xq

x∗1
(v))
[

1−rx∗1 (x,A;v)
1−rx∗1 (x,A;v)(1+ε)

]dG(A)

> G(A∗(f(x), xnx∗0 (v)))− n
R A∗(f(x),xqx∗0 (v))
A∗(f(x),xn

x∗0
(v)) E[

∂v(pg∗(A)+(1+ρ)f(x)−R(r∗),A0)
∂b ]dG(A)

+
R A
A∗(f(x),xq

x∗0
(v))
[

1−rx∗0 (f(x),A;v)
1−rx∗0 (f(x),A;v)(1+ε)

]dG(A).

It is straightforward to verify that the following four conditions are sufficient for this inequality

to hold: (i) A∗(x, xnx∗1 (v)) < A∗(f(x), xnx∗0 (v)), (ii) A
∗(x, xqx∗1 (v)) < A∗(f(x), xqx∗0 (v)), (iii) for all

A ∈ (A∗(f(x), xnx∗0 (v)), A
∗(x, xqx∗1 (v))]

−E ∂v(pg∗(A) + (1 + ρ)x−R(r∗), A0)
∂b

≥ −E ∂v(pg∗(A) + (1 + ρ)f(x)−R(r∗), A0)
∂b

,

and (iv) for all A ∈ (A∗(f(x), xqx∗0 (v)), A]

1− rx∗0 (f(x), A; v)
1− rx∗0 (f(x), A; v)(1 + ε)

≤
1− rx∗1 (x,A; v)

1− rx∗1 (x,A; v)(1 + ε)
.

We will now show that these four conditions are satisfied. We begin with condition (i). If it

were not satisfied, then A∗(x, xnx∗1 (v)) ≥ A
∗(f(x), xnx∗0 (v)) which is equivalent to x

n
x∗1
(v)−(1+ρ)x ≥

xnx∗0 (v)− (1 + ρ)f(x). Thus,

xnx∗0 (v) ≤ xnx∗1 (v)− (1 + ρ)[x− f(x)]

= xnx∗1 (v)−
1 + ρ

1 + ρ0
(x∗1 − x∗0) < xnx∗1 (v)− (x

∗
1 − x∗0)

which implies that xnx∗1 (v) − x
n
x∗0
(v) > x∗1 − x∗0. Given the definition of xnx∗1 (v), this requires that

xnx∗1 (v) > x
∗
1. This in turn implies that

−δE
∂v(xnx∗1 (v), A

0)

∂b
=
1

n

and hence that xnx∗0 (v) = x
n
x∗1
(v) - a contradiction.

Condition (ii) can be established in the same way and condition (iii) follows directly from the

assumption that v(·, A) is concave. This leaves condition (iv). From the first order conditions

associated with problem (38) (see (14), (15) and (16)), we have that

1− rx∗1 (x,A; v)
1− rx∗1 (x,A; v)(1 + ε)

≥ −δnE
∂v(xx∗1 (x,A; v), A

0)

∂b
(= if xx∗1 (x,A; v) < x)
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and that

1− rx∗0 (f(x), A; v)
1− rx∗0 (f(x), A; v)(1 + ε)

≥ −δnE
∂v(xx∗0 (f(x), A; v), A

0)

∂b
(= if xx∗0 (f(x), A; v) < x).

Suppose that
1− rx∗0 (f(x), A; v)

1− rx∗0 (f(x), A; v)(1 + ε)
>

1− rx∗1 (x,A; v)
1− rx∗1 (x,A; v)(1 + ε)

.

Then this implies that rx∗0 (f(x), A; v) > rx∗1 (x,A; v), gx∗0 (f(x), A; v) < gx∗1 (x,A; v), and xx∗0 (f(x), A; v) ≥

xx∗1 (x,A; v). Thus, we have that

pgx∗0 (f(x), A; v) + (1 + ρ)f(x) = R(rx∗0 (f(x), A; v)) + xx∗0 (f(x), A; v)

> R(rx∗1 (x,A; v)) + xx∗1 (x,A; v) = pgx∗1 (x,A; v) + (1 + ρ)x

This means that (1 + ρ)[x− f(x)] = 1+ρ
1+ρ0 (x

∗
1 − x∗0) < 0, which is a contradiction.

Now assume the claim is true for 1, ...., k and consider it for k + 1. We have that

−nδE(
∂Tx∗i (v

i
k)(b,A)

∂b
) = G(A∗(b, xnx∗i (v

i
k)))

−n
Z A∗(b,xq

x∗
i
(vik))

A∗(b,xn
x∗
i
(vik))

E[
∂vik(pg

∗(A) + (1 + ρ)b−R(r∗), A0)
∂b

]dG(A)

+

Z A

A∗(b,xq
x∗
i
(vik))

[
1− rx∗i (b,A; v

i
k)

1− rx∗i (b,A; v
i
k)(1 + ε)

]dG(A).

Thus, we need to show that

G(A∗(x, xnx∗1 (v
1
k)))− n

R A∗(x,xqx∗1 (v1k))
A∗(x,xn

x∗1
(v1k))

E[
∂v1k(pg

∗(A)+(1+ρ)x−R(r∗),A0)
∂b ]dG(A)

+
R A
A∗(x,xq

x∗1
(v1k))

[
1−rx∗1 (x,A;v

1
k)

1−rx∗1 (x,A;v
1
k)(1+ε)

]dG(A)

> G(A∗(f(x), xnx∗0 (v
0
k)))− n

R A∗(f(x),xqx∗0 (v0k))
A∗(f(x),xn

x∗0
(v0k))

E[
∂v0k(pg

∗(A)+(1+ρ)f(x)−R(r∗),A0)
∂b ]dG(A)

+
R A
A∗(f(x),xq

x∗0
(v0k))

[
1−rx∗0 (f(x),A;v

0
k)

1−rx∗0 (f(x),A;v
0
k)(1+ε)

]dG(A)

Following the same approach as above, for this inequality to hold, the following four conditions

are sufficient: (i) A∗(x, xnx∗1 (v
1
k)) < A

∗(f(x), xnx∗0 (v
0
k)), (ii) A

∗(x, xqx∗1 (v
1
k)) < A

∗(f(x), xqx∗0 (v
0
k)), (iii)

for all A ∈ (A∗(f(x), xnx∗0 (v
0
k)), A

∗(x, xqx∗1 (v
1
k))]

−E ∂v1k(pg
∗(A) + (1 + ρ)x−R(r∗), A0)

∂b
≥ −E ∂v0k(pg

∗(A) + (1 + ρ)f(x)−R(r∗), A0)
∂b

,

and (iv) for all A ∈ (A∗(f(x), xqx∗0 (v
0
k)), A]

1− rx∗0 (f(x), A; v
0
k)

1− rx∗0 (f(x), A; v0k)(1 + ε)
≤

1− rx∗1 (x,A; v
1
k)

1− rx∗1 (x,A; v1k)(1 + ε)
.
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We will again show that these four conditions are satisfied. We begin with condition (i). If

it were not satisfied, then it must be the case that A∗(x, xnx∗1 (v
1
k)) ≥ A∗(f(x), xnx∗0 (v

0
k)) which is

equivalent to xnx∗1 (v
1
k)− (1 + ρ)x ≥ xnx∗0 (v

0
k)− (1 + ρ)f(x). This implies that

xnx∗0 (v
0
k) ≤ xnx∗1 (v

1
k)−

1 + ρ

1 + ρ0
[x∗1 − x∗0] < xnx∗1 (v

1
k)− [x∗1 − x∗0]. (39)

Thus, we know by the induction step that

−δE
∂v1k(x

n
x∗1
(v1k), A

0)

∂b
> −δE

∂v0k(x
n
x∗0
(v0k), A

0)

∂b
≥ 1

n
.

This implies that xnx∗1 (v
1
k) = x

∗
1 which in turn, together with (39), implies that x

n
x∗0
(v0k) < x

∗
0 which

is a contradiction.

We can use similar logic to conclude that condition (ii) is satisfied. Condition (iii) follows

immediately from the induction step since we have that

pg∗(A) + (1 + ρ)x−R(r∗)− [x∗1 − x∗0] > pg∗(A) + (1 + ρ)f(x)−R(r∗).

This leaves condition (iv). Suppose to the contrary that for some A

1− rx∗0 (f(x), A; v
0
k)

1− rx∗0 (f(x), A; v0k)(1 + ε)
>

1− rx∗1 (x,A; v
1
k)

1− rx∗1 (x,A; v1k)(1 + ε)

Again, from the first order conditions associated with problem (38) we have that

1− rx∗1 (x,A; v
1
k)

1− rx∗1 (x,A; v1k)(1 + ε)
≥ −δnE

∂v1k(xx∗1 (x,A; v
1
k), A

0)

∂b
(= if xx∗1 (x,A; v

1
k) < x)

and that

1− rx∗0 (f(x), A; v
0
k)

1− rx∗0 (f(x), A; v0k)(1 + ε)
≥ −δnE

∂v0k(xx∗0 (f(x), A; v
0
k), A

0)

∂b
(= if xx∗0 (f(x), A; v

0
k) < x).

If xx∗0 (f(x), A; v
0
k) < x these first order conditions imply that

−δnE
∂v1k(xx∗1 (x,A; v

1
k), A

0)

∂b
< −δnE

∂v0k(xx∗0 (f(x), A; v
0
k), A

0)

∂b
.

We know by the induction step that for any x ≥ x∗1, −δnE(
∂v1k(x,A)

∂x ) > −δnE(∂v
0
k(f(x),A)
∂x ). Thus,

it must be the case that

xx∗0 (f(x), A; v
0
k) > f(xx∗1 (x,A; v

1
k)) = xx∗1 (x,A; v

1
k)−

x∗1 − x∗0
1 + ρ0
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In addition, we know that rx∗0 (f(x), A; v
0
k) > rx∗1 (x,A; v

1
k) and that gx∗0 (f(x), A; v

0
k) < gx∗1 (x,A; v

1
k).

But this means that

pgx∗0 (f(x), A; v
0
k) + (1 + ρ)f(x) = xx∗0 (f(x), A; v

0
k) +R(rx∗0 (f(x), A; v

0
k))

> xx∗1 (x,A; v
1
k) +R(rx∗1 (x,A; v

1
k))−

x∗1 − x∗0
1 + ρ0

= pgx∗1 (x,A; v
1
k) + (1 + ρ)x− x

∗
1 − x∗0
1 + ρ0

.

This in turn implies that (1+ρ)[x−f(x)] < x∗1−x∗0
1+ρ0 which is a contradiction. If xx∗0 (f(x), A; v

0
k) = x,

then it must be the case that xx∗1 (x,A; v
1
k) ≤ xx∗0 (f(x), A; v

0
k) and the same contradiction arises.

¥

To complete the proof, observe that for i ∈ {0, 1} the function E(vi(·, A)) is concave and

differentiable. In addition,
­
E(vik(·, A))

®
is a sequence of concave and differentiable functions such

that for all x limk→∞E(v
i
k(x,A)) = E(v

i(x,A)). Thus, by Theorem 25.7 of Rockafellar (1970),

we know that limk→∞
dE(vik(x,A))

dx = dE(vi(x,A))
dx . It follows that for any x ∈ [x∗1, x]

−δnE(∂v
1(x,A)

∂b
) = lim

k→∞
−δnE(∂v

1
k(x,A)

∂b
)

≥ lim
k→∞

−δnE(
∂v0k(x−

(x∗1−x∗0)
1+ρ0 , A)

∂b
) = −δnE(

∂v0(x− (x∗1−x∗0)
1+ρ0 , A)

∂b
).

By equation (22), we have that −δnE(∂v
1(x∗1,A)
∂b ) = −δnE(∂v

0(x∗0,A)
∂x ) = n

q . Thus, it follows that

−δnE(
∂v0(x∗1 −

(x∗1−x∗0)
1+ρ0 , A)

∂b
) ≤ −δnE(∂v

1(x∗1, A)

∂b
) = −δnE(∂v

0(x∗0, A)

∂b
).

But this implies that x∗1 −
x∗1−x∗0
1+ρ0 ≤ x∗0, which contradicts the fact that x∗1 > x∗0.

It follows that x∗0 = x
∗
1. This, in turn, implies that v

0 = v1 and hence that {r0τ (b,A), g0τ (b,A),

x0τ (b,A), s
0
τ (b,A)}Tτ=1 equals {r1τ (b,A), g1τ (b,A), x1τ (b,A), s1τ (b,A)}Tτ=1. ¥

8.5 Proof of Proposition 4

It is easy to prove that the transition function H(b, x) has the Feller Property and that it is

monotonic in b (see Ch. 12.4 in Stokey, Lucas and Prescott (1989) for definitions). By Theorem

12.12 in Stokey, Lucas and Prescott (1989), therefore, the result follows if the following “mixing

condition” is satisfied:

Mixing Condition: There exists an ² > 0 and m ≥ 1, such that Hm(x, x∗) ≥ ² and 1 −

Hm(x, x∗) ≥ ² where the function Hm(b, x) is defined inductively by H1(b, x) = H(b, x) and

Hm(b, x) =
R
z
H(z, x)dHm−1(b, z).
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Intuitively, this condition requires that if we start out with the highest level of debt x, then we

will end up at x∗ with probability greater than ² after m periods, while if we start out with the

lowest level of debt x, we will end up above x∗ with probability greater than ² in m periods. For

any b ∈ [x, x] and A ∈ [A,A] define the sequence hφm(b,A)i as follows: φ0(b,A) = b, φm+1(b,A) =

x1(φm(b,A), A). Thus, φm(b,A) is the level of debt if the debt level were b at time 0 and the shock

was A in periods 1 through m. Recall that, by assumption, there exists some positive constant

ξ > 0, such that for any pair of realizations satisfying A < A0, the differenceG(A0)−G(A) is at least

as big as ξ(A0−A). This implies that for any b ∈ [x, x], Hm(b,φm(b,A+λ))−Hm(b,φm(b,A)) ≥

ξmλm for all λ such that 0 < λ < A−A. Using this observation, we can prove:

Claim 1: For m sufficiently large, Hm(x, x∗) > 0.

Proof: It suffices to show that for m sufficiently large A∗(φm(x,A), x
∗) > A. Then, for any such

m, by continuity there is a λm small enough such that A
∗(φm(x,A+λm), x

∗) > A. It then follows

that

Hm(x, x∗) =

Z
z

H(z, x∗)dHm−1(x, z) =

Z
z

G(A∗(z, x∗))dHm−1(x, z)

≥
Z φm(x,A+λm)

φm(x,A)

G(A∗(z, x∗))dHm−1(x, z)

≥ G(A∗(φm(x,A+ λm), x
∗))
£
Hm−1(x,φm−1(x,A+ λm))−Hm−1(x,φm−1(x,A))

¤
≥ G(A∗(φm(x,A+ λm), x

∗)) (ξλm)
m−1 > 0.

Suppose, to the contrary, that for all m we have that A∗(φm(x,A), x
∗) ≤ A. Then, it must

be the case that the sequence hφm(x,A)i is decreasing. To see this note that since r1(b,A) is

increasing in A we have that

1− r1(φk(x,A), A)
1− r1(φk(x,A), A)(1 + ε)

<

Z A

A

(
1− r1(φk(x,A), A)

1− r1(φk(x,A), A)(1 + ε)
)dG(A).

But equations (15) and (20) imply that:

1− r1(φk−1(x,A), A)
1− r1(φk−1(x,A), A)(1 + ε)

=

Z A

A

(
1− r1(φk(x,A), A)

1− r1(φk(x,A), A)(1 + ε)
)dG(A). (40)

Since r1(b,A) is increasing in b and A, this implies φk−1(x,A) > φk(x,A).

We can therefore assume without loss of generality that φm(x,A) converges to some finite

β ≥ x. We now prove that this yields a contradiction. Taking the limit as m→∞, continuity of
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r1(·, A) would imply limk→∞ r1(φk(x,A), A) = r1(φ∞(x,A), A) for all A. Using condition (40):

1− r1(φ∞(x,A), A)
1− r1(φ∞(x,A), A)(1 + ε)

=

Z A

A

(
1− r1(φ∞(x,A), A)

1− r1(φ∞(x,A), A)(1 + ε)
)dG(A)

which is impossible since r1(φ∞(x,A), A) is strictly increasing in A. We conclude therefore that

for m sufficiently large A∗(φm(x,A), x
∗) > A, which yields the result. ¥

Next, we can establish:

Claim 2: For all m ≥ 2, 1−Hm(x, x∗) ≥ G(A∗(x, x∗))G(A∗(x∗, x∗))m−2 [1−G(A∗(x∗, x∗))].

Proof: With probability G(A∗(x, x∗)) the level of debt chosen in period 1 is x∗ when the initial

level of debt is x; so with probability G(A∗(x, x∗))G(A∗(x∗, x∗))m−2 the level of debt is x∗ for the

first m− 1 periods. Given this, the probability that the level of debt is larger than x∗ in period

m is at least G(A∗(x, x∗))G(A∗(x∗, x∗))m−2 [1−G(A∗(x∗, x∗))]. ¥

These two Claims imply that the Mixing Condition is satisfied if q < n. To see this, choose m

sufficiently large so that Hm(x, x∗) > 0. This is always possible by Claim 1. Now let

² = min
©
G(A∗(x, x∗))G(A∗(x∗, x∗))m−2 [1−G(A∗(x∗, x∗))] ;Hm(x, x∗)

ª
Assuming that q < n, we know from the definition of x∗ that A∗(x∗, x∗) ∈

¡
A,A

¢
(see equation

(22)) and A∗(x, x∗) > A∗(x∗, x∗) > A. Thus, ² > 0 and the condition is satisfied.

If q = n, then the Mixing Condition does not hold, but the proposition remains true. Equation

(22) implies that x∗ = x. Since A∗(x, x) ≥ A, we know that when the initial debt level is x, then the

level of debt never changes and hence the Mixing Condition is violated. However, the distribution

that puts point mass on x is an invariant distribution. Moreover, by Claim 1, we know that there

exists a ² > 0 and a m such that for any initial b, the probability that x = x in the next m periods

is at least ². So the probability that x is never equal to x in the next j ·m periods is not larger than

(1− ²)j . We conclude that the probability that x is never equal to x, is zero: limj→∞ (1− ²)j = 0.

Thus, the sequence of debt distributions hψt(x)i converges to a unique invariant distribution as

claimed. ¥
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