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Single-Cell Forward Link Power Allocation
Using Pricing in Wireless Networks

Peijuan Liu, Peifang Zhang, Scott Jordan, Member, IEEE, and Michael L. Honig, Fellow, IEEE

Abstract—We consider forward link power allocation for voice
users in a code-division multiple-access wireless network. Admis-
sion control policies are investigated, which base a new call admis-
sion decision not only upon available capacity, but also upon the
required forward link transmit power and upon the user’s willing-
ness to pay. We assume that each voice user has a utility function
that describes the user’s willingness to pay as a function of forward
link signal-to-interference plus noise ratio. The network objective
is to maximize either total utility summed over all users or total
revenue generated from all users. Properties of the optimal power
and code allocations are presented. Our key results show how these
optimal allocations can be achieved using pricing. The analysis is
complemented with a numerical study, which shows how the op-
timal prices and corresponding utility or revenue vary with load.

Index Terms—Cellular resource allocation, power control,
pricing, utility maximization.

I. INTRODUCTION

THE FORWARD link capacity of a single cell in a
code-division multiple-access (CDMA) wireless network

is limited by available resources, namely, power and codes.
The number of available codes is limited by a bandwidth
constraint, whereas, the transmitted power may be limited by a
physical constraint, or by the associated interference received
in neighboring cells. As the demand for service increases, so
does the need for an efficient allocation of available resources
to user requests.

In this paper, we study forward link power allocation for voice
users in a CDMA system. The system capacity, i.e., the number
of voice users that can obtain service, is assumed to be limited
by forward link resources. Current CDMA networks generally
admit calls on a first-come first-served basis. As an alternative,
our approach to admission control bases call admission deci-
sions not only on the availability of resources (i.e., codes and
transmit power), but also upon the users’ willingness to pay.
Here, we consider a single cell, and account for interference to
adjacent cells by imposing a transfer payment, or cost, which
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is proportional to the transmitted power. The network objective
is to maximize either the total utility summed over all users, or
total revenue generated by the users.

We assume that each voice user has a utility function that
specifies the perceived utility derived from the service, or will-
ingness to pay, as a function of the received signal-to-interfer-
ence plus noise ratio (SINR). This utility function might be as-
signed to the user by the service provider, according to a choice
of service plan. In that case, the utility function can be an-
nounced to the network at the onset of a call request.

The resource allocation proceeds with an exchange of price
and demand information. The base station announces a price
per unit transmitted power and a price per code. Each user re-
sponds by requesting the amount of each resource that maxi-
mizes his/her individual surplus, defined as utility minus cost.
The goal is to set prices to maximize total utility or revenue. We
remark that the users may not actually pay the prices set by the
network. In that case, the prices serve only as internal network
parameters that guide the resource allocation.

Unlike other approaches to resource allocation, pricing can
allocate resources according to perceived user utility, thereby
increasing the overall utility of the network. Other attractive
properties include the accommodation of a wide range of traffic
flows, and potential simplification or elimination of explicit ad-
mission control policies [1].

After problem formulation, we express total utility and rev-
enue in terms of the resource prices and distribution functions
of user utility and transmitted power. We also characterize the
optimal power and code allocations. Our key results show how
these optimal allocations can be achieved using pricing. We
complement this analysis with a numerical study. We display the
optimal power allocation to each user, as a function of the geo-
graphical distribution of users, for a selection of different utility
function distributions. We demonstrate how prices per code and
per unit transmitted power can be used to achieve the optimal
power allocation in a distributed fashion, and the variation of
these prices with system load.

A sampling of papers that propose pricing of resources in
wireline networks to control congestion and/or implement con-
nection admission control include [1]–[4]. These papers demon-
strate that the overall utility of the network can be greatly in-
creased by allocating resources to flows based on utility and on
congestion. Utility-based power control for wireless networks
has been proposed in [5]–[9] and [18]. Power control for the re-
verse link of a data cellular network is considered in [5]–[8] and
[18] and the forward link is considered in [9].

Our model differs from prior models in several key respects.
First, we focus on voice users rather than data users. Our utility

1536-1276/04$20.00 © 2004 IEEE
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Fig. 1. (a) Utility function for voice traffic. (b) Uniform, Gaussian, and delta distribution for utility step U .

functions correspondingly have a different form—a step func-
tion in SINR, in contrast to a function of bits/joule, as in [5]–[8],
a function of throughput, as in [9], or a concave function of
SINR, as in [18]. The focus on voice leads to significantly dif-
ferent results than have been obtained for data. Second, we focus
on the forward link, whereas, [5]–[8] and [18] focus on the
reverse link. On the reverse link, the key impairment is typ-
ically multiuser interference. In contrast, on the forward link
orthogonal codes are often assumed within a single cell (al-
though often not between multiple cells), and the complexity
comes from constraints on total power and on codes. Both the
power and code constraints have a significant impact upon the
results. Our main focus in this paper is on characterizing optimal
resource allocation policies and implementing them in a dis-
tributed manner. In contrast, [5]–[8] do not address optimality;
indeed, although their use of pricing produces a Pareto improve-
ment, no notion of optimality is defined or achieved.

The rest of our paper is organized as follows. In Section II, we
present our system model for a finite number of users, and intro-
duce the notion of utility functions. In Section III, we formulate
utility and revenue optimization problems, present characteri-
zations of the optimal power allocation policies, and show how
these policies can be distributed using pricing. In Section IV, we
introduce a large system model in which the number of users
and codes increase at a fixed ratio. In Section V, we reformu-
late utility maximization problems under this large system limit,
and propose pricing methods for power and code allocation.
In Section VI, numerical results are presented, which illustrate
system behavior. Finally, in Sections VII and VIII, we consider
maximizing revenue instead of utility, and illustrate the differ-
ences in resource allocation.

II. FINITE SYSTEM MODEL

In this section, we introduce the user and network models for
a two-dimensional single-cell forward link system with a finite
number of users. In what follows, user locations are specified
by the distance from the base station , where .

Each user has a utility function , where denotes
the received SINR. For the voice service considered, we model

as a step, as shown in Fig. 1(a), rising from zero utility
when to a positive utility when . The
SINR threshold is assumed to be the same for all users. Typ-
ical values may range from 3 to 7 dB depending on the spe-
cific CDMA system. The height of the step indicates the call’s
priority level. More important calls are associated with higher
values of , i.e., the user is willing to pay more to gain admis-
sion to the system.

The codes within the cell are assumed to be orthogonal, but
they are not orthogonal to codes in adjacent cells. We lump to-
gether the background noise and the interference from other
cells, and represent the sum as . The interference from other
cells is a function of the total power transmitted from other cells,
and the associated path loss. We assume that the multipath is
negligible or is equalized [10], so is fixed. The received SINR
for user is given by , where is the channel at-
tenuation to user and is the forward link transmitted power
to user . The transmitted power needed to achieve the target
SINR is then given by

(1)

The attenuation depends on the location of the user and on
random shadowing.

III. OPTIMIZATION WITH A FINITE SET OF USERS

We start with a single cell containing a finite number of users.
We consider two optimization metrics: total utility and revenue.

A. Utility Maximization

A resource allocation policy maps a user’s channel and
utility to a power assignment and a code assignment .
A user with positive assigned power ( ) uses a single code
( ); a user with zero assigned power ( ) uses no
codes ( ).
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In a multiple cell network, we should explicitly account for
the increase in the required transmission power in one cell
caused by the interference from other cells. Under a power
constraint, this increase in required transmission power can
cause a reduction in the achieved utility. In order to achieve the
maximum total utility over all cells in the network, we must
account for this intercell effect. We do so here by penalizing
each cell linearly as a function of its total transmitted power.
Specifically, we assume that each base station must pay a
transfer payment, equal to per unit transmitted power, to
neighboring cells. It can be shown [16], [17] that the maximum
utility summed over all cells is achieved by setting equal
to times the sum of the marginal utilities in other cells
due to an increase in transmission power in this cell. As a
consequence, will fluctuate with the loads in each cell.
However, in the single-cell model in this paper, we hold the
interference from neighboring cells and constant.

We wish to find the policy that maximizes the net utility of
the cell. The net utility is defined as the total utility of all active
users minus the transfer payment, and is given by

(2)

The resulting optimization problem is:
Problem FU1:

such that (3)

(4)

where represents the maximum total transmitted power in the
cell and is the number of available codes in the cell.

This optimization problem is an integer programming
problem, and is related to traditional bin-packing problems.
The solutions to integer programming problems are typically
very sensitive to the parameters of the problem. (In problem
FU1, these parameters are the sets of user attenuations and
user utilities, the power limit , and the number of codes .)
An infinitesimal change in a continuous parameter, e.g., atten-
uation, can produce a noninfinitesimal change in the optimal
policy. In particular, when there is more than one constraint,
the optimal policy can change in a very complicated manner
with infinitesimal changes in parameters. As a consequence,
characterizations of optimal policies for integer programming
problems are notoriously difficult to derive.

The integer programming problem can be simplified if we
remove the power constraint:

Problem FU2:

such that

Our first step toward deriving an optimal policy is to reduce the
set of policies that need be considered.

Theorem 3.1: Consider the class of policies in which each
active user is assigned one code and a transmit power required
to obtain the target SINR, and each inactive user is assigned no
codes and no power. The solution to problem FU2 belongs to
this class of policies.

This can be easily proven by contradiction. Namely, given a
feasible policy not in this class, lowering the power for a partic-
ular user to either that required to achieve the target SINR, or
zero always results in a higher net utility without violating the
code constraint. The optimal policy can now be stated in terms
of the optimal set of active users.

Theorem 3.2: Order the users according to decreasing net
utilities . Let represent the number of users with
positive net utility. Consider the policy given by setting the first

users active and the remaining users inac-
tive. Each active user is assigned one code and a transmit power
that allows the user to obtain the target SINR and each inac-
tive user is assigned no codes and no power. This policy solves
problem FU2.

This follows from a simple interchange argument. Namely,
given any other active user set, a higher net utility can always
be achieved by activating a user that belongs to the optimal set
as described in Theorem 3.2 and/or deactivating a user that does
not belong to the optimal set. The optimal policy, therefore,
chooses those users who have the best combination of low path
loss and high utility.

B. Utility Maximization Using Pricing

The optimal policy described in Theorem 3.2 has a simple
structure, but requires that the base station know each user’s
utility function. In this section, we consider methods to dis-
tribute the optimization process.

We propose a distributed resource allocation method using
the following pricing process. The base station announces a
price per unit transmitted power and a price per code .
Each user responds by requesting the amount of each resource
that maximizes his/her individual surplus, defined as utility
minus cost. The total charge for service to an active user with
transmit power is, therefore, . For a step utility
function, the user’s surplus is maximized either by buying one
code and exactly enough power to achieve an SINR equal to the
threshold (if ), or by remaining inactive.

The principal result of this section is that such a pricing policy
can always achieve the optimal power allocation.

Theorem 3.3: Consider the preceding pricing process
with prices set as follows. Set and to be the
minimum value such that (4) is satisfied. The corre-
sponding set of transmit powers solves problem FU2.

Proof: Order the users according to decreasing net utilities
. Let represent the number of users with positive

net utility, and let . Using the pricing process,
a user is active if . The proposed prices will
result in , if and , oth-
erwise. With the proposed prices, therefore, the first users
will choose to be active and the remaining users will choose to
be inactive. By Theorem 3.2, the result follows. Q.E.D.

The optimal set of prices is a function of the set
of user utilities and the set of required power levels .
Theorem 3.3, however, states that the optimal is the price
at which demand for codes equals supply for codes (or zero if
the number of users in the cell with positive net utility is less
than the number of codes). The optimal can, thus, be found
using a simple line search algorithm; such an algorithm would
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increase while demand exceeds supply, and reduce while
supply exceeds demand (but not below ). Since demand
for codes decreases monotonically as increases, it is easy to
construct a line search algorithm for the optimal that is guar-
anteed to converge. As a result, the optimal can be found
without explicitly asking the users for their utility functions.
This is the general idea behind using pricing; it can reduce the
amount of information that must be exchanged between users
and the network.1

In the finite user model, the optimal prices may not be unique.
Any that satisfies

activates the same set of users, and there-
fore, achieves the same total net utility. Of the optimal set of
prices, the pair achieved by Theorem 3.3 has a particularly nice
interpretation: is negative one times the marginal utility
in other cells for an increase in power in this cell, and the corre-
sponding is the shadow cost for the code constraint, namely

.

C. Revenue Maximization

We now pose a revenue maximization problem. A pricing
process is assumed, and the network desires to maximize total
net revenue rather than total net utility. For a fixed set of prices,
denote the set of active users as .
We will call the set of prices that activates no more than users
the “feasible region:” .

The resulting optimization problem is:
Problem FR1:

(5)

This optimization problem is generally not easy to solve. Un-
like the utility maximization problem, the network may activate
fewer than users even if users can contribute positive net
revenue. The total revenue is an irregular function of the price
set, with jumps at the specific prices at which users become acti-
vated or deactivated. Related work on pricing to maximize rev-
enue, where users can be charged different prices is presented
in [11].

IV. LARGE SYSTEM MODEL

In this section, we introduce a large system model in order to
avoid the analytical problems associated with a finite number
of users. This approach will allow us both to introduce a power
limit and to analyze revenue maximization. As mentioned
above, the finite user model leads to an integer programming
problem, and the optimal policy is not a continuous function of
the problem parameters. We can eliminate this discontinuity by
modeling a system with an infinite number of users, each using
an infinitesimal percentage of the total power and codes. This
approach is motivated by the large system analysis of CDMA
receivers in [12]. Our “large system model” can be obtained
by starting with a finite user model and taking the limit as
the number of users, number of codes, and power limit all
approach infinity with fixed ratios. In the limit, the distribution

1In a multicell network, a similar approach can be taken to reduce the amount
of information that must be exchanged between cells using the transfer charges
�.

of each resource over users is specified by a function of a
continuous variable, and the optimal policy typically varies in
a continuous manner with the resource constraints. In addition,
the difference between the values of the optimization metric
under the optimal policies for the continuous and finite-size
discrete problems of interest is often small.

Formally, the large system limit is obtained by starting with
problem FU1, scaling the power limit with the number of
codes , scaling the number of users with the number
of codes , and letting the number of codes ap-
proach infinity. The scaling parameter is interpreted as the
maximum average power per code, and the scaling parameter
is interpreted as the offered load (measured in users per code).

Since the large system model has an infinite number of users,
we now assume there exists a distribution of users’ utilities and
a distribution of the channel attenuations. We denote as the
density function of an user’s utility and denote as the density
function of channel attenuations. Using (1), we can determine
the corresponding distribution for transmitted power, denoted
by . In what follows, we assume that the cumulative distri-
bution function for power is continuous, i.e., and do not
contain impulses.

Let denote the set of active users. The constraint on
total transmitted power, which for the finite user model
was expressed in (3), now becomes , where

is the average transmitted power per
user. Similarly, the constraint on codes, which for the finite
user model was expressed in (4), now becomes ,
where is the fraction of active users.
Normalizing both equations by the number of codes results
in

(6)

as the new power constraint and

(7)

as the new code constraint.
In the analytical work, the density functions and are

general. In numerical work, we will consider three distributions
for , as shown in Fig. 1(b). The first density function is a delta
function , meaning that all users have identical
utility functions. The second density function is uniform from

to . The third density function is a truncated Gaussian with
mean and standard deviation . The latter two functions
allow for a range of users with different priority levels.

In numerical work, we use a distance-based attenuation
model with an exponent of four, i.e., . We
assume that the users are spatially uniformly distributed
throughout the cell, i.e., with a probability density function
given by . The resulting received power at distance

from the base is given by , where
is the transmitted power and is a reference point in

the far-field region of the transmitter antenna. If all users in the
cell are active, then the resulting power distribution is given by

(8)
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Of course, other distributions can be derived which account for
additional propagation and system effects such as random shad-
owing and soft handoff.

V. LARGE SYSTEM UTILITY MAXIMIZATION

We return to the utility maximization problem initially posed
as Problem FU1. Recall that the power assigned to each user
depends only on the channel attenuation and the user’s utility

. Our objective is, therefore, to find a mapping from each point
in the plane to a power , which maximizes the average
net utility per code, given by

(9)

Let denote this map, where is the set
of nonnegative real numbers.

The large system optimization problem is:
Problem LU1:

such that inequalities (6) and (7) are satisfied.
Note that this is a nonlinear maximization problem with non-

linear inequality constraints. The Kuhn–Tucker theorem [13]
states that at the optimal allocation, there is a shadow cost as-
sociated with each constraint. The shadow cost is equal to the
derivative of the optimization metric (utility or revenue) with
respect to the right-hand side of the associated inequality con-
straint (power or codes).

At the optimal allocation, we say the cell is power-limited
(PL) if the power constraint is binding and code-limited (CL)
if the code constraint is binding. In addition, we say the cell is
interference-limited (IL) if the transfer price is strictly posi-
tive, indicating that power usage in this cell has a negative effect
upon utility or revenue in neighboring cells. Finally, we say the
cell is demand-limited (DL) if it is neither PL, CL, nor IL.

There are three types of shadow costs in the system. First, if
the cell is PL, then there is a positive shadow cost associated
with the cell’s power limit. Second, if the cell is CL, then there
is a positive shadow cost associated with the cell’s code limit.
Finally, if the cell is IL, the transfer payment can be interpreted
as a shadow cost associated with the loss of utility or revenue in
other cells due to the interference generated by this cell.

We start with a version without the power constraint.
Problem LU2:

such that the inequality (7) is satisfied.
As before, our first step toward deriving an optimal policy is

to reduce the set of policies that need be considered.
Theorem 5.1: Consider the class of policies in which each

active user is assigned one code and a transmit power required
to obtain the target SINR and each inactive user is assigned no

codes and no power. The solution to problem LU2 belongs to
this class of policies.

This can be proven by contradiction in analogy to the proof
of Theorem 3.1. The optimal policy can now be stated in terms
of the optimal set of active users.

Theorem 5.2: Order the users according to decreasing net
utilities . Consider the policy given by setting users ac-
tive in this order until either the code constraint becomes binding
or until all users with positive net utility are active. Set the re-
maining users to be inactive. Each active user is assigned one
code and a transmit power that allows the user to obtain the
target SINR and each inactive user is assigned no codes and no
power. This policy solves problem LU2.

The proof again uses an interchange argument similar to that
for Theorem 3.2. The optimal policy can be distributed using the
same pricing process as in the finite user case: The base station
announces a price per unit transmitted power and a price per
code . Each user responds by requesting the amount of each
resource that maximizes his/her individual surplus, defined as
utility minus cost. The total charge for service to an active user
with transmit power is . This pricing process can
always achieve the optimal power allocation.

Theorem 5.3: Consider the preceding pricing process
with prices set as follows. Set , and to be the
minimum value such that the code constraint (7) is satis-
fied. The corresponding set of transmit powers solves problem
LU2.

The proof is similar to that for Theorem 3.3. This choice
for is again the price that equates demand with supply.
This price is positive if there are more users with positive
net utility than codes, and zero otherwise. However, unlike
the finite user case, the optimal prices are now unique. Note
that the shadow cost corresponding to the code constraint is

.2

We now return to the version with the power constraint,
problem LU1. As before, our first step toward deriving an
optimal policy is to reduce the set of policies that need be
considered.

Theorem 5.4: Consider the class of policies in which each
active user is assigned one code and a transmit power required
to obtain the target SINR and each inactive user is assigned no
codes and no power. The solution to problem LU1 belongs to
this class of policies.

The proof is similar to that for Theorem 5.1. The optimal
policy, however, no longer necessarily corresponds to activating
users in decreasing order by their net utility, as in Theorem 5.2.
Such an approach could result in a tight power constraint and
a loose code constraint, while an alternate approach that trades
off a few high power users for more low power users might be
superior.

However, we can still describe and implement the optimal
policy using pricing. We use the same process as above, but
potentially with different prices.

Theorem 5.5: Consider the above pricing process with prices
set as follows. Jointly set to be the minimum value such

2Alternatively, defining the average utility per user U = U =�, and the
number of codes per user M = 1=�, we have � = @U =@M .
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Fig. 2. Utility maximization with uniform distribution at P=� = 37 dB, � = 10. (a) Optimal prices versus load. (b) Proportion of users at distance r who are
active.

that the power constraint (6) is satisfied and set to be the
minimum value such that the code constraint (7) is satis-
fied. The corresponding set of transmit powers solves problem
LU1.

The proof is given in the Appendix. The optimal prices can
again be interpreted as shadow costs for their corresponding
constraints, i.e., and

. We remark that this pricing process may not produce
a unique optimal . An example with an infinite number
of optimal price combinations is given in Section VI-C, when
all the users have the same utility function.

The primary advantage of pricing over direct centralized con-
trol of power and codes is the lower complexity required to
find the optimal policy. As we discussed above, in utility maxi-
mization problems with only a code constraint (FU2 and LU2),
pricing can be used to reduce the optimization problem to a line
search for the optimal . Similarly, in the large system model
with both code and power constraint (LU1), pricing can be used
to reduce the optimization problem to a search for the optimal
set of prices (per code and per unit power). This search can be
implemented using standard fixed point or gradient algorithms.
A centralized algorithm would require full knowledge of each
user’s utility function. While this may not be too much of a
burden in a single cell with step utility functions, the complexity
of the centralized scheme grows quickly both with more general
utility functions and with more cells. In contrast, the complexity
of the distributed pricing algorithm remains low. In particular, in
a multicell network, a centralized algorithm may require knowl-
edge of the utility functions of users in neighboring cells, while
the distributed pricing algorithm only requires communication
of externality prices between cells.

VI. NUMERICAL STUDY OF UTILITY MAXIMIZATION

In this section, we present numerical results to show how
the system phases (DL, IL, PL, and CL) and optimal prices

vary with the offered load and the transfer price. In the fol-
lowing sections, we consider utility distributions given by uni-
form, Gaussian, and delta densities. Throughout our numerical
study, the target SINR dB, the far-field reference point

, the background noise plus interference level is set
so that .

A. Uniform Utility Distribution

We assume the height of the step in the user’s utility function
is uniformly distributed between and , assume
the power limit is dB, and set the transfer price to

, which indicates the level of interference that users in
this cell are generating to users in other cells. Because ,
the cell is always IL. The optimal price per code and price per
unit transmitted power are shown in Fig. 2(a). At low loads,
the system is only IL, meaning that there are excess power and
codes in the cell, but that the transmitted power in this cell de-
creases the utility in neighboring cells. Optimal prices are equal
to the associated shadow costs. The price per code is set to the
shadow cost associated with the code constraint. The price per
unit transmitted power is set to the sum of the shadow cost
associated with the power constraint and the transfer price. In
the interference-only-limited phase, therefore, the cell sets the
price per code equal to zero, since there are excess codes, and
sets the price per unit power equal to , since there is excess
power.

At a load of 0.5, the cell exhausts its power supply, and it
is then both IL and PL for loads between 0.5 and 1.5. Cor-
respondingly, the cell must raise its price per unit transmitted
power above to restore equality between demand and supply
for power. At a load of 1.5, the cell runs out of codes as well.
Between loads of 1.5 and 4, the cell is IL, PL, and CL. Corre-
spondingly, the optimal price per code is strictly positive and
increases with load in this phase, since a higher price for code
is required to reduce the demand for codes (to equal the supply)
at higher loads. This price is also equal to the shadow cost as-
sociated with the code constraint; at higher loads, the marginal
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Fig. 3. Comparison of optimal prices for utility maximization under different utility distributions at (a)P=� = 40 dB, � = 16 and (b)P=� = 37 dB, � = 10.
Solid line is uniform distribution, dashed line is Gaussian with standard deviation of 5.77, and cross–hatched line is Gaussian with standard deviation of 10.

utility that would be generated by an additional code in the cell
is higher since that code would be allocated to users with higher
utilities. However, this increase in price per code causes some
users to become inactive, which lowers the demand for power.
Consequently, the price per unit power can be lowered. At loads
above four, the cell is IL and CL but no longer PL; the price per
unit power has returned to its floor of .

This behavior can be better understood by examining the pro-
portion of users at distance who are active, shown in Fig. 2(b).
Recall that at a load of 0.5, the optimal prices are and

. Within the region close to the base station ( ),
the resulting power charge is less than , and consequently
all users are active. Beyond , the power charge rises
above five, and therefore, some users choose not to transmit.
The proportion of active users, therefore, falls with increasing
distance, in proportion to the rise in required power to obtain the
target SINR.

As the load rises from 0.5 to 1, the cell also becomes PL,
and the optimal power price rises. This causes a decrease in
active users, since it results in an increased charge for all active
users that is also increasing with distance. Consequently, the
proportion of active users falls more steeply. As the load rises
from one to three, the cell also becomes CL, the optimal code
price rises and the optimal power price falls. A rise in code price
lowers the proportion of active users by an equal amount at all
distances, while a fall in power price makes the proportion of
active users less sensitive to distance. These trends continue as
the load rises from 3 to 4.5.

Empirical evidence suggests that the transition among phases,
from IL, possibly through IL + PL and IL + PL + CL, to IL + CL,
depends on the relative values of the cell parameters. Consider
fixing the utility distribution (at and ) and the
transfer price (at ), but varying the power limit . We
find that when dB, the cell progresses through the
same series of phases as above—from IL through IL + PL and
IL + PL + CL to IL + CL. The transition from IL to IL + PL
always occurs at a load less than one, but this load threshold is
increasing with . At high power limits, dB, the

cell progresses through the series of phases—from IL directly to
IL + CL. Similar trends occur with different choices for , ,
and . The threshold for the presence of a PL phase (39.8 dB
relative to in the above example) increases with , , since
this increases average power usage, and decreases with , since
this decreases average power usage.

B. Relationship of Optimal Prices to Utility Distribution

We now compare the optimal prices associated with different
utility distributions. Here, we include a Gaussian distribution
with mean 15 and standard deviation 5.77, truncated so that
negative values do not occur, as shown in Fig. 1(b). The op-
timal prices for this distribution are compared with those for the
uniform distribution used in Section V, and another truncated
Gaussian with mean 15 and standard deviation 10.

Optimal prices for the three distributions are shown in Fig. 3
for two cases of parameter setting. In each case, the optimal
prices show similar trends. For the uniform and Gaussian dis-
tributions with the same first and second moments, the prices
are virtually indistinguishable. The code price associated with
the larger standard deviation starts below the other code prices
and the curves cross as the load increases. Similarly, for most
loads the power price for the larger standard deviation is above
the power prices for the smaller standard deviation. This is due
to the higher proportion of active users with utilities in both low
and high ranges.

C. Delta Utility Distribution

We now assume that all users have the same utility function,
a step with a height of . There are two significant differ-
ences from the uniform and Gaussian cases. First, the proportion
of users at distance who are active now falls from one to zero at
some ”cutoff” distance, which we denote by . Second, there
are an infinite number of price combinations that can induce the
same set of active users, as shown in Fig. 4.

One set of optimal prices is shown in Fig. 5(a), and the re-
sulting cutoff distances are shown in Fig. 5(b). In the first sce-
nario ( dB, ), at loads less than one the
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Fig. 4. Equivalent price combinations for utility maximization with delta distribution.

Fig. 5. Utility and revenue maximization with delta distribution. (a) Optimal prices versus load. (b) Cutoff distance versus load.

system is IL, i.e., , as it was in the uniform and Gaussian
utility cases [Fig. 3(a)]. Note, however, that it is no longer neces-
sary that optimal prices be equal to the associated shadow costs.
As the offered load rises above one, the supply of codes are
exhausted. The optimal prices rise, and the cutoff distance
shrinks.

In the second scenario ( dB, ), the system
progresses from IL, through IL + PL and IL + PL + CL, to IL +
CL. This pattern is the same as in the uniform and Gaussian
cases [Fig. 3(b)]. At loads less than 0.5, all users are active,
since the transfer price is less than the utility . At loads
between 0.5 and 1.5, the power price is higher than in the first
scenario, resulting in a lower cutoff distance. Again note that
optimal prices need not follow the shadow costs.

VII. LARGE SYSTEM REVENUE MAXIMIZATION

We now return to the revenue maximization problem initially
posed as Problem FR1. The set of active users is given by

, and the large system net revenue per
code is

(10)

The corresponding optimization problem is:
Problem LR1:

such that inequalities (6) and (7) are satisfied.
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Fig. 6. Revenue maximization with uniform distribution at P=� = 40 dB, � = 16. (a) Optimal prices versus load. (b) Proportion of users at distance r who
are active.

To find the optimal , we set , which gives

(11)

The right side of (11) represents the gain in revenue due to a
marginal increase in , and the left side of (11) represents the
corresponding loss in revenue due to users becoming inactive
after the price increase.

Similarly, setting gives

(12)

These terms have the analogous interpretations as those in
(11).

Unlike utility maximization, when maximizing revenue, there
may be both excess power and codes in the cell even when there
are inactive users who could generate positive net revenue. An-
other difference is that for revenue maximization, there are no
explicit relations between the optimal prices and shadow costs
associated with the code and power constraints. The optimal
prices can be computed for some specific utility and power dis-
tributions by using the following alternative revenue expression:

(13)
where is the complementary distribu-
tion function for the step utility and is the power required
by user at distance to just achieve .

VIII. NUMERICAL STUDY OF REVENUE MAXIMIZATION

In this section, we present numerical results to show how the
system phases (DL, IL, PL, and CL) and optimal prices vary

with the offered load, power limit, and the transfer price. In the
following subsections, we consider utility distributions given by
uniform and delta densities.

A. Uniform Utility Distribution

As in the utility maximization problem, we assume the height
of the step in the user’s utility function is uniformly distributed
between and . We start with the same first
scenario as in previous sections, in which dB and

. The optimal price per code and price per unit trans-
mitted power are shown in Fig. 6(a).

At loads less than two, the system is only IL, meaning that
there are excess power and codes in the cell, but that the trans-
mitted power in this cell negatively affects the revenue in neigh-
boring cells. In the utility-maximization case, the optimal prices
for loads less than one were and . In the rev-
enue-maximization case, it can be shown using (13) that the
optimal prices in this region are and
(when ). When maximizing utility, if the cell is not
CL or PL, the goal is to activate all users below some power
threshold. This is accomplished by setting the power price to

, which matches the shadow cost on interference. When max-
imizing revenue, however, additional revenue can be generated
from all active users by raising the code price and correspond-
ingly lowering the power price. This price set selects users with
higher utilities by decreasing the number of active users at small

and increasing the number of active users at large .
At loads greater than two, the system is both IL and CL. The

transition to CL happens at about twice the load as in the utility-
maximization case. This is because the prices at lower loads
admit only about 1/2 of the offered traffic. The number of active
users is shown in Fig. 6(b).

We now turn to the second scenario, in which dB
and . The optimal prices are shown in Fig. 7. As in the
first scenario, at low loads, the optimal prices are and

. The transition to PL again occurs at approximately
twice the load at which the analogous transition occurs in the
utility-maximization case.



542 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004

Fig. 7. Revenue maximization with uniform distribution at P=� = 37 dB, � = 10. (a) Optimal prices versus load. (b) Proportion of users at distance r who
are active.

B. Delta Utility Distribution

We now assume that all users have the same utility function, a
step with a height of . It can be proven that the optimal
set of active users (cutoff distance) is exactly the same as that
in the utility-maximizing case, while the optimal prices are now
unique, shown in Fig. 5. More discussion can be found in [15].

IX. CONCLUSION

We have studied forward link power allocation for voice users
in a single isolated cell. We proposed admission control policies
that base a new call admission decision not only upon avail-
able capacity, but also upon the required forward link transmit
power, and upon the user’s willingness to pay. We have shown
how pricing can achieve the optimal resource allocation in a dis-
tributed fashion. When the network objective is to maximize the
total utility of all users, the optimal prices per code and per
unit transmitted power can be set equal to the shadow costs
corresponding to the resource constraints. When the network
objective is to maximize total revenue, the optimal resource
allocation may result in fewer active users; even if resources are
available, the network may discourage users who have relatively
low utilities.

APPENDIX

PROOF OF THEOREM 5.5

We use the duality property in nonlinear programming [14].
Problem LU1 is the primal problem. The Lagrangian is

(14)

Let . It is easy to show that

is achieved when each user chooses to maximize
surplus, which is given by , where
is an indicator function for . For the step utility function
[shown in Fig. 1(a)], the surplus is maximized either at (

, ), corresponding to an inactive user, or at ( ,
), where is the transmit power required to obtain the

SINR target . The active user set is, therefore,
.

The dual problem is

such that

Since and , to solve the dual problem, we must
have

and

(15)

These conditions state that the code or power constraint is
not binding if and only if the corresponding price is zero. Let

, and . We observe

that when the users maximize their surplus, the average power
per code ( ) and fraction of active codes
( ) are continuous decreasing functions of
and , respectively. Furthermore, by varying these shadow
costs, can be set to any value between zero
and , and can be set to any value between
zero and one. This establishes the complementary slackness
conditions (15). In other words, , and there is no
duality gap. By setting , the theorem follows from
[14, Proposition 5.1.5]. Q.E.D.
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