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Scalable Security for Petascale Parallel File Systems

Andrew W. Leung Ethan L. Miller Stephanie Jones
Storage Systems Research Center, University of California, Santa Cruz, CA 95064, USA

{aleung,elm,snjones}@cs.ucsc.edu

ABSTRACT
Petascale, high-performance file systems often hold sensitive
data and thus require security, but authentication and au-
thorization can dramatically reduce performance. Existing
security solutions perform poorly in these environments be-
cause they cannot scale with the number of nodes, highly
distributed data, and demanding workloads. To address
these issues, we developed Maat, a security protocol de-
signed to provide strong, scalable security to these systems.
Maat introduces three new techniques. Extended capabilities
limit the number of capabilities needed by allowing a capa-
bility to authorize I/O for any number of client-file pairs.
Automatic Revocation uses short capability lifetimes to al-
low capability expiration to act as global revocation, while
supporting non-revoked capability renewal. Secure Delega-
tion allows clients to securely act on behalf of a group to
open files and distribute access, facilitating secure joint com-
putations. Experiments on the Maat prototype in the Ceph
petascale file system show an overhead as little as 6-7%.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; D.4.3.
[File Systems Management]: Distributed file systems

General Terms
performance, security

Keywords
secure object-based storage, capabilities, high-performance
computing, scalability

1. INTRODUCTION
The demand from science, research, and business for large,

high-performance storage has risen in recent years. High
performance computing (HPC) scientific applications such
as physical and chemical simulations have demanding I/O

This paper will be published in the Proceedings of SC07,
Reno, Nevada, November 11–16, 2007.

patterns, and their large data sets require terabytes to peta-
bytes of storage. Businesses such as Google and Yahoo! also
have HPC applications, such as MapReduce [7], that require
giant web indices or image archives, placing a heavy load on
storage infrastructure. Securing such large-scale HPC stor-
age systems is an important challenge because of the large
number of users and potentially sensitive data stored on
them. For example, scientific research data stored on large-
scale storage systems can include highly classified data; even
unclassified data, such as simulations of drug effectiveness
or geologic survey analysis data for oil drilling, can be worth
millions of dollars. However, existing large-scale storage sys-
tems largely ignore security, using (at most) advisory secu-
rity techniques to restrict access to data. Unfortunately,
this approach has led to unprivileged access to data and
subsequent litigation and government investigations.

To secure I/O in petascale parallel file systems, it is insuffi-
cient to use traditional distributed access control techniques
that are designed for smaller systems with general or ran-
dom workloads. Petascale file systems may service tens of
thousands of clients and storage devices and must support
I/O patterns that are highly parallel and very bursty [31].
These two factors increase the cost of traditional security
techniques, which are often based on pairwise associations
between clients and storage devices, and can result in weak
security. There have been numerous efforts to secure dis-
tributed storage, but most were not designed for the size and
demand of large HPC systems [1, 3, 8, 12, 20, 25]. These
solutions were designed for general workloads with a modest
number of relatively small files and requests, and most were
intended for systems with a limited number of clients and
storage devices. When incorporated into large parallel file
systems, current approaches either degrade performance or
rely upon weaker security mechanisms.

Existing protocols perform poorly in large parallel file sys-
tems because they do not scale well—the number of secu-
rity operations is strongly tied to the number of devices
and requests. For example, existing approaches may issue
a capability for every block or object being accessed (i. e.,
a capability authorizes a single block or object I/O) [12].
While this approach works well in smaller systems, it does
not scale to petabyte-scale systems, in which files contain-
ing terabytes of data are striped across thousands of devices
and accessed by thousands of clients. A single access to a
1TB file striped into 1MB objects would need a million ca-
pabilities; it is impractical to return that many capabilities
when a file is opened. Worse, each client accessing the file
would require these capabilities; while each client might use



a different subset, capabilities would have to be sent to the
proper locations in advance because capability sharing by
clients is difficult or non-existent in current systems.

To address these shortcomings, we designed and imple-
mented Maat, a strong security protocol designed to scale
to petabyte-scale parallel file systems. In developing Maat,
we reconsidered traditional I/O security techniques with the
goal of allowing security to scale to large systems with very
demanding workloads. This paper describes the mechanisms
that Maat uses to provide scalable I/O security for: pre-
venting unauthorized data access, revoking user access priv-
ileges, and safeguarding against common security threats
such as spoofing, replay, and man-in-the-middle attacks.

Maat introduces three scalable security techniques. First,
access control is enforced through extended capabilities, an
extension of traditional capability tokens, that can autho-
rize I/O for any number of clients to any number of files.
For example, a single extended capability may authorize a
read or write operation for a hundred clients to any block in
each of a hundred files. By authorizing access at the gran-
ularity of files and aggregating many authorizations into a
single capability, Maat is able to greatly reduce the number
of capabilities needed. Second, automatic revocation makes
it possible to revoke a client’s access privileges without the
need to explicitly contact any clients or storage devices by
giving capabilities short lifetimes. As a result, revoking a ca-
pability can be done by allowing the capability to expire—no
explicit notification to storage devices is required. Contin-
ued use of valid capabilities is handled by a renewal protocol
that extends the lifetimes of batches of existing capabilities
with minimal overhead. This paradigm shifts the cost of
revocation to renewal, where it can be handled in a more
scalable fashion. Third, secure delegation allows for scal-
able cooperative computation and I/O, a common feature
of HPC workloads. A single client generates a temporary
asymmetric key pair and opens a file on behalf of the public
portion of the key pair. The private portion of the key pair
is distributed to other clients who use it to access the file
without having to receive any additional authorization. The
use of a temporary key pair shifts security from an insecure
opaque capability to the possession of a secure private key.
Maat’s secure delegation provides an efficient and secure im-
plementation of the proposed POSIX HPC I/O extensions
openg() and openfh() [35].

We implemented Maat in Ceph [33], a petabyte-scale,
high-performance distributed file system. Experiments both
with and without security show that Maat is able to achieve
strong security on Ceph while incurring less than 7% over-
head for high performance workloads. Additionally, Maat
has little impact on latency and throughput, allowing se-
cured Ceph to achieve nearly the same performance as inse-
cure Ceph operation.

2. BACKGROUND
There are a number of parallel file systems that have been

developed recently and are in use today [4, 10, 11, 21, 27,
29, 33]. Most of these file systems consist of three main com-
ponents: the client, a metadata server cluster (MDS), and a
cluster of storage devices, such as network-attached disks or
object storage devices (OSD). A key concept behind this de-
sign is the decoupling of metadata and data paths. Clients
communicate all namespace operations, such as open(), to
the MDS and all file I/O operations, such as read() and
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Figure 1: Parallel file system architecture and secu-
rity flow. Clients request capabilities from the MDS
and use them to request I/O from storage devices.

write(), to the storage devices.
A result of this design is that storage devices have no im-

plicit knowledge of access privileges or authorizations be-
cause this information is stored at the MDS. Thus, the
MDS must communicate authorizations to storage devices
via capabilities—communicable tokens of authority [18]. Be-
fore any storage device can authorize an I/O, a client must
receive a capability authorizing the I/O from the MDS and
present it to the storage device with the I/O request. The
MDS cryptographically hardens the capability with a digital
signature or HMAC to guarantee to the storage device that
the capability was not forged or altered. Figure 1 demon-
strates the architecture and security flow in most parallel file
systems. The trust model assumes the MDS is a trusted or-
acle and reference monitor. The storage devices are trusted
to store data and only perform I/O for authorized requests.
No implicit trust is placed on clients.

2.1 What’s Special About Petascale File Sys-
tems for HPC?

Petabyte-scale distributed file systems used for high per-
formance computing (HPC) are quite different from the some-
what smaller file systems for which most security systems
were developed. Petascale file systems are a much more
challenging environment to secure for the following reasons:
Data is large and highly distributed. Files in large-
scale file systems are often extremely large, containing giga-
bytes or terabytes of data, and can be striped across thou-
sands of devices [31]. Previous security protocols distribute
capabilities at the granularity of a block or object, requiring
the generation of thousands or even millions of capabilities.
Some security systems have tried to alleviate this by issuing
capabilities that grant access to all file data on a device.
Though this helps, thousands of capabilities must still be
used to access a large file which is striped over thousands
of devices, thus creating high load for servers generating
capabilities, latency for clients opening files, high load for
data servers verifying capabilities, and latency for clients
performing I/O.
Many clients and storage devices. Large-scale HPC
systems may have tens of thousands of clients and storage
devices, increasing the cost of many security operations. For
example, changing file permissions becomes extremely ex-
pensive when thousands of devices must be contacted to
revoke a capability. Doing so quickly and reliably is often
impractical in large-scale systems.
Demanding I/O and access patterns. Parallel file sys-
tems are designed to support HPC workloads with demand-
ing access patterns that create worst-case performance sce-
narios for existing security solutions. File access and I/O
are both extremely bursty and highly parallel [31], creating
workloads in which thousands of clients accessing a single



file within seconds is common.
Added threat environment. Physical security for tens
of thousands of clients and storage devices may not be fea-
sible. Additionally, it is unlikely that network security can
be strictly enforced across the whole network, invalidating
assumptions of secure communication in previous solutions.
For example, a system in which the simple possession of a
capability is sufficient to authorize I/O can fail on insecure
networks where attackers can easily eavesdrop the network
and obtain capabilities.

2.2 Existing Parallel and Distributed File Sys-
tem Security

Parallel and distributed file systems feature disks or OSDs
connected directly to the network. Because of this model’s
inherent vulnerabilities, there has been a great deal of re-
search in providing secure I/O in these systems. Though
many of these solutions have been successful in smaller sys-
tems, most do not perform well in the large-scale, demanding
environment for which Maat was designed.

Granting a capability at the granularity of a block or an
object is often too expensive, even for smaller systems. As
a result, prior approaches have authorized access rights for
multiple blocks or objects with a single capability. NASD [12],
the T10 OSD protocol [32], LWFS [23], and SnapDragon [1]
all allow a capability to authorize I/O to a group of objects
that reside on the same storage device. Restricting access to
a single device does not significantly decrease the number of
capabilities required when files are striped across thousands
of devices. Additionally, these grouping strategies often re-
quire manual specification or are dependent on parameters
such as on-disk layout, further limiting capabilities from au-
thorizing I/O to many objects.

In many systems [1, 8, 12, 25, 37], an HMAC is used to
provide a guarantee that a capability was generated by the
MDS and has not been tampered with. An HMAC requires
a shared key between the MDS and the storage devices that
recognize the capability. While HMACs are simple to gen-
erate (they do not require public-key encryption), they are
too insecure to be used in large-scale systems. If an attacker
compromises a single storage device, the attacker gains the
key shared between the MDS and any storage devices that
share the same HMAC key, allowing the attacker to imper-
sonate the MDS, the system’s trusted oracle and reference
monitor, to any of those devices. To alleviate this insecu-
rity, keys are often shared only between the MDS and a
single disk, eliminating the threat of impersonation. This
approach restricts a capability to authorizing I/O on only
a single device, since only a single device can verify the ca-
pability. This prevents a capability from authorizing I/O to
large groups of blocks or objects which may reside on multi-
ple devices. SNAD [20], Plutus [16], Olson and Miller [24],
and Leung and Miller [17] all use public key cryptography
to secure access to files. SNAD and Plutus use public key
cryptography to make write operations externally verifiable,
while Olson and Miller use it to ensure a capability’s in-
tegrity. Using public key cryptography for capability in-
tegrity allows a capability to span any number of storage
devices because each device must simply know the MDS’s
public key. This also adds security because a subverted de-
vice will not be able to spoof any other device. The down-
side is public key cryptography is orders of magnitude slower
than shared key cryptography, potentially introducing high

performance penalties in the demanding HPC environments
in which Maat operates.

Previous work has tried to avoid some of these perfor-
mance issues by relaxing security constraints or relying on
an existing security infrastructure. Azagury, et al. [3] as-
sumes the existence of a network-level security infrastruc-
ture, such as IPSec, allowing them to authenticate secure
channels rather than clients. LWFS [23] also assumes a se-
cure transport layer allowing it to ignore potential replay
and eavesdropping of capabilities. However, most real-world
systems do not employ strong network or transport security.
This is due to the high overhead of encrypting and decrypt-
ing all traffic and the difficulty of enacting a key infrastruc-
ture across the entire network, thus limiting the scope of
these solutions. Singh, et al. [30] employ a trust framework
based on a client’s past trustworthiness, requiring the MDS
to monitor correctness of client accesses. Clients who rarely
make incorrect accesses are deemed trustworthy, and no ef-
fort is made to ensure that their accesses are valid. While
this framework does improve performance for trustworthy
clients, an obvious attack would be to gain trust through a
series of correct I/O requests and subsequently misbehave.

Access to a file is not secure unless that privilege can
be expunged. As file data becomes larger and the number
of devices increase, thousands of devices may need to be
contacted to revoke a single user’s access or change a file’s
permissions. Explicitly contacting every storage device that
contains data for a file is not scalable. Moreover, it is dif-
ficult to guarantee that the messages are received at their
destinations, meaning that the system “fails unsafe”: the
default behavior is to allow access, with revocation deny-
ing subsequent accesses. Systems such as NASD [12] and
SCARED [25] use object version numbers for revocation.
Capabilities in these systems authorize I/O to a specific ob-
ject version; thus, changing the object version acts to in-
validate all capabilities for that object. With this method,
revoking access to an entire file requires incrementing the
version number of every object in the file, which may be
millions of objects. SnapDragon [1] uses a similar approach,
though capabilities rather than objects are versioned. Other
systems use similar methods with revocation lists [26], back-
pointers [23], and key re-distribution [13], all of which re-
quire explicit messaging to all of the storage devices.

To mitigate the cost of explicitly contacting all storage
devices which may hold a specific capability, Cepheus [9],
SNAD [20], and Plutus [16] suggest the use of lazy revoca-
tion. When permissions change, access is revoked on the
first write operation rather than immediately revoking ac-
cess. This approach allows the immediate cost of a permis-
sion change to be deferred until the first write request, but
it also allows a revoked user to continue to read the file data
until it is overwritten.

3. Maat DESIGN AND IMPLEMENTATION
Maat provides strong, scalable access control using ex-

tended capabilities and automatic revocation and supports
cooperative computation with secure delegation. This sec-
tion discusses the concepts behind these techniques and how
Maat addresses them.

3.1 Design Assumptions and Notation
Maat has been implemented in the Ceph petascale, high

performance, distributed file system [33], allowing Maat to



make some simplifying assumptions. First, Maat assumes
that all storage devices are object storage devices, and are
thus intelligent devices with a CPU, network interface, local
cache, and a number of underlying disks [32]. Maat also
assume that each OSD can associate local object IDs with
global file identifiers: using CRUSH [34], an OSD can map
a global file identifier to the object IDs and locations of the
objects that contain the file data. Thus, Maat can issue ca-
pabilities that identify files, which OSDs can later associate
with object IDs in I/O requests. We also assume that clients
act as proxies for users. More specifically, each client acts on
behalf of a number of users, each of whom can be uniquely
identified. Throughout, whenever we refer to a client, we are
referring to a user acting through a client proxy. Finally, we
assume a secure synchronized clock protocol to keep time
relatively synchronized across nodes. Although these as-
sumptions are slightly restrictive, they hold true in many
parallel file systems. Additionally, making several conces-
sions to the current Maat design will make it possible to
port Maat to systems which do not meet these assumptions.

Securing a petascale storage system requires a protocol
with many messages; to ensure that the content of the mes-
sages is clear, we will use a standard notation to describe the
messages throughout this section. The notation A → B : M
denotes a message, M , sent from principal A to principal
B. The public and private keys of principal A are denoted
as KU

A and KR
A , respectively. To denote a shared secret key

between principals A and B, we use KAB . The encryption
of message M with A’s public key, KU

A will be written as
{M}KU

A ; This makes M unreadable to anyone who does not
possess A’s private key. The notation {M}KAB denotes the
encryption of M with shared key KAB; again, this makes M
unreadable to anyone who does not posses KAB . 〈M〉KR

A

denotes a message M signed with principal A’s private key,
allowing any principal with access to A’s public key to verify
that A “vouched for” the content of M . The hash of mes-
sage M is denoted using hash〈M〉. An HMAC uses a similar
notation, hash〈M, KAB〉, where a shared key KAB is hashed
in addition to M , allowing any principal that knows KAB to
verify that the message source also knows the secret key and
that M was not modified in transport. Finally, the letters
C, M , and D will be used to represent a client, MDS, and
OSD, respectively.

3.2 Authentication
Authentication in Maat requires each principal to have a

public/private key pair. We assume that all principals know
the authenticated public key of every MDS and OSD. Before
entering the system, each client creates a public/private key
pair, KR

C and KU
C , and a shared key, KCM , and shares the

public and shared keys with the MDS. When a client “logs
into” the system, it receives a signed ticket T that verifies
the authenticity of the client’s public key using an approach
similar to that of authentication server tickets used in Ker-
beros [22]. The ticket, shown in Figure 2(b), also contains
an initialization vector and an expiration time.

Once a client has received a ticket, it negotiates a unique
shared key KCD with each OSD, as shown in Figure 2(a).
The ticket’s initialization vector, the OSD’s public key, and
random data are hashed to generate the shared key. Maat
uses shared keys rather than public/private keys because of
the dramatic performance benefits, though, unlike a shared
key between the MDS and some number of OSDs, subvert-

C → M : request ticket , Ts, hash〈request , Ts, KCM 〉
M → C : T

C → D : {〈KCD, Ts,nonce〉KR
C}KU

D , T
D → C : nonce ′, hash〈nonce ′, KCD〉

(a) Messages sent to establish a shared key between a
client C and an OSD D. In Message 3, an OSD extracts
the client-disk shared key KCD by decrypting it using its
private key and authenticating the message source using
the public key in T. An OSD confirms correct receipt by
responding with a nonce challenge nonce ′.

T = 〈IDU , KU
C , IV , Ts, Te〉K

R
M

KCD = hash〈IV , KU
D , random data〉

(b) Definitions for a ticket T and client-disk shared key
KCD. T contains the user’s ID (IDU ), public key (KU

C ),
initialization vector (IV ), and the ticket’s lifetime. KCD

is computed by hashing IV with the OSD’s public key
and random data.

Figure 2: Protocol to negotiate a shared client-disk
key in Maat.

ing a client-OSD shared key does not allow any additional
principals to be spoofed. Clients securely distribute keys to
each OSD, who then verify correct receipt by responding to
a nonce challenge with a second nonce nonce ′. The protocol
in Figure 2(a) is done infrequently—no further negotiations
between clients and OSDs need be done until the ticket is
refreshed and the initialization vector is changed.

Though tickets are refreshed infrequently, refreshing a ticket
requires the client to migrate all shared keys to use the new
initialization vector. To improve the performance of the
resulting key re-negotiations, the MDS provides the client
with the new initialization vector prior to actually refresh-
ing the ticket, allowing the client to renegotiate shared keys
during slack time rather than re-negotiating all keys at once.
When the ticket is “formally” refreshed, the client will have
migrated most, if not all, of its shared keys to the new ini-
tialization vector, so few keys would need to be negotiated
at ticket refresh.

3.3 Extended Capabilities
Access control is the primary contributor to security over-

head because the number of capabilities and their resulting
cryptographic overhead tends to scale up as systems or work-
loads become larger. To reduce capability overhead, Maat
introduces the notion of an extended capability : a capability
able to authorize I/O for any number of clients to any num-
ber of files. Extended capabilities are conceptually equiva-
lent to the I/O authorizations of many traditional capabili-
ties aggregated into a single data structure. For example, a
traditional capability may state “user a has read access to
object y”, while an extended capability may say “users a,
b, and c have read access to files x, y and z.” By combin-
ing permissions, the MDS can generate fewer capabilities
because a single extended capability can replace multiple
traditional capabilities. This change also means that OSDs
need to verify fewer capabilities because more I/O requests
can be done using a single, previously verified, capability. It
should be noted that, while an extended capability can au-
thorize many I/Os, access control is still at the granularity
of a single file; individual files may be included or excluded
from a single extended capability. This is in contrast to



C → M : open(path ,mode), Ts,
hash〈open(path, mode), Ts, KCM 〉

M → C : C, hash〈C, KCM 〉
C → D : C, read(oid), Ts, hash〈read(oid), Ts, KCD〉
D → C : {data , Ts}KCD

(a) Protocol to open and read a file in Maat. Each mes-
sage has an HMAC allowing its source and contents to be
verified. File data may be encrypted in transit to prevent
eavesdropping.

D → C : update(RH ), Ts, hash〈update(RH ), Ts, KCD〉
C → M : update(RH ), Ts, hash〈update(RH ), Ts, KCM 〉
M → C : H

C → D : H

(b) Protocol to retrieve a Merkle tree in Maat. A client
forwards update requests to the MDS when it does not
have H cached locally; thus Messages 2 and 3 only occur
when the client does not have the tree cached.

C = 〈U, I, IDC ,mode, Ts, Te〉K
R
M

H = 〈RH , tree〉KR
M

(c) Contents of a capability C and a signed Merkle tree
H. In C, U and I are the root hashes of authorized users
and files, respectively, and IDC is a unique capability
identifier. H contains the Merkle tree associated with
root hash RH .

Figure 3: Protocols using extended capabilities.

coarse-grained access control models [15] in which access is
granted at the granularity of a set of files. The MDS enforces
the rule that all authorizations in a extended capability are
legal according to the MDS’s access control matrix.

Extended capabilities do not alter the I/O security model
presented in Section 2; the primary change is that the MDS
may intelligently insert additional I/O authorizations when
it generates a capability, as discussed in Section 3.3.3. The
protocol used by the client to open and read a file is shown in
Figure 3(a). After generating a capability, the MDS caches
it, bypassing the expensive capability generation process for
subsequent open() requests from clients that the MDS has
already pre-authorized; this activity on the MDS is trans-
parent to the client. Similarly, when an OSD verifies an
extended capability in response to an I/O request, it caches
the results of the signature verification, allowing the OSD
to bypass signature verifications for I/O requests which use
previously verified capabilities [36]. By authorizing many
I/Os in a single capability, extended capabilities increase
the number of cache hits at the MDS and allow the OSDs
to bypass more capability verifications.

3.3.1 Securing Extended Capabilities
To ensure that capabilities cannot be forged or altered,

Maat secures them using public-key cryptography. Each ca-
pability is signed by the MDS’s private key, allowing anyone
who knows the MDS’s public key to verify its integrity and
authenticity. Public key cryptography is used, rather than
shared key cryptography, for three reasons: convenience, se-
curity, and affordability. Any OSD can verify a capability,
conveniently allowing a capability to authorize I/O for a file
that may reside on thousands of different OSDs. For this to
be possible with shared keys, the MDS must share a com-
mon key with all OSDs. If this key were to become compro-

mised, which may not be uncommon in very large systems,
the attacker can spoof the MDS and any OSD. With public
key cryptography, however, obtaining the MDS’s public key
does not allow an attacker to forge signatures. Though Maat
pays a cost for the convenience and security of public key
cryptography, this cost for a small number of cryptographic
operations is amortized across thousands of I/O requests
by caching the results of both capability generation at the
MDS and verification at the OSDs. Thus, Maat can afford
to use public key cryptography even though it is orders of
magnitude slower than shared key cryptography, because it
dramatically reduces the number of capability generations
and verifications.

Ensuring integrity is not sufficient, however—extended ca-
pabilities must also ensure that simply obtaining a capabil-
ity, e. g. via eavesdropping an unencrypted network, does
not allow unprivileged data access. Such breaches can occur
in “pure capability systems,” in which simple possession of
a capability is sufficient to grant access. Maat confines I/O
authorization by explicitly naming all authorized users and
file identifiers in the capability. When an OSD verifies a
capability, it checks that the authenticated user making the
request is named in the capability and that the file identi-
fier in the capability maps to the object ID being read or
written, thus preventing an attacker from using a capability
to perform any unauthorized operations.

3.3.2 Making Extended Capabilities Fixed Size
Extended capabilities can become very large when they

must explicitly state all authorized users and files. Since
large capabilities can consume lots of cache space and are
inefficient for frequent network transmission, Maat creates
small, fixed size capabilities using Merkle hash trees [19].
Capabilities identify authorized users and files via the root
hash of a Merkle tree constructed from the user IDs or file
identifiers, with the root hash acting as a unique, fixed size
identifier for all elements in the tree. Merkle trees are used
because each inner node of the tree is itself the root hash of a
sub-tree corresponding to a subset of the original tree. This
allows easy composition and decomposition of new Merkle
trees, as illustrated in Figure 4.

A result of using root hashes in capabilities is that when
an OSD first receives a capability, it does not know which
users or files are authorized by the capability because it
does not know the user IDs or file identifiers associated with
a root hash. Maat uses an update protocol, shown in Fig-
ure 3(b) to allow an OSD to query the requesting client for
the Merkle tree associated with a root hash. Clients retrieve
and cache the signed1 Merkle tree from the MDS. By caching
the tree, clients ensure that all subsequent update requests
(i. e., another OSD verifying the capability) do not burden
the MDS. Once the OSD has cached the tree, it ensures that
any future uses of the root hash do not require an update.
Additionally, messages 2 and 3 in Figure 3(b) only occur
when a client does not have the Merkle tree, H, associated
with the root hash, RH . Thus, a capability which authorizes

1The Merkle tree signature has subsequently been removed
from the protocol, as it is not necessary. Each root hash rep-
resents a unique Merkle tree, therefore, a tree cannot have
the correct root hash unless it is the correct tree. This makes
forgery pointless and tampering obvious. The signature has
been included here because it is reflected in our benchmark-
ing results and removing it would lead to inconsistencies.
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Figure 4: Extended capabilities identify authorized
users and files using root hashes. This allow capa-
bilities to be fixed size, no matter how many I/Os
are authorized.

I/O for N users to M files located across J OSDs requires
a maximum of J OSD update requests for the N ×M I/Os
authorized by the capability.

3.3.3 Grouping I/O Authorizations
The technique by which I/O authorizations are grouped

into an extended capability directly affects how effectively
Maat can reduce capability generation and how well OSD
capability verification performs, i. e., the number of root
hash updates that must be performed. The four factors
that impact grouping effectiveness are the number of autho-
rizations per capability, the frequency with which groups
change, the overhead of the grouping scheme, and compat-
ibility in heterogeneous environments. Increasing the num-
ber of I/O authorizations per capability causes fewer capa-
bilities to be generated. The frequency with which groups
change affects how frequently OSDs must resolve new, un-
known root hashes, impacting capability verification perfor-
mance. The overhead of the grouping strategy determines
the time required to actually construct the group. Compat-
ibility defines how well the grouping strategy works in het-
erogeneous environments. Ultimately, the optimal grouping
strategy varies from system to system and depends on work-
load and system size, among other things. We briefly dis-
cuss several grouping approaches that we believe work well
for large-scale systems and HPC workloads.
Access Prediction. HPC applications often have repeated
access patterns, such as reading data files on boot and writ-
ing log files on close. Future file or user accesses can be
predicted based on past behavior and pro-actively included
in a capability. Clients can provide predicted future file
accesses to the MDS with open() requests, similar to the
prediction strategy discussed by Gobioff [12]. In addition,
the MDS can predict future users’ accesses. Prediction has
the upside of potentially grouping many authorizations into
a single capability, but can cause frequent group changes
if predictions are limited or incorrect. Also, prediction in-
curs a space and time penalty to store past behaviors and
calculate predictions.
Unix Permissions. Using Unix access control (i. e., owner,
group, world permissions) in a way similar to sharing in

Cepheus [9] has the major advantage of requiring a max-
imum of three capabilities for any single file. Only three
capabilities are needed because anyone accessing the file
must use either the user, group, or world permissions. Addi-
tionally, Unix groups do not change frequently. The major
downside is its incompatibility with other access control se-
mantics, such as those of Windows. In large-scale systems
various access control semantics may be needed for different
domains, therefore, not all files may be controlled by Unix

access semantics. Unless the MDS is sophisticated enough or
other steps are taken [14], multiple access control semantics
cannot be enforced.
Temporal Patterns. HPC workload access patterns have
strong temporal relationships, bursty accesses, and flash
crowds [31]. Batching groups of capability requests at the
client or MDS can alleviate congestion caused by these pat-
terns, similar to the batching approach used in the origi-
nal NASD design [12]. Temporal request batching can ab-
sorb bursty requests to reduce overall load, but can also
increase client latencies. Also, batching will only produce
large groups if temporal relationships are strong.
User or Application Knowledge. Users or applications
may know of an efficient grouping strategy, and may thus
manually define their own groupings, similar to T10’s set at-
tribute (SET ATTR) functionality [32]. Manual definitions
may be accurate but are also tedious, making it unlikely
group definitions will be rigorous or maintained.
Other Relationships. Other, simpler relationships may
also prove effective. For example, including all files in the
current working directory may serve as a quick and accurate
method of file access prediction. Additionally, combining
grouping strategies can improve the number of authoriza-
tions per capability.

3.4 Automatic Revocation
Revoking a capability by explicitly contacting storage de-

vices in a petascale storage system is very difficult for sev-
eral reasons. First, file data is striped across many stor-
age devices, meaning many devices must be contacted if a
capability is to be revoked. Second, extended capabilities
may exacerbate the problem by authorizing I/O to many
files, increasing the number of devices which hold the ca-
pability. Third, each storage device must remember which
capabilities were revoked, so as to not allow reuse later. To
achieve better scalability, Maat uses automatic revocation,
which allows global capability revocation without the need
to explicitly contact any storage devices. In this section we
discuss the techniques that make this possible.

Maat requires that each capability have a short lifetime;
our current prototype uses five minute lifetimes. This al-
lows Maat to shift the revocation paradigm from explicitly
contacting devices to simply allowing a capability to expire.
When an OSD verifies an I/O request, it checks to see if
the capability’s lifetime is valid; if not, it does not autho-
rize the I/O. When a file’s permissions change (e. g., using
chmod()), after a maximum of five minutes, all capabilities
permitting the now-invalid access have expired. By imme-
diately applying the permission changes to its local access
control matrix, the MDS ensures that it will no longer issue
capabilities that authorize the revoked access. As an addi-
tional benefit, revoking many accesses requires no greater
effort than revoking a single access. For example, revoking
all access privileges of a user simply requires the MDS to no



C → M : renewal(P ), Ts, hash〈renewal(P ), Ts, KCM 〉
M → C : R, hash〈R, KCM 〉
C → D : C, R, read(oid), Ts, hash〈read(oid), Ts, KCD〉

(a) Protocol to renew capabilities. Clients renew all capa-
bilities in use, P , and present renewal tokens, R, to OSDs
with I/O requests. The OSD uses the token to extend the
lifetime of the capabilities it names to a valid time.

R = 〈P + O, Te〉K
R
M

(b) Contents of a renewal token. The token renews all
valid requested capabilities, P , and all outstanding ca-
pabilities for all users, O in a single renewal token. All
renewed capabilities are valid until time Te.

Figure 5: Capability renewal protocol.

longer issue capabilities for that user. After a maximum of
five minutes, all of the user’s capabilities will have expired
and the user will no longer be able to access data. This al-
lows expiration to act as a global revocation, no matter how
large the system or where capabilities are located. While
there is a five minute window of vulnerability, techniques
similar to this have previously been used in formal proof
of network-attached storage security: the MDS does not ap-
ply a permission change until all capabilities authorizing the
modified access have expired, ensuring that permission state
on the MDS and OSDs are consistent [5].

While the goal of capability expiration is to allow scalable
revocation, it must also ensure that valid capabilities can
continue to be used. To do this, Maat uses a fast capability
renewal protocol, as shown in Figure 5. Clients periodically
submit requests to extend the lifetimes of capabilities that
they wish to continue using. In response, the MDS gen-
erates, caches, and returns renewal tokens that extend the
lifetime of a set of capabilities for the same length as the
original period—five minutes in the current implementation.
When making an I/O request, clients present renewal tokens
along with the expired capability to an OSD. The OSD can
subsequently verify that the token indeed extends the life-
time of the capability to a valid time and cache the result
of the verification.

The core concept behind scalable renewal is that the MDS
can generate a single renewal token which renews a large
number of valid capabilities by generating a renewal token
for all valid outstanding capabilities. In this way, a small
number of renewal tokens can extend the lifetimes of all valid
capabilities still in use, ensuring that the MDS spends a lim-
ited amount of time serving renewal requests. In essence,
this shifts the cost of revocation from revoking invalid capa-
bilities to renewing valid ones, which can be done in a much
more scalable fashion. As Figure 5 shows, the renewal token
R extends the lifetime of all requested capabilities P and all
outstanding capabilities O.

It may be the case, albeit rarely, that file or user access
must be immediately revoked. In the example of a compro-
mised client workstation, eventual revocation (i. e., waiting
for capabilities to expire) is insufficient. For these scenarios,
Maat uses an immediate revocation scheme. While explic-
itly contacting a large number of devices cannot be avoided,
Maat uses short capability lifetimes to eliminate the need
for OSDs to persistently remember all revoked capabilities.
Once an OSD has been notified of a capability revocation,
it only needs to remember the revocation for a maximum
of five minutes, since after that time the capability becomes

invalid. This allows Maat to support immediate revocation
without the need to require OSDs to remember past capa-
bilities or rotate capability IDs.

3.5 Secure Delegation
Large-scale high performance computing often involves

thousands of compute nodes collaborating on a common job,
thus requiring clients, even those without file access privi-
lege, to perform I/Os to and from shared files. Conceptu-
ally, facilitating these operations seems easy: a client simply
opens a file and distributes a capability to other clients par-
ticipating in the computation. Unfortunately, this gives rise
to several issues. First, a capability that authorizes I/O for
anyone who holds it is dangerous since anyone who obtains
it, including an attacker, can use it to access data. On the
other hand, the capability must be general enough to be
distributed to any client participating in the computation.
Second, delegated access must be temporary and limited
because it provides privileged access to unprivileged users,
though it should last as long as the computation. Third,
while group file opening and delegation must be secure, they
must also be fast, and ideally much faster than each client
individually opening the file.

The POSIX HPC I/O extensions openg() and openfh()

were designed to provide support for collaborative compu-
tation by allowing collective file opens and access delega-
tion [35]. The openg() operation takes a path and mode
and returns a file handle that can be transferred to coop-
erating clients and subsequently converted to a file descrip-
tor with openfh(). The proposed semantics of these oper-
ations require that the file handle, and therefore capability,
be transferable to any client. We describe how Maat uses
secure delegation to support secure cooperative computa-
tion, address the concerns above, and support these HPC
I/O extensions.

Group opens and delegation in Maat are implemented us-
ing temporary asymmetric computation keys. At the start
of a large compute job, a single client (the “lead”) initi-
ates a joint computation and generates an asymmetric key
pair that will last the duration of the computation. For each
file, the “lead” client calls openg(), passing the computation
public key along with the usual open() arguments, as shown
in Figure 6(a); this is the only open() call sent to the MDS
for this file. The MDS returns a file handle that includes a
capability to access the file and a token stating the lifetime
of the computation public key. The capability includes the
hash of the computation public key in place of a root hash
of user IDs, thus associating the capability with an asym-
metric key pair, rather than a set of users and allowing an
OSD to authorize I/O for anyone who can prove possession
of the computation private key. In Figure 6, F and L are
the file handle and public key lifetime token, respectively.

Once openg() returns, the “lead” client is free to pass the
file handle, computation key pair, and signed key lifetime to-
ken to any clients who are participating in the computation.
To prevent eavesdropping of the computation private key,
the key is encrypted with the receiving client’s public key.
Delegation can be optimized by the source client precom-
puting the encrypted private key for each receiving client.
To perform I/O, clients convert the file handle to a local file
descriptor using openfh(). Each client proves possession of
the computation private key by submitting a proof token
with I/O requests. The proof token is computed by signing



C → M : openg(path ,mode), KU
Comp, Ts,

hash〈openg(path ,mode), KU
Comp, Ts, KCM 〉

M → C : F, L,hash〈F, L, KCM 〉
(a) Protocol to open a file on behalf of a group. The “lead”
client submits the computation public key with openg()
requests. The MDS returns a file handle, F, and a public
key lifetime token, L. F contains the capability needed to
access the file.

C → C′ : {KR
Comp}K

U
C′ , F,L

C → D : read(oid), C, P, Ts, hash〈read(oid), Ts, KCD〉

D → C : update(KU
Comp), Ts,

hash〈update(KU
Comp), Ts, KCD〉

C → D : L

(b) Messages to securely delegate file access privilege. The
encrypted computation private key, file handle, and pub-
lic key lifetime token are distributed to clients participat-
ing in the computation. Each client computes a token P

that proves possession of the private computation key and
present it with I/O requests. Messages 3 and 4 only occur
if the OSD has not previously seen the computation public
key.

F = 〈path ,mode,flags , C, KU
Comp, Ts, Te〉K

R
M

L = 〈KU
Comp, Ts, Te〉K

R
M

P = {〈hash〈KU
Comp〉〉K

R
Comp}KCD

(c) Definitions for a file handle F, public key lifetime
token L, and private key proof token P. F contains a
capability to access the file and data for openfh() to
produce a local file descriptor. L authenticates the public
key and its expiration time. P proves possession of the
computation private key.

Figure 6: Secure group open and delegation.

the hash of the computation public key with the computa-
tion private key and encrypting it with the OSD shared key.
The signed hash proves possession of the computation pri-
vate key, while the encryption authenticates the client. If an
OSD has not previously seen the computation public key, a
client must also pass the signed key lifetime.

The computation key pair is the root of security in Maat’s
delegation protocol. Maat requires the key pair to exhibit
three properties to make it efficient and secure—it must be
temporary, renewable, and revocable. The key pair must be
temporary because it allows clients who may not otherwise
have access rights, the rights to access privileged files. How-
ever, since cooperative computation is often long-lived, this
privilege should last as long as the computation, requiring
the key pair to be renewable. Also, the key pair must be im-
mediately revocable since clients without normal file access
privileges may be participating in the computation.

When the MDS generates the computation public key life-
time token, L, it gives the key a short lifetime (five minutes
in the current implementation), making the key temporary.
Since cooperative I/O relies on an OSD validating both a
capability and a private key proof token, renewal and im-
mediate revocation can be achieved by renewing or revoking
the public key lifetime token. Maat implements protocols
very similar to capability renewal and revocation that al-
low a public key lifetime token to be renewed or revoked.
The only significant difference is that only the client who
initiated the joint computation can renew the public key

lifetime. This prevents a client who was delegated access to
a file from continually renewing the computation public key
and having persistent access to the file.

3.6 Implementation Details
We have implemented Maat in the Ceph petascale, high-

performance distributed file system. All cryptographic op-
erations were implemented using the Crypto++ library [6].
Maat has support for various cryptographic algorithms; the
current implementation uses 1023-bit ESIGN for public/private
key operations, 128-bit AES for shared key operations, and
SHA-1 for one-way hash functions. All were chosen for their
high performance.

The current Maat implementation supports several of the
authorization grouping strategies previously mentioned: pre-
diction, Unix groups, and temporal batching. Unix groups
are implemented by using Merkle trees with group IDs point-
ing to the root hash value associated with the group’s Merkle
tree. Prediction uses the Recent Popularity algorithm [2],
which predicts a successor s if s occurs at least j times in the
k previous observations and makes no prediction otherwise.
We chose Recent Popularity because adjusting the j and k
values allows us to adjust the accuracy of our prediction; we
chose j = 4 and k = 6. Additionally, only making predic-
tions with confidence avoids the penalty of creating groups
which are likely incorrect; it is important to note, however,
that the MDS never creates capabilities that are not permit-
ted by its current access control matrix. Temporal batching
is designed to handle flash crowd-like workloads. The MDS
begins batching open() requests for a file if four requests
for the same file are received within 20ms of each other.
Additionally, the MDS begins batching requests from a user
if more than four requests from the same user for differ-
ent files are received within 20 ms of each other. Batching
is currently set for one second, though a smaller value is
probably more desirable for most workloads. Once a group
of requests is batched, a capability is generated to autho-
rize all requests in the batch. Whenever Maat cannot group
multiple authorizations into a capability, it issues capabili-
ties which authorize a single user to access a single file by
explicitly naming them in the capability and eschewing the
use of Merkle trees.

Capability expiration is currently configured for five min-
utes; after four minutes, each client renews capabilities for
all open files. By renewing after four minutes, clients are
pro-active about not allowing capabilities in use to expire.
Also, by renewing all open capabilities, the clients ensure
that no currently used capability will expire while in use.
In addition to the requested capabilities, the MDS renews
capabilities for all currently opened files, for all users.

4. PERFORMANCE EVALUATION
We evaluated Maat to assess the overhead and scalabil-

ity of securing a petabyte-scale file system using “insecure”
Ceph as a baseline. We evaluated I/O performance using a
microbenchmark run with two Maat authorization grouping
strategies, Unix groups and prediction, and compared them
both to secure I/O without grouping and to baseline Ceph.
This experiment highlighted the benefits of extended capa-
bilities, and explored the pros and cons of different autho-
rization grouping strategies. We also evaluated the perfor-
mance of batch-based authorization grouping during flash
crowds and the overhead incurred for capability renewal.



Operation open() write() read()

Baseline 41 329 45
Maat 597 619 291

Maat (Merkle) 615 1534 1301
Maat (Cache Hit) 44 333 48

Table 1: A comparison of open(), write, and read()

operations in microseconds. The drastic increase in
overhead when a capability must be generated or
verified demonstrates the critical need for Maat to
maximize capability cache hits.

We evaluated Maat’s performance under an HPC workload
by running the IOR2 benchmark [28], an HPC parallel file
system benchmark. Finally, we used an analytical model
to compare Maat and other security schemes in a petascale
environment.

4.1 Experimental Setup
Our experiment test bed consisted of an 18 node Linux

cluster in which each node was a PC with a 2.8 GHz Pen-
tium 4 processor with 3.1 GB of RAM connected to a local
SCSI disk and running Red Hat Enterprise Linux 4 (kernel
version 2.6.9). The nodes were networked via gigabit Ether-
net through an Extreme Networks switch. The cluster was
partitioned into 1 MDS, 10 OSDs, and 7 client nodes, each of
which was able to run up to 20 client processes concurrently
without performance degradation. Our benchmarks were
done without on-wire encryption because encryption tends
hide the sources of overhead by adding encryption costs to
each I/O operation. Additionally, all experiments were con-
ducted with the local client data cache disabled because the
Ceph client write back policy resulted in high variability
between runs.

4.2 Overhead from Capability Operations
To determine the performance impact of introducing secu-

rity via capabilities and quantify the potential savings from
caching capability generations and verifications, we timed
open() operations at the MDS and, write() and read()

operations at an OSD under several scenarios and compared
these operations to the times required in baseline Ceph, with
the results summarized in Table 1. Open requests that re-
quire capability generation run 14 times slower than baseline
Ceph, 90% of which can be attributed to the signature re-
quired for capabilities. Because the operation was timed
at the MDS, this difference is greater than it would be if
timed at a client, since network round trip time would be
accounted for. Handling an open with a cached capabil-
ity performs significantly better, incurring a penalty of 3 µs
(7%) due to lookups. When verifying a capability, write and
read operations perform 2 and 6 times slower than baseline
Ceph, respectively. When Merkle trees are used, these over-
heads increase by a factor of 5 for writes and 29 for reads
because the OSD has not already cached the Merkle tree
below the root hash. In our experiment, the client did not
have the tree cached either, requiring additional messages
from the OSD to the client and from the client to the MDS.
However, when an OSD has previously verified a capability,
I/O performance is on par with baseline Ceph performance,
with performance penalties under 7% for strong security.
These numbers demonstrate the need to reduce capability

generations and verifications via caching.

4.3 Microbenchmark Performance
To evaluate Maat’s performance and scalability under var-

ious system sizes, we ran several experiments with a mi-
crobenchmark in which each client writes to 6 shared files
and 4 non-shared files with 5MB being written to each in
128 KB byte chunks. Each run began with a fresh file sys-
tem and a cold capability cache. We pre-configured Unix

groups such that every 10 clients shared a group. Using this
setup, we evaluated how extended capabilities performed
under various authorization grouping strategies, varying the
number of clients from 10 to 140.
open() Latency. Figure 7(a) charts the average latency
for an MDS open() request, showing that the use of ex-
tended capabilities to group authorizations results in a ma-
jor performance improvement. Both Unix and prediction
grouping perform over 3 times better than no grouping,
and Unix grouping approaches baseline Ceph performance.
Unix groups perform better than prediction because predic-
tion does not group as many authorizations per capability.
For each client, prediction generates a capability that au-
thorizes access to all shared files and capabilities for all four
non-shared files. In contrast, Unix grouping generates one
capability per file, but that capability authorizes write priv-
ileges for all ten users in the group. While both approaches
performed well, we believe combining both grouping strate-
gies would produce better results as even fewer capabilities
would need to be generated.
write() Latency. Figure 7(b) shows the average latency
for client write() operations. Unix and prediction grouping
add a negligible overhead to baseline Ceph performance, but
not using authorization grouping incurs a higher overhead.
While Maat’s low overhead contributes to the low latency,
other factors do as well. First, the round trip network la-
tency for client requests masks differences between baseline
Ceph and Maat by adding a relatively constant overhead
for all writes. Second, each client writes 5 MB in 128 KB
chunks, so at most one (the first) of the 40 writes per file
will miss the capability verification cache at any given OSD,
regardless of the grouping strategy. Grouping authoriza-
tions decreases the number of initial writes that will miss
the cache, accounting for the discrepancy between the dif-
ferent strategies.
write() Throughput. Figure 7(c) shows that, as before,
Unix and prediction grouping do not noticeably decrease
per-OSD write throughput compared to the baseline, while
not grouping authorizations lowers throughput. The Unix

and prediction grouping decrease total throughput 3.8 and
1.3%, respectively. Total throughput is decreased 20% with-
out grouping.

4.4 Scalability
To further explore Maat’s scalability, we conducted two

experiments first using flash crowds then capability renewal.
Our flash crowd experiment consisted of each client issuing
an open() request for the same file. We varied the number
of clients from 20 to 100. Figure 8(a) shows the results of
our flash crowd experiment. Batching is able to keep open
latency low, very close to baseline Ceph. Without using
batching, open latency quickly increases to over 30 times
that of baseline Ceph. This difference is easily attributed to
the disparity in the number of capabilities generated. With-
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Figure 7: Results of a mixed workload microbenchmark.
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Figure 8: An analysis of Maat’s scalability for flash crowds and capability renewal.

out batching, the MDS generates a capability per request,
while batching requires only a single capability per batch.

For our capability renewal experiment, we adjusted Maat’s
renewal period to have clients request renewals every 15 sec-
onds while clients wrote a series of non-shared, 32 MB files
for 50 seconds. The workload allowed each client to make
three renewal requests before finishing. Figure 8(b) shows
that the average MDS latency for renewal requests declines
as the number of clients increases. This behavior results
from the number of renewal token generations staying con-
stant even as the number of renewal requests increases.

4.5 IOR2 Benchmark
To gauge Maat’s performance under a real HPC workload,

we used a modified version of the IOR2 benchmark [28], a
parallel file system benchmark designed for large-scale sys-
tems. The benchmark is broken down into 512 trace files
collected from 512 separate processes, each of which writes
a series of non-shared output files and reads them back. A
limited number of shared files are also written.

For our experiments, each client ran two trace files ran-
domly selected from the 512 possible traces, with the number
of clients varying from 10 to 140. Because each experiment
began with a fresh file system, we modified each trace file
to issue a write() and lseek() prior to any read to ensure
reads were not issued to an unwritten offset. Each trace
issues about 520 reads, so our modifications added another
520 writes, resulting in each trace issuing about 1,030 total
writes. The majority of I/O is done in 64 KB chunks and
approximately 25 files are opened in each trace file. Again,
we configured Unix groups so that every 10 clients shared
a group. We ran all 512 trace files though our Recent Pop-
ularity predictor to calculate predictions.

The results in Figure 9(a) show that per-OSD read and
write throughput were comparable across all four configura-

tions. The minimal effect on throughput is slightly different
than what we expected, but can be attributed to the I/O-
centric nature of the benchmark. With our modifications,
over 125 MB are written per trace file, which, at two pro-
cesses per client, results in 250 MB being written per client.
As a result, the cost of verifications is amortized across
the large number of I/O requests. Average open() latency,
in Figure 9(b), shows that Unix grouping produces results
comparable to baseline Ceph, while prediction latencies are
generally over 100 µs slower. This discrepancy is due to Re-
cent Popularity producing relatively few predictions; only a
few of the IOR2 access patterns were sufficiently common for
Recent Popularity to have confidence to make a prediction.
Finally, Figure 9(c) shows the total time required to run a
single IOR2 trace file. Without any authorization grouping,
a 22% overhead is incurred over baseline Ceph, but Unix

and prediction grouping reduce the overhead significantly
to 6% and 7%, respectively.

4.6 Petascale Analysis
Based on our experiments timing Maat’s performance in

a real environment, we developed an analytical model to
show how Maat would perform in petascale systems and
how it compares to other security schemes. Total MDS ca-
pability generation overhead, M(S), can be calculated by
M(S) = (((objects/bytes)×S)/G)×C, where S is the size, in
bytes, of the file being opened, G is the grouping factor (the
number of authorizations per capability), and C is the cryp-
tographic cost associated with each capability generation.
We assume that each object is 220 bytes (1MB) because
Ceph objects default to this size. For extended capabilities,
we fix the grouping factor to 10×(objects/bytes)×S, result-
ing in 10 file authorizations per capability. Whole file capa-
bilities have one authorization per capability, for a grouping
factor of (objects/bytes)×S, and per-object capabilities have
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Figure 9: Results of the IOR2 benchmark.

a grouping factor of 1. Our experiments fixed the values of
C at 3µs for an HMAC and 350 µs for an ESIGN signature,
resulting in the following overheads for different capability
schemes:

M(S) = 35 extended capability
M(S) = 350 whole file capability
M(S) = (3 × S)/220 per-object capability

The cost of opening a file is constant for extended capabili-
ties (assuming a fixed number of authorizations) and whole
file capabilities because they do not depend on file size. Per-
object capability overhead, however, is a function of file size.
Using the timings above, extended capabilities incur a lower
overhead than per-object capabilities when opening any file
larger than 12 MB. Thus, in a petascale environment where
clients issue 106 open() requests for files that each contain
a gigabyte of data, extended capabilities would result in a
35 × 106 µs, or 35 second overhead at the MDS. Whole file
capabilities would incur an overhead of 350 seconds—ten
times greater. However, per-object capabilities would re-
quire 3×(230/220)×106 µs = 3072 seconds, nearly 100 times
slower than extended capabilities.

5. FUTURE WORK
The current Maat design works very well at providing se-

curity for petabyte-scale storage systems; however, some is-
sues remain. First, Maat’s authorization grouping strategy
has a dramatic impact on the performance improvements
gained by extended capabilities. While we presented several
approaches for how to group authorizations, our list is by no
means exhaustive. Exploring other grouping strategies can
identify those that work best for specific workloads.

A second issue is that Maat was designed to provide scal-
able I/O security for petascale, high-performance storage.
While it provides an authentication and authorization frame-
work, it does not provide on-disk security. For many sys-
tems, access control is not sufficient; rather, such file sys-
tems want to keep all file contents encrypted on the network-
attached devices [1, 16, 20] because on-disk security prevents
an attacker from obtaining data even when the attacker has
physical possession of the device. Additionally, on-disk se-
curity further limits the amount of trust that need be placed
on storage devices. We are currently exploring scalable tech-
niques for encrypting data on disk in petascale storage sys-
tems.

6. CONCLUSIONS
This paper described Maat, a scalable method for secur-

ing petabyte-scale parallel file systems by using three novel
techniques for achieving scalability: extended capabilities,
automatic revocation, and secure delegation. By limiting
the number of cryptographic operations while still providing
strong security, Maat can scale to handle file systems with
thousands of clients accessing files striped across thousands
of network-attached storage devices. Maat accomplishes this
goal by using capabilities that can authorize I/O for any
number of clients to any number of files, revocation which
does not require explicit messaging to any devices, and a
secure method for access delegation.

We evaluated a prototype implementation of Maat in the
Ceph petascale distributed file system, focusing on Maat’s
scalability. Our scalability experiments show that, as sys-
tem size increases, Maat has a minimal impact on latency
and throughput for high-performance computing workloads.
More concretely, Maat is able to add strong security while in-
curring as little as 6–7% overhead on an I/O-intensive HPC
benchmark. With strong security available for scalable stor-
age for so little overhead, there is no longer any reason to
exclude secure file system authentication and authorization
from petabyte-scale high performance storage.
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