
UC Riverside
UC Riverside Previously Published Works

Title
TRAVOLTA: GPU acceleration and algorithmic improvements for constructing quantum
optimal control fields in photo-excited systems

Permalink
https://escholarship.org/uc/item/7jh6k6ph

Authors
Rodríguez-Borbón, José M
Wang, Xian
Diéguez, Adrián P
et al.

Publication Date
2024-03-01

DOI
10.1016/j.cpc.2023.109017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7jh6k6ph
https://escholarship.org/uc/item/7jh6k6ph#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Computer Physics Communications 296 (2024) 109017

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

TRAVOLTA: GPU acceleration and algorithmic improvements for

constructing quantum optimal control fields in photo-excited systems ✩,✩✩

José M. Rodríguez-Borbón a, Xian Wang b, Adrián P. Diéguez c, Khaled Z. Ibrahim c,
Bryan M. Wong d,∗

a Materials Science & Engineering Program, University of California-Riverside, 900 University Avenue, Riverside, 92521, CA, USA
b Department of Physics & Astronomy, University of California-Riverside, 900 University Avenue, Riverside, 92521, CA, USA
c Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 94720, CA, USA
d Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, 900 University
Avenue, Riverside, 92521, CA, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Quantum optimal control

GPUs

Time-dependent Schrödinger equation

Parallelization

Gradient ascent optimization

John Travolta

We present an open-source software package, TRAVOLTA (Terrific Refinements to Accelerate, Validate, and
Optimize Large Time-dependent Algorithms), for carrying out massively parallelized quantum optimal control
calculations on GPUs. The TRAVOLTA software package is a significant overhaul of our previous NIC-CAGE
algorithm and also includes algorithmic improvements to the gradient ascent procedure to enable faster
convergence. We examine three different variants of GPU parallelization to assess their performance in
constructing optimal control fields in a variety of quantum systems. In addition, we provide several examples
with extensive benchmarks of our GPU-enhanced TRAVOLTA code to show that it generates the same results as
previous CPU-based algorithms but with a speedup that is more than ten times faster. Our GPU enhancements
and algorithmic improvements enable large quantum optimal control calculations that can be efficiently and
routinely executed on modern multi-core computational hardware.

Program summary

Program Title: TRAVOLTA

CPC Library link to program files: https://doi .org /10 .17632 /grwppm37rn .1
Licensing provisions: GNU General Public License 3
Programming language: C++, openBLAS, and CUDA

Supplementary material: Brief review of LU decomposition, raw numerical values used to generate Fig. 6 in the
main text, and input examples for the TRAVOLTA software package.

Nature of problem: The TRAVOLTA software package utilizes GPU accelerated routines and new algorithmic
improvements to compute optimized electric fields that can drive a system from a known initial vibrational
eigenstate to a specified final quantum state with a large (≈ 1) transition probability.

Solution method: Quantum control, GPU acceleration, analytic gradients, Crank-Nicolson propagation, and
gradient ascent optimization.
1. Introduction

The implementation and use of quantum optimal control (QOC)
approaches continue to attract significant interest due to recent time-

✩ The review of this paper was arranged by Prof. Jimena Gorfinkiel.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www .sciencedirect .
com /science /journal /00104655).

* Corresponding author.

E-mail address: bryan.wong@ucr.edu (B.M. Wong).

resolved advances in photocatalysis [1], photo-excited systems [2,3],
and quantum gate operations [4–9]. In short, the ultimate goal of QOC
is to construct optimal control pulses that drive a quantum system from
an initial to a desired target state. In contrast to initial value problems
Available online 22 November 2023
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).

URL: http://www.bmwong-group.com (B.M. Wong).

https://doi.org/10.1016/j.cpc.2023.109017

Received 9 July 2023; Received in revised form 8 November 2023; Accepted 13 Nov
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ember 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://doi.org/10.17632/grwppm37rn.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:bryan.wong@ucr.edu
http://www.bmwong-group.com
https://doi.org/10.1016/j.cpc.2023.109017
https://doi.org/10.1016/j.cpc.2023.109017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.109017&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

solved by propagating the time-dependent Schrödinger equation for-

ward in time, QOC focuses on the inverse problem to construct control
pulses that enable desired transitions [10–15]. As related examples, the
GRAPE [16], CRAB [17], and Krotov [18] computational approaches
were developed to solve QOC problems in small spin-1/2 systems. The
most computationally expensive part in all these QOC algorithms is
evaluating the exponential of several large matrices at each time step.
To address this problem for chemical/material systems (as opposed to
small spin-1/2 systems), we previously developed the NIC-CAGE soft-

ware package [19], which utilizes more efficient linear propagators and
gradients within a Crank-Nicolson scheme.

Despite the efficiency of the linear propagators in the NIC-CAGE
code, several other computational bottlenecks in its QOC algorithms
could be further improved. For example, in previous studies, we dis-

covered that the gradient ascent algorithm in NIC-CAGE causes the
first iteration to have an extremely small gradient, resulting in slow
convergence [20,21]. In addition, several intensive mathematical op-

erations, such as inverses of complex-banded matrices, matrix⋅matrix
multiplications, and matrix⋅vector multiplications (among others) are
executed numerous times and can be time-consuming. To address both
of these bottlenecks, we present a new open-source software package,
TRAVOLTA (Terrific Refinements to Accelerate, Validate, and Opti-

mize Large Time-dependent Algorithms), which uses new algorithmic
improvements to the gradient and custom massively-parallelized GPU
acceleration schemes to improve computational performance.

The TRAVOLTA code is a completely rewritten code in the high-

performance C++ and CUDA parallel programming languages to enable
efficient and large QOC calculations on modern multi-core GPUs. In ad-

dition to algorithmic improvements to the gradient ascent algorithm
to improve convergence, we also developed three customized high-

performance kernels to assess their computational efficiency. We ex-

ecuted each of these customized kernels on state-of-the-art A100 GPUs
on the Perlmutter supercomputer at the National Energy Research Scien-

tific Computing Center (NERSC) to test their accuracy against previous
benchmark QOC calculations. We provide computational timings of the
TRAVOLTA code as a function of system size (with examples of in-

put/output parameters in the Supplemental Material used to run the
code), which show that our GPU-based batch kernel algorithm is more
than ten times faster than the corresponding CPU implementation (with
computational performance that actually increases with system size). Fi-

nally, we conclude with a discussion and perspective look at potential
applications of our algorithmic improvements and GPU parallelization
techniques for QOC calculations of other quantum systems.

2. Theory and computational methodology

In previous work, we developed the NIC-CAGE software package
to successfully construct optimal control fields for a variety of photo-

excited chemical systems [19]. To understand the new GPU and algo-

rithmic enhancements in the TRAVOLTA code developed in this work,
we briefly summarize the original NIC-CAGE algorithms in this section.
The temporal dynamics of nuclei in a molecular system are governed
by the time-dependent Schrödinger equation, which, in atomic units is
given by

𝑖
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) =(𝑥, 𝑡)𝜓(𝑥, 𝑡), (1)

where the time-dependent Hamiltonian (𝑥, 𝑡) is

(𝑥, 𝑡) = − 1
2𝑚

𝜕2

𝜕𝑥2
+ 𝑉 (𝑥) − 𝜇(𝑥)𝜖(𝑡). (2)

In the expression above, 𝑥 is the reduced coordinate along a reaction
path, 𝑚 is the effective mass associated with the molecular motion, 𝑉 (𝑥)
is the Born–Oppenheimer electronic energy of the molecule along the
reaction path, 𝜇(𝑥) is the dipole moment function, and 𝜖(𝑡) is the time-

dependent external electric field whose temporal form is iteratively
2

optimized using the QOC algorithms in this work.
Computer Physics Communications 296 (2024) 109017

The Hamiltonian (𝑥, 𝑡) can be discretized across a grid of 𝐿
equidistant points with separation Δ𝑥, resulting in the following ma-

trix equation

H = − 1
24𝑚(Δ𝑥)2

(
−𝐈(2−) + 16𝐈(1−) − 30𝐈+ 16𝐈(1+) − 𝐈(2+)

)
+ V, (3)

where 𝐈 is an 𝐿 ×𝐿 identity matrix with entries of 1 on the main diago-

nal, 𝐈(1±) are 𝐿 ×𝐿 matrices with entries of 1 on the 1st diagonal above
(1+) / below (1–) the main diagonal, 𝐈(2±) are 𝐿 × 𝐿 matrices with
entries of 1 on the 2nd diagonal above (2+) / below (2–) the main di-

agonal, and 𝐕 is an 𝐿 ×𝐿 diagonal matrix with entries [𝐕]𝑖𝑗 = 𝑉 (𝑥𝑖)𝛿𝑖𝑗 ,
where 𝑥𝑖 is the value of 𝑥 at the 𝑖th grid point, and 𝛿𝑖𝑗 is the Kronecker
delta. From these definitions, H is a pentadiagonal matrix. Using the
Crank-Nicolson scheme, the time-evolution of the quantum system is
given by(
𝐈+ 𝑖𝜏

2
𝐇𝑗+1∕2

)
𝜓𝜓𝜓𝑗+1 =

(
𝐈− 𝑖𝜏

2
𝐇𝑗+1∕2

)
𝜓𝜓𝜓𝑗, (4)

where 𝝍 𝑗 is vectorized in space (𝐱) and evaluated at time 𝑡𝑗 = 𝑗𝜏 , where
𝑗 = 0, … , 𝑁 −1 and 𝜏 = 𝑇

𝑁−1 is the time step across a grid of 𝑁 equidis-

tant points on the interval [0, 𝑇]. That is, 𝝍𝑗 is a column vector, and
𝐇𝑗+1∕2 is evaluated at time 𝑡𝑗+1∕2 = (𝑗 + 1∕2)𝜏 , where 𝑗 = 0, … , 𝑁 − 2.

For compactness of notation, we define U𝑗+1∕2 =
(
𝐈+ 𝑖𝜏

2 H𝑗+1∕2

)
and

W𝑗+1∕2 =
(
𝐈− 𝑖𝜏

2 H𝑗+1∕2

)
.

The original NIC-CAGE software package uses an iterative gradient-

ascent algorithm that maximizes the transition probability, 𝑃 given by

𝑃
[
𝜓𝑁−1(𝑥)

]
=
|||||||

∞

∫
−∞

𝜓∗
𝑓
(𝑥)𝜓𝑁−1(𝑥)𝑑𝑥

|||||||

2

, (5)

where 𝜓𝑓 is a known desired target wavefunction (given by the user),
and 𝜓𝑁−1 is the propagated wavefunction at the last time step (after
applying 𝑁 −1 successive propagation steps of Eq. (4)). To prevent un-

physically large values of the electric field, we define the loss function
as

𝐽
[
𝜓𝑁−1(𝑥), 𝜖

]
= 𝑃

[
𝜓𝑁−1(𝑥)

]
− 𝛼

𝑇

∫
0

𝜖2(𝑡)d𝑡, (6)

where 𝛼 is an empirical penalty factor given by the user. The NIC-CAGE
software package calculates analytic gradients of 𝐽

[
𝜓𝑁−1(𝑥), 𝜖(𝑡)

]
with

respect to 𝜖(𝑡) (i.e., d𝐽
[
𝜓𝑁−1(𝑥),𝜖

]
d𝜖𝑗+1∕2

) at all time steps using the chain rule
(see Ref. [19] for further details). The optimized, time-dependent ex-

ternal electric field at the 𝑙th iteration step, 𝜖(𝑙)
𝑗+1∕2, is then numerically

computed using the expression

𝜖
(𝑙)
𝑗+1∕2 = 𝜖

(𝑙−1)
𝑗+1∕2 + 𝛾

d𝐽
[
𝜓𝑁−1(𝑥), 𝜖(𝑙−1)

]
d𝜖

(𝑙−1)
𝑗+1∕2

, (7)

where 𝛾 is the learning rate of the gradient ascent algorithm, which is
calculated using a bisection line-search algorithm. This process iterates
until the probability, 𝑃 , exceeds some predetermined threshold. Our
sequential NIC-CAGE algorithm is summarized below.

In the NIC-CAGE software package, the propagation of the wave-

function in line 7 requires solving a large number of sequential linear
equations of the form U𝑗+1∕2𝜓𝜓𝜓𝑗+1 = W𝑗+1∕2𝜓𝜓𝜓𝑗 given by Eq. (4). Specif-

ically, the number of linear equations increases with the number of
time steps 𝑁 , whereas the size of the pentadiagonal matrices U𝑗+1∕2
and W𝑗+1∕2 increases with the number of points in the spatial grid, 𝐿.
The execution of line 8 requires operations such as multiplication of
vectors by scalars, dot products, and the calculation of vector norms.
The calculation of the gradient in line 10 requires the inversion of pen-

tadiagonal matrices, matrix⋅matrix multiplications, and matrix⋅vector

multiplications, as well as other operations. In this step, the inversion

J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Algorithm 1: Original NIC-CAGE Algorithm.

Input: Spatial interval [𝑥min, 𝑥max], grid spacing Δ𝑥, time interval [0, 𝑇], time
step 𝜏 , mass 𝑚, dipole moment function 𝜇(𝑥), potential energy function
𝑉 (𝑥), initial state number 𝑖, desired final state number 𝑓 , threshold
probability 𝛿, and maximum number of iterations 𝑀𝑎𝑥.

Output: Initial wavefunction 𝜓𝑖(𝑥), desired final wavefunction 𝜓𝑓 (𝑥), final
propagated wavefunction 𝜓𝑁−1(𝑥), optimized electric field 𝜖(𝑡), and
power spectrum of optimized electric field.

1 /* Working with zero-based indexing */

2 Diagonalize time-independent Schrödinger Equation in Eq. (1) to obtain 𝜓𝑖(𝑥)
and 𝜓𝑓 (𝑥).

3 𝜖𝑗+1∕2 = 0 for 𝑗 = 0, ..., 𝑁 − 2
4 𝑃 = 0; 𝐼𝑡𝑒𝑟=0 ; 𝜓0(𝑥)=𝜓𝑖(𝑥)
5 while 𝐼𝑡𝑒𝑟 <𝑀𝑎𝑥 and 𝑃 < 𝛿 do

6 for 𝑗 = 0 to 𝑁 − 2 do

7 Calculate 𝜓𝑗+1(𝑥) from Eq. (4)

end

8 Update 𝐽 and 𝑃 using Eqs. (5) and (6)

9 for 𝑗 =𝑁 − 2 to 0 do

10 Calculate d𝐽 (𝜓𝑁−1(𝑥),𝜖)
d𝜖𝑗+1∕2

with chain rule

end

11 Calculate 𝛾 using bisection line-search method

12 Update vector 𝜖𝑗+1∕2 using Eq. (7)

13 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟+ 1
end

14 return 𝜖𝑗+1∕2

of the pentadiagonal matrices can be executed in parallel. Once these
inverses are found, the remaining operations have to be executed se-

quentially. The line-search method executed in line 11 calls the function
in line 7 several times to search for the optimal update rate, 𝛾 .

Because several operations in Algorithm 1 are time-consuming, we
offloaded all of the operations in line 10 to the GPU (discussed fur-

ther in Section 4), which allows for the parallel construction of pen-

tadiagonal matrices as well as the parallel computation of matrix in-

verses. In addition, due to the high performance of GPUs for com-

puting numerically intensive operations [22,23], we offloaded all se-

quential operations involving matrices, including matrix initializations,
matrix⋅matrix/matrix⋅vector multiplications, and other linear algebra
operations.

3. Amplified gradient modification

We briefly introduce the line-search method [24,25] for the ground
to first-excited state (𝜈𝑖 = 0 → 𝜈𝑓 = 1) transition in a Morse potential
(which mimics the photo-induced stretching of an O–H bond [26]) to
illustrate our amplified gradient modification. The Morse potential in
this work has the functional form

𝑉 (𝑥) = 0.1994[exp(−1.189(𝑥− 1.821)) − 1]2 − 0.1994. (8)

The objective of the line-search method is to calculate the update rate,
𝛾 , that minimizes the loss function −𝐽 (𝛾), given the gradient d𝐽

d𝜖(𝑡) in
each iteration. Our analysis is based on the assumption that −𝐽 (𝛾) has
a minimum at some value of 𝛾 larger than zero and is convex near its
minimum. The line-search procedure is accomplished in two phases.
First, the algorithm evaluates −𝐽 (𝛾 (𝑗)) at an increasing sequence of
𝛾 (𝑗), 𝑗 = 0, 1, 2, … (shown as blue dots in Fig. 1a) which starts at 𝛾 (0) = 0
and has the recurrence relation

𝛾 (𝑗+1) =
(
𝛾 (𝑗) + 0.3

)
× 1.4, (9)

where 0.3 and 1.4 are empirical coefficients. The loop of the evaluation
breaks when −𝐽 (𝛾 (𝑛)) > −𝐽 (𝛾 (𝑛−1)) is satisfied for some integer 𝑛 so that
the minimum of −𝐽 (𝛾) in the interval [0, 𝛾 (𝑛)]. To avoid an unrealisti-

cally large value of 𝛾 (𝑛), it is common practice to set a threshold value,
𝛾thres, for the upper bound of the interval. If −𝐽 (𝛾 (𝑛)) > −𝐽 (𝛾 (𝑛−1)) is not
achieved within [0, 𝛾thres], the recurrence in Eq. (9) is forced to break.
The second step is to search for the approximate value of that mini-
3

mum in the interval [0, 𝛾 (𝑛)] with the bisection line-search algorithm.
Computer Physics Communications 296 (2024) 109017

Since the function −𝐽 (𝛾) is convex near the minimum, the gradient at
any point to the left of the minimum must be smaller than 0, and the
gradient at any point to the right is larger than 0. The bisection line-

search method evaluates the sign of the gradient − d𝐽 (𝛾)
d𝛾

(note that this

is different from the gradient d𝐽

d𝜖(𝑡)) at the midpoint, 𝛾
(𝑛)

2 , of the interval

[0, 𝛾 (𝑛)]. If − d𝐽 (𝛾(𝑛)∕2)
d𝛾

> 0, the minimum is in the left half of the interval

given by [0, 𝛾
(𝑛)

2]; otherwise, it is in the right half (i.e., [𝛾
(𝑛)

2 , 𝛾 (𝑛)]). We
retain the half containing the minimum only and recursively evaluate
the gradient at the midpoint of the new interval and halve the inter-

val again until the length of the interval is smaller than a threshold
value. The midpoint of the final interval is then taken as the optimal 𝛾 ,
and the bisection line-search procedure is terminated. Fig. 1b shows the
points (red dots) at which the gradient − d𝐽 (𝛾)

d𝛾
is evaluated. The solid

arrow indicates the optimal 𝛾 that the bisection line search eventually
outputs.

It is worth noting that the optimal update rate 𝛾 is extremely large
(on the order of 1012), which we further explain below. The transition
probability, 𝑃 (which ranges from 0 to 1 by definition), is typically a
smooth functional of the control field 𝜖(𝑡). As such, the gradient d𝑃

d𝜖(𝑡) is

zero when 𝑃 is at its minimum of 0; in addition, d𝐽

d𝜖(𝑡) ≈
d𝑃

d𝜖(𝑡) has a very
small norm when 𝑃 = 0 because the penalty factor 𝛼 is typically set to
a small value. We found that these small gradient issues primarily oc-

cur in the first iteration since 𝜖(𝑡) is initialized as a zero vector or with
small amplitude white noise in the NIC-CAGE algorithm, which makes
𝑃 nearly 0. As a result, 𝛾 needs to be very large to make any substantial
update to 𝜖(𝑡). This forces the 𝛾 (𝑗) defined in Eq. (9) to be a long se-

quence, and −𝐽 (𝛾 (𝑗)) has to be evaluated by the forward propagation in
line 7 of Algorithm 1 many times, which is extremely time-consuming.
Another downside is that the scales of the 𝑥-axis (∼ 8.28 × 1012) and
𝑦-axis (∼ 0.87) are extremely not comparable, and the gradient − d𝐽 (𝛾)

d𝛾

everywhere is very close to 0. This causes a floating point underflow
error in determining the sign of the gradient, which can cause the algo-

rithm to retain the wrong half of the interval for 𝛾 . As shown in Fig. 1b,
the conventional bisection line-search algorithm eventually outputs an
incorrect value of 𝛾 (∼ 8.28 ×1012, indicated by the solid arrow) instead
of the correct value of ∼ 5.73 × 1012 (indicated by the hollow arrow).

To address this small gradient problem, we multiply the gradient
d𝐽

d𝜖(𝑡) by an empirical coefficient 𝛽 to amplify its norm. The update
rate 𝛾 ′ in this amplified gradient modification satisfies 𝛾 ′𝛽 ≈ 𝛾 , where
𝛾 is the update rate in the conventional method. Therefore 𝛾 ′ can be
small when the amplified gradient coefficient 𝛽 is set to a sufficiently
large value. One improvement, as we see in Fig. 1c, is that the am-

plified gradient modification evaluates −𝐽 (𝛾) (which requires calling
the forward propagation in line 7 of Algorithm 1) at only 11 points,
while the conventional method requires 90 evaluations (blue dots in
Figs. 1a, c). In addition to accelerating the first phase of the bisection
line-search method, the amplified gradient modification also fixes the
floating point underflow error in the second phase since the scales of the
𝑥-axis (∼ 18.36) and 𝑦-axis (∼ 0.87) are now comparable, as shown in
Fig. 1d. In conclusion, the modified algorithm now outputs the correct
optimal 𝛾 ′ (indicated by the solid red arrow in Fig. 1d) in significantly
less execution time.

As discussed above, extremely large values of 𝛾 occur when the prob-

ability 𝑃 is very small due to the small value of the gradient d𝐽

d𝜖(𝑡) when
𝑃 is at its minimum of zero. When 𝑃 > 0.1, the optimal 𝛾 is typically
less than 0.1, and the amplified gradient modification is no longer nec-

essary. As such, we seek to define the empirical coefficient 𝛽 so that the
gradient d𝐽

d𝜖(𝑡) is amplified only when 𝑃 < 0.1, and 𝛽 should be nega-

tively correlated to 𝑃 . We found the following definition

𝛽 = 0.1√
𝑃

if 𝑃 < 0.1,
(10)
= 1 if 𝑃 ≥ 0.1,

Computer Physics Communications 296 (2024) 109017J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 1. Comparison of conventional and amplified gradient methods for the bisection line search in the first QOC iteration for the 𝜈𝑖 = 0 → 𝜈𝑓 = 1 transition in the
Morse potential. (a)/(c) Phase one: evaluating −𝐽 (𝛾) with the (a) conventional and (c) amplified gradient method, respectively. The algorithm evaluates −𝐽 (𝛾) at
different points defined by Eq. (9) (blue dots) until a minimum occurs within the range of 𝛾 . (b)/(d) Phase two: searching for the minimum of the function −𝐽 (𝛾)
with the (b) conventional and (d) amplified gradient method, respectively. The algorithm evaluates the sign of the gradient − d𝐽 (𝛾)

d𝛾
at different points (red dots)

determined by the bisection line-search algorithm. The solid arrow indicates the optimal 𝛾 that the bisection line-search eventually outputs. Note that the line search
for the conventional gradient method outputs a wrong value of 𝛾 shown in panel (b), which is not the true minimum (indicated by the hollow arrow).
satisfies these requirements for routine QOC calculations in the TRA-

VOLTA software package. We compare the results of the original gradi-

ent and the amplified gradient modification in Section 5.1.

4. GPU acceleration

In line 10 of Algorithm 1, we need to compute the inverse of mil-

lions of small complex banded matrices. In this section, we describe a
GPU-based method to compute these inverses efficiently. Our method
is based on the LU decomposition [27–29] of a matrix A where A = LU.
A review of the canonical LU decomposition method and its imple-

mentation on CPUs is given in the Supplemental Material. Multiple
approaches have been developed to execute LU decomposition includ-

ing right-looking and left-looking LU factorization methods [27]. In this
work, we chose to work with right-looking factorization methods since
they are efficient in computing matrix inverses [30] and perform well
on GPUs [31]. To increase computational performance, we do not use
pivoting approaches since the U𝑗+1∕2 matrices are non-singular, and our
calculations show that our algorithms are still accurate when Gaussian
elimination without pivoting is applied to the U𝑗+1∕2 matrices (i.e., no
underflow/overflow floating point errors occur).

4.1. Batched LU decomposition

Algorithm 1 allows for the computation of multiple matrix inverses
in parallel. To parallelize this, we developed an efficient GPU ker-

nel that takes multiple complex banded matrices as input, executes
the LU decomposition, and finally computes the inverses. The gen-

eral procedure for executing a large number of small problems in
parallel with high-performance computing is known as Batched Com-

putations [32,33]. In the context of our GPU-accelerated TRAVOLTA
code, we first execute the LU decomposition of a large set of small
complex-banded matrices and subsequently use them to efficiently com-

pute matrix inverses. To achieve high performance on GPUs [34], our
4

kernel utilizes the following strategies: (1) utilization of coalesced reads
and writes, (2) efficient use of shared memory, (3) minimization of the
number of thread divergences and synchronization barriers, (4) target-

ing high occupancy and/or increasing the instruction level parallelism
per thread [35], and (5) minimization of the movement of data within
the GPU and between the CPU and the GPU. Because the optimization
of the movement of data inside the GPU is paramount (i.e., all reads
and writes operations have to be coalesced), we address this problem
first.

Fig. 2 presents our data layout for achieving coalesced reads for a set
of matrices with band size b. Panel (a) shows banded matrices A𝑖, for
𝑖 = 1, … , 𝑚, and panel (b) packs the rows of the input matrices back-to-

back in an array. For the 𝑏 = 2 case, the first row of the resulting array
contains the elements

[0 0 𝐴1[1,1] 𝐴1[1,2] 𝐴1[1,3] 0 0 𝐴2[1,1] 𝐴2[1,2] 𝐴2[1,3] …

0 0 𝐴𝑚[1,1] 𝐴𝑚[1,2] 𝐴𝑚[1,3]].

For each row of each A𝑖 in this array, the TRAVOLTA code uses 2𝑏 + 1
memory locations. When the input banded matrix has no elements to
the left of the element (𝑖, 𝑖), for 𝑖 = 1, 2, … , 𝑏 − 1, the empty slots are
filled with zeros. The second row of this array contains the elements

[0 𝐴1[2,1] 𝐴1[2,2] 𝐴1[2,3] 𝐴1[2,4] 0 𝐴2[2,1] 𝐴2[2,2]

𝐴2[2,3] 𝐴2[2,4] … 0 𝐴𝑚[2,1] 𝐴𝑚[2,2] 𝐴𝑚[2,3] 𝐴𝑚[2,4]].

The third row of this array contains the elements

[𝐴1[3,1] 𝐴1[3,2] 𝐴1[3,3] 𝐴1[3,4] 𝐴1[3,5] 𝐴2[3,1] 𝐴2[3,2] 𝐴2[3,3]

𝐴2[3,4] 𝐴2[3,5] … 𝐴𝑚[3,1] 𝐴𝑚[3,2] 𝐴𝑚[3,3] 𝐴𝑚[3,4] 𝐴𝑚[3,5]],

and likewise for the remaining rows of this array. When the 𝑛 − 𝑏 + 1,
… , 𝑛 rows of the input matrices have no elements to the right of the
(𝑖, 𝑖) element, these slots have to be filled with zeros. Thus, the last row

of the array contains

Computer Physics Communications 296 (2024) 109017J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 2. Data layout of the input banded matrices. (a) Set of banded matrices A1, A2, ..., A𝑚. (b) The rows of the banded matrices are stored back-to-back in one single
array.
[𝐴1[𝑛, 𝑛− 2] 𝐴1[𝑛, 𝑛− 1] 𝐴1[𝑛, 𝑛] 0 0 𝐴2[𝑛, 𝑛− 2]

𝐴2[𝑛, 𝑛− 1] 𝐴2[𝑛, 𝑛] 0 0 … 𝐴𝑚[𝑛, 𝑛− 2] 𝐴𝑚[𝑛, 𝑛− 1] 𝐴𝑚[𝑛, 𝑛] 0 0].

To simplify the notation from this point forward, we denote the array
of packed matrices as matrix A. With these newly-constructed input
matrices, we next present our LU decomposition approach.

Algorithm 2: GPU kernel for LU decomposition of a set of
banded matrices A1A2...A𝑚 packed back-to-back.

Input: Packed matrix A with size 𝑛 ∗ (2 ∗ 𝑏 + 1) ∗ 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, where 𝑛 = number
of rows of A, 𝑏 = size of the band, and 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = number of packed
matrices in A.

Output: Packed matrices L and U each with size 𝑛 ∗ (𝑏 + 1) ∗ 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒.
1 /* Working with zero-based indexing */

2 𝑆𝐴[2𝑏][(2𝑏 + 1)(𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸)] /* Tile in shared memory */

3 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥

4 𝐶𝑒𝑛𝑡𝑒𝑟 = (2𝑏 + 1) ∗ 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥 + 𝑏 /* Tile center */

5 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 = 0 ; 𝑅𝑜𝑤𝑡𝑜𝑊 𝑟𝑖𝑡𝑒 = 0
6 for 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 = 0 to (2𝑏 − 1) do

7 𝑅𝑒𝑎𝑑𝑅𝑜𝑤(A, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑, 𝑆𝐴)
end

8 ThreadBarrier

9 for 𝑗 = 0 to (𝑛 − 1) do

10 for 𝑟𝑜𝑤 = 1 to 𝑚𝑖𝑛(𝑏, 𝑛 − 𝑗) do

11 𝑆𝐴[𝑟𝑜𝑤][𝐶𝑒𝑛𝑡𝑒𝑟 − 𝑟𝑜𝑤] = 𝑆𝐴[𝑟𝑜𝑤][𝐶𝑒𝑛𝑡𝑒𝑟 − 𝑟𝑜𝑤]∕𝑆𝐴[0][𝐶𝑒𝑛𝑡𝑒𝑟]
end

12 for 𝑟𝑜𝑤 = 1 to 𝑚𝑖𝑛(𝑏, 𝑛 − 𝑗) do

13 𝑡 = 𝑆𝐴[𝑟𝑜𝑤][𝐶𝑒𝑛𝑡𝑒𝑟 − 𝑟𝑜𝑤]
14 for 𝑐𝑜𝑙 = 1 to 𝑚𝑖𝑛(𝑏, 𝑛 − 𝑗) do

15 𝑆𝐴[𝑟𝑜𝑤][𝐶𝑒𝑛𝑡𝑒𝑟 − 𝑟𝑜𝑤 + 𝑐𝑜𝑙] = 𝑆𝐴[𝑟𝑜𝑤][𝐶𝑒𝑛𝑡𝑒𝑟 − 𝑟𝑜𝑤 + 𝑐𝑜𝑙] − 𝑡 ∗
𝑆𝐴[0][𝐶𝑒𝑛𝑡𝑒𝑟 + 𝑐𝑜𝑙]

end

end

16 ThreadBarrier

17 𝑊 𝑟𝑖𝑡𝑒𝑅𝑜𝑤(L, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑊 𝑟𝑖𝑡𝑒, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑, 𝑆𝐴[0])
18 𝑊 𝑟𝑖𝑡𝑒𝑅𝑜𝑤(U, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑊 𝑟𝑖𝑡𝑒, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑, 𝑆𝐴[0])
19 ThreadBarrier

20 𝑀𝑜𝑣𝑒𝑇 𝑖𝑙𝑒𝑈𝑝(2𝑏, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥, 𝑆𝐴)
21 ThreadBarrier

if RowtoRead ≤ (𝑛 − 1) then

22 𝑅𝑒𝑎𝑑𝑅𝑜𝑤(A, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑, 𝑆𝐴)
end

23 ThreadBarrier

24 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 =𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 + 1; 𝑅𝑜𝑤𝑡𝑜𝑊 𝑟𝑖𝑡𝑒 =𝑅𝑜𝑤𝑡𝑜𝑊 𝑟𝑖𝑡𝑒 + 1
end

Using the approaches described in Algorithm 2 in the Supplemen-

tal Material along with the matrix-packing approach described above,
5

we summarize our batched LU decomposition kernel on GPUs in Algo-
rithm 2. In line 2, the kernel declares a shared memory tile, which has
2𝑏 rows having (2𝑏 + 1)𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 complex elements, where 𝑏 is
the size of the band (2 in our implementation), and 𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸

is the number of threads per GPU block (32 in our code). In line 3,
the routine declares a variable that uniquely identifies a GPU thread
for each matrix A𝑖 present in A. In line 4, the routine declares a vari-

able that points to the element A𝑖[𝑗, 𝑘] in tile 𝑆𝐴 for the current thread
corresponding to 𝑖 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑, row 𝑗, and column 𝑘. In line 7, the
tile is populated so that all the threads in the block cooperate to read
the rows of A. Specifically, instead of reading (2𝑏 + 1)𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸

complex numbers per row, the threads cooperate to read 2 ∗ (2𝑏 +
1)𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸 double-precision floating point numbers. In line 8,
the threads in the block synchronize their work, and this concludes the
initialization part.

The code described in line 9 and below is similar to the banded LU
decomposition shown in the Supplemental Material. To take into ac-

count the layout of the rows in the tile, a few changes are required. For
example, the current row 𝑗 of each input matrix is always placed in row
zero of the tile 𝑆𝐴 as shown in line 11 (designated as 𝑆𝐴[0][𝐶𝑒𝑛𝑡𝑒𝑟]).
Note that as the row index increases, the column index in the tile de-

creases (designated by the instruction 𝐴[𝑟𝑜𝑤][𝐶𝑒𝑛𝑡𝑒𝑟 − 𝑟𝑜𝑤]). Thus, the
tile elements 𝑆𝐴[0][𝐶𝑒𝑛𝑡𝑒𝑟] and 𝑆𝐴[1][𝐶𝑒𝑛𝑡𝑒𝑟 − 1] correspond to the
elements 𝐴𝑖[𝑗, 𝑘] and 𝐴𝑖[𝑗 + 1, 𝑘] for a matrix A𝑖, rows 𝑗 and 𝑗 + 1,
and column 𝑘. Line 15 shows that, for a given matrix A𝑖, browsing the
elements of the rows in the tile require the use of two variables: one
that finds the beginning of the data within the row (given by the vari-

able 𝑟𝑜𝑤) and another that points to the column (the variable 𝑐𝑜𝑙). In
lines 17 and 18, the rows of the matrices L and U are written to the GPU
main memory. To allow for coalesced writes, this operation is executed
in a cooperative fashion similar to the read operation. In line 20, the
tile is moved up to clear space for a new row (the first row of the tile is
no longer required). In line 22, the new row of A is brought into the last
row of the tile. The 𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑎𝑟𝑟𝑖𝑒𝑟 instructions ensure the threads ex-

ecute the computation in an orderly fashion. In our design, the number
of GPU threads in execution is proportional to the number of matrices
packed in A. Moreover, while the number of input matrices is 𝑚, our
kernel only processes 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 matrices at the time to account for re-

sources (i.e., main memory) available on the GPU. Having described the
LU decomposition kernel, we now describe the kernels responsible for
computing the inverses below.

4.2. Batched inverses: forward substitution

The next step is to compute the inverses of the banded matrices A𝑖
given their banded factors L𝑖 and U𝑖, for 𝑖 = 1, … , 𝑚. The first task is

J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

to compute L−1
𝑖

. Computing this inverse is equivalent to solving the set
of linear equations L𝑖

[
y1 y2 … y𝑛

]
=
[
e1 e2 … e𝑛

]
where the column

vectors y𝑘 and e𝑘 are the 𝑘th columns of L−1
𝑖

and the identity matrix
I, respectively. The forward substitution routine that solves the linear
equation L𝑖y𝑘 = e𝑘 for banded lower triangular matrices is shown in the
Supporting Material. Before computing the inverses of L𝑖, we generate
an array of identity matrices W such that W =

[
I1 I2 … I𝑚

]
. In this

array, the rows of matrix I1 are written first (row 1, 2, and so on),
followed by the rows of I2, until the rows of matrix I𝑚 are written.
With the matrix of packed matrices L (which contain L1, L2, … , L𝑚)
and the array of identity matrices W (which contain I1, I2, … , I𝑚),
we can compute the inverses. Algorithm 3 shows our batched forward
substitution routine on GPUs.

Algorithm 3: GPU kernel to solve the set of linear equations
L𝑖
[
y1 y2 … y𝑛

]
=
[
e1 e2 … e𝑛

]
for 𝑖 = 1, … , 𝑚.

Input: Packed matrix L with size 𝑛 ∗ (𝑏 + 1) ∗ 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, where 𝑛 = number of
columns, 𝑏 = size of the band, and 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = number of packed
matrices; set of matrices W = [I1 I2 … I𝑚] each with size 𝑛 × 𝑛.

Output: Matrices Y1, Y2, … , Y𝑚 each with size 𝑛 × 𝑛

1 /* Working with zero-based indexing */

2 𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑦 /* Matrix index */

3 𝑐𝑜𝑙𝐼𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥 /* Column index */

4 𝑆𝐴[(𝑏 + 1)(𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸)] /* Tile in shared memory */

5 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (𝑏 + 1) ∗ 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
6 Register[(b+1)] /* Local array */

7 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0)
8 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] = W[𝑛 ∗ 𝑛 ∗𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑑 + 𝑐𝑜𝑙𝐼𝑑]
9 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0)

10 Y[𝑛 ∗ 𝑛 ∗𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝐷 + 𝑐𝑜𝑙𝐼𝑑] =𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1]; /* 𝑦[0] = 𝑒[0] */

11 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 = 1
12 𝑅𝑒𝑎𝑑𝑅𝑜𝑤(L, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥, 𝑆𝐴)
13 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 =𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 + 1
14 ThreadBarrier

15 for 𝑗 = 1 to (𝑛 − 1) do

16 𝑧 = (𝑗 == 1) ? 1 ∶ 0
17 𝑡 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0)
18 for 𝑘 =𝑚𝑎𝑥(𝑗 − 𝑏, 0) to (𝑗 − 1) do

19 𝑡 = 𝑡 +𝑆𝐴[0][𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛+ 𝑧] ∗𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[𝑧]
𝑧 = 𝑧 + 1

end

20 𝑅𝑒𝑠𝑢𝑙𝑡 = (𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] − 𝑡) /* No division, L𝑖 is unitary */

21 Y[𝑛 ∗ 𝑛 ∗𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝐷 + 𝑛 ∗ 𝑗 + 𝑐𝑜𝑙𝐼𝑑] =𝑅𝑒𝑠𝑢𝑙𝑡

22 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] =𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1]
23 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] =𝑅𝑒𝑠𝑢𝑙𝑡

24 ThreadBarrier

if (RowtoRead ≤ (n-1)) then

25 𝑅𝑒𝑎𝑑𝑅𝑜𝑤(L, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥, 𝑆𝐴)
26 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] = W[𝑛 ∗ 𝑛 ∗𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑑 + 𝑛 ∗𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 + 𝑐𝑜𝑙𝐼𝑑]

end

27 ThreadBarrier

28 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 =𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 + 1
end

In this kernel, each thread solves a linear equation of the form L𝑖y𝑘 =
e𝑘 with 𝑖 =𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑑 and 𝑘 = 𝑐𝑜𝑙𝐼𝑑 as shown in lines 2 and 3. In line 4,
a shared memory tile is declared, which is used to store the rows of the
banded matrices L𝑖. The variable 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is declared in line 5, which
points to the first element of the banded matrix L𝑖 in SA. To improve
performance, a vector containing the latest set of elements of e𝑘 and
y𝑘 is maintained in registers, as shown in line 6. In line 8, the element
𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] is set to 𝑒𝑘[0], which is the first element of the 𝑘th column
of matrix I𝑖. Line 10 outputs the first element of vector y𝑘. In line 12, all
the threads in the block cooperatively read the first row of the packed
matrix L, and the threads subsequently synchronize their work.

After the initialization, starting from line 15, the remaining elements
of the output vector y𝑘 are calculated. The loop instruction in line 18

computes the dot product required in the forward substitution routine.
The solution for 𝑦𝑘[𝑗] is computed in line 20, and this value is writ-

ten into the main memory in the next line. Because the first entry of
6

the array Register is no longer needed, we update the values as shown
Computer Physics Communications 296 (2024) 109017

in lines 22 and 23. Thus, at the end of the first iteration, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0]
is set to 𝑦𝑘[0], 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] is set to 𝑦𝑘[1], and 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] is set to
𝑒𝑘[2]. Likewise, at the end of the second iteration, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] = 𝑦𝑘[1],
𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] = 𝑦𝑘[2], and 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] = 𝑒𝑘[3]. Finally, in line 25, a row
of the array L is read into the tile. Similarly, a new element of the vector
e𝑘 is read. Finally, the ThreadBarrier instructions allow for the synchro-

nization of the work among the threads in the block.

4.3. Batched inverses: backward substitution

Given the matrices U1, U2, … , U𝑚 (computed in routine 2) and
Y1, Y2, … , Y𝑚 (computed in routine 3), the next step is to solve the
set of linear equations U𝑖X𝑖 = Y𝑖 for 𝑖 = 1, … , 𝑚. Solving U𝑖X𝑖 = Y𝑖 is
equivalent to solving 𝑛 linear equations of the form U𝑖

[
x1 x2 … x𝑛

]
=[

y1 y2 … y𝑛

]
where the vectors x𝑘 and y𝑘, for 𝑘 = 1, … , 𝑛, are the

columns of matrices X𝑖 and Y𝑖 respectively. Routine 4 shows our imple-

mentation of the batched backward substitution method in GPUs.

Algorithm 4: GPU kernel to solve set of linear equations
U𝑖

[
x1 x2 … x𝑛

]
=
[
y1 y2 … y𝑛

]
for 𝑖 = 1, … , 𝑚.

Input: Packed matrix U with size 𝑛 ∗ (𝑏 + 1) ∗ 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, where 𝑛 = number of
columns, 𝑏 = size of the band, and 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = number of packed
matrices in U; matrices Y =

[
Y1 Y2 … Y𝑛

]
, each with size 𝑛 × 𝑛.

Output: Matrices X1, X2, … , X𝑚 each size 𝑛 × 𝑛

1 /* Working with zero-based indexing */

2 𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑦 /* Matrix index */

3 𝑐𝑜𝑙𝐼𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥 /* Column index */

4 𝑆𝐴[(𝑏 + 1)(𝐵𝐿𝑂𝐶𝐾𝑆𝐼𝑍𝐸)] /* Tile in shared memory */

5 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (𝑏 + 1) ∗ 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
6 Register[(b+1)] /* Local array */

7 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] = Y[𝑛 ∗ 𝑛 ∗𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑑 + 𝑛 ∗ (𝑛 − 1) + 𝑐𝑜𝑙𝑑𝐼𝑑]
8 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0)
9 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0)

10 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 = 𝑛 − 1
11 𝑅𝑒𝑎𝑑𝑅𝑜𝑤(U, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥, 𝑆𝐴)
12 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 =𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 − 1
13 ThreadBarrier

14 for 𝑗 = (𝑛 − 1) to 0 do

15 𝑧 = 1
16 𝑡 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0)
17 for 𝑘 = (𝑗 + 1) to 𝑚𝑖𝑛(𝑗 + 𝑏, 𝑛 − 1) do

18 𝑡 = 𝑡 +𝑆𝐴[0][𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑧] ∗𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[𝑧]
19 𝑧 = 𝑧 + 1

end

20 𝑅𝑒𝑠𝑢𝑙𝑡 = (𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] − 𝑡)∕𝑆𝐴[0][𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛]
21 X[𝑛 ∗ 𝑛 ∗𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝐷 + 𝑛 ∗ 𝑗 + 𝑐𝑜𝑙𝐼𝑑] =𝑅𝑒𝑠𝑢𝑙𝑡

22 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] =𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1]
23 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] =𝑅𝑒𝑠𝑢𝑙𝑡

24 ThreadBarrier

if (RowtoRead ≥ 0) then

25 𝑅𝑒𝑎𝑑𝑅𝑜𝑤(X, 𝑛, 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑, 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥, 𝑆𝐴)
26 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] = Y[𝑛 ∗ 𝑛 ∗𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑑 + 𝑛 ∗𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 + 𝑐𝑜𝑙𝐼𝑑]

end

27 ThreadBarrier

28 𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 =𝑅𝑜𝑤𝑡𝑜𝑅𝑒𝑎𝑑 − 1
end

Algorithm 4 is very similar to Algorithm 3, and as a result, we only
comment on the main differences. Similar to Algorithm 3, we use a
Register to store the needed values of the vectors x𝑘 and y𝑘. In the
beginning, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] = y𝑘[𝑛 − 1] and the other elements of Register

are set to 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0). In lines 15 to line 20 the routine solves for
𝑥𝑘[𝑗]. At the end of the first iteration, the values of the registers are
𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥(0, 0), 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] = 𝑥𝑘[𝑛 −1], and 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] =
𝑦𝑘[𝑛 − 2]. At the end of the second iteration, the values of the registers
are 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[2] = 𝑥𝑘[𝑛 − 1], 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[1] = 𝑥𝑘[𝑛 − 2], and 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟[0] =
𝑦𝑘[𝑛 −3]. The rest of the instructions are similar to the ones described in
Algorithm 3 with the difference that the main loop is executed starting
from the last row.

It is worth noting that Algorithm 2 described above corresponds to

a summarized version of our batched LU decomposition code in GPUs.

Computer Physics Communications 296 (2024) 109017J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 3. Comparison of conventional and amplified gradient methods for QOC calculations for the 𝜈𝑖 = 1 → 𝜈𝑓 = 3 transition in the Morse potential. (a) The amplified
gradient method requires fewer iterations to reach a probability of 1. (b) Plot of the update rate, 𝛾 , for the gradient in each iteration. (c) Execution time of the line
search in each iteration, which is positively correlated to 𝛾 in panel (b). (d) Optimal control pulses, 𝐸(𝑡), generated by the original and modified gradient methods.
The electric fields have nearly the same functional form but differ by a global phase factor, which are physically insignificant for QOC calculations.
In our actual implementation, we have taken additional steps to im-

prove performance by including one more row in the tile to allow data
prefetching. In addition, we allow for lazy writing, i.e., instead of writ-

ing the matrices L and U directly to GPU memory, we write the data
to an auxiliary tile and subsequently execute the writes further down in
the pipeline. Moreover, all I/O operations are coalesced as the threads
in the block read (write) from (to) contiguous memory addresses. The
shared memory is used extensively, and the code does not have thread
divergences due to if conditions. In addition, given enough matrices in
the batch, multiple GPU blocks are created to ensure all the multipro-

cessors are busy. Algorithms 3 and 4 also take advantage of coalesced
reads and writes, efficient use of the shared memory, efficient use of the
register file, and high occupancy due to the large number of matrices
being processed.

5. Computational results

Before examining the execution times of our GPU implementation,
we compare the performance of the original gradient vs. our new am-

plified gradient modification.

5.1. Comparison between original and amplified gradient modification

We used the TRAVOLTA software package to examine QOC between
the first and third excited states of the Morse potential in Eq. (8) and
found that it takes fewer iterations to converge when the gradient is
amplified. Fig. 3a shows that the amplified gradient enables a sudden
update to 𝑃 in the first iteration, while the conventional method main-

tains a nearly stagnant value of 𝑃 for 7 iterations. Fig. 3b shows that
the update rate, 𝛾 , in the conventional method only becomes sufficiently
large after the 6th iteration, which prevents rapid convergence of 𝜖(𝑡)
prior to that step. In contrast, a sufficiently large value of 𝛾 is obtained
in the first iteration of the amplified gradient modification, which reme-

dies the floating point underflow error for determining the update rate,
explained previously in Sec. 3.

Our amplified gradient modification accelerates convergence not
7

only by lowering the number of iterations but also by reducing the total
execution time in the bisection line search. As explained in Section 3, a
large 𝛾 increases the number of function calls to the forward propaga-

tion algorithm in line 7 of Algorithm 1. When the gradient is amplified,
𝛾 becomes much smaller, and the line search for 𝛾 can be calculated in
less time, as shown in Fig. 3c. As discussed in Sec. 3, we typically set
a threshold (𝛾thres = 108 in this case) for the upper bound of the search
interval to compute 𝛾 . However, one typically finds that the optimal 𝛾
may be larger than 𝛾thres when the probability, 𝑃 , is small. The ampli-

fied gradient resolves this conflict. As shown in Fig. 3b, since the true
𝛾 in the 7th iteration (∼ 1012) is much larger than 𝛾thres, the conven-

tional approach requires two iterations (i.e., the 7th and 8th iterations
shown near the top of panel 3b) to evaluate 𝛾 , which otherwise would
have been accomplished in one iteration (i.e., the product of the com-

puted 𝛾 in these two iterations, ∼ 107 and ∼ 105, is ∼ 1012). In contrast,
our amplified gradient modification always gives a much better initial
guess for calculating the optimal 𝛾 after only one iteration.

Fig. 3d compares the optimized control pulses generated by the orig-

inal and our amplified gradient modification. The electric fields have
nearly the same functional form but differ by a global phase factor,
which we previously demonstrated to be physically insignificant for
QOC calculations [20]. As such, our amplified gradient modification in
the TRAVOLTA software package accelerates convergence (and reduces
total execution time) without affecting any of the final results.

5.2. Accuracy of the hybrid implementation

To demonstrate the accuracy and computational performance of our
GPU-enhanced TRAVOLTA code, we present two representative QOC
examples: the Morse and asymmetric double-well potential. Section 3

in the Supplemental Material gives additional examples of input param-

eters that can be used and/or modified to carry out QOC calculations
of other general potentials. Fig. 4 shows our QOC results executed with
our custom CPU+GPU implementation for the Morse potential (Eq. (8)),
and Fig. 5 shows results for the double-well potential given by

𝑥4 𝑥2 𝑥3

𝑉 (𝑥) =

64
−

4
+

256
. (11)

Computer Physics Communications 296 (2024) 109017J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 4. (a) Morse potential energy (solid blue line) and norm-squared initial vibrational eigenstate, |𝜓𝑖(𝑥)|2, with 𝜈𝑖 = 0 (red dashed line). (b) Optimized electric field
as a function of time for the 𝜈𝑖 = 0 → 𝜈𝑓 = 1 transition. (c) Power spectrum (i.e., the Fourier transform) of the optimized electric field. (d) Norm-squared final target
wavefunction |𝜓𝑓 (𝑥)|2 with 𝜈𝑓 = 1 and the propagated wavefunction |𝜓(𝑁−1)|2 which achieves a transition probability of 𝑃 = 0.99. (e) Objective functional, 𝐽 , and
transition probability, 𝑃 , as a function of the number of iterations for a quantum control optimization of the 𝜈 = 0 → 𝜈 = 1 transition in the Morse potential.
In both cases, the optimized electrical fields and power spectra plots are
nearly identical with the results reported by Raza et al. [19]. It is worth
noting that the optimized electric field in Fig. 5 differs by an over-

all global phase from its counterpart in Ref. 19, which we previously
showed to give the same physical results and is, therefore, immaterial
[20].

5.3. Computational performance on GPUs and comparisons

To illustrate the computational performance of our GPU paralleliza-

tion scheme, we report the execution times of Algorithm 1 on one
compute node of the Perlmutter supercomputer at NERSC [36]. Each
GPU compute node has one CPU socket containing 64 AMD EPYC-7763
CPU cores and 256 GB of RAM. In addition, each node houses four
NVIDIA A100 GPUs, each having 40 GB of RAM. In our calculations,
we set the number of CPU threads to eight, and we use one GPU. To
assess the computational performance of Algorithm 1 across different
hardware platforms, we compare execution times for three implemen-
8

tations: (1) a CPU baseline implementation that utilizes tuned numerical
𝑖 𝑓

routines in the Cray BLAS LibSci library [37], (2) a standard CPU+GPU
implementation that utilizes the CUDA BLAS (CUBLAS) libraries [38]

(release 11.7), and (3) our tailored CPU+GPU implementation that uti-

lizes the kernels described in Sec. 4. Our code is compiled with the HPE
Cray GCC compiler, a wrapper based on the GNU GCC compiler (ver-

sion 11.2) along with the CUDA compiler (release 11.7).

In our GPU implementations, we offloaded all operations involving
matrices to the GPU. To compute line 10 in Algorithm 1, the CUBLAS
library has routines for computing the inverse of multiple square matri-

ces of U𝑘+1∕2 via a single call. In our custom code, instead of calling the
CUBLAS libraries to compute the inverses of U𝑘+1∕2, we call our tailored
GPU kernels described in Sec. 4. We set the size of the batch (i.e., the
number of inverses that are computed in parallel) to 512. In addition,
the time to read (write) the matrices from (to) disk is not reported, and
we only record the time it takes for each hardware platform to execute
the computations.

As mentioned previously, the results of our GPU-accelerated TRA-
VOLTA code are similar to the ones obtained in Ref. [19], which verifies

Computer Physics Communications 296 (2024) 109017J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 5. (a) Asymmetric double-well potential energy (solid blue line) and norm-squared initial vibrational eigenstate, |𝜓𝑖(𝑥)|2, with 𝜈𝑖 = 0 (red dashed line). (b)
Optimized electric field as a function of time for the 𝜈𝑖 = 0 → 𝜈𝑓 = 1 transition. (c) Power spectrum (i.e., the Fourier transform) of the optimized electric field. (d)
Norm-squared final target wavefunction |𝜓𝑓 (𝑥)|2 with 𝜈𝑓 = 1 and the propagated wavefunction |𝜓(𝑁−1)|2 which achieves a transition probability of 𝑃 = 0.983. (e)
Objective functional, 𝐽 , and transition probability, 𝑃 , as a function of the number of iterations for a quantum control optimization of the 𝜈𝑖 = 0 → 𝜈𝑓 = 1 transition
in the asymmetric double-well potential for 𝑇 = 100 and 𝜏 = 0.01.
the accuracy of our implementation. To further test the performance of
our GPU implementation to handle larger system sizes, we varied the
parameter Δ𝑥 (see Eq. (3)) from 0.1 to 0.0133, which increases the
rows in the U𝑘+1∕2 matrices from 161 to 1021. Fig. 6 shows the execu-

tion times of our calculations for one iteration of the TRAVOLTA code
(additional iterations involve the same computations as shown in Algo-

rithm 1). In this figure, the speedup (shown in parentheses) is the ratio
of the CPU code execution time to the standard/custom GPU code ex-

ecution time for the same task (raw numerical values used to generate
the plot are given in the Supplemental Material).

Fig. 6 shows that the standard CPU code (red vertical bars) is the
slowest, even when using the high-performance Cray BLAS library,
which has optimized routines to solve banded linear systems and com-

pute inverses of banded matrices. It is worth noting that increasing the
number of threads beyond 8 in our standard CPU code did not increase
the performance substantially. In contrast, by offloading all matrix com-

putations to the GPU, the standard CPU+GPU implementation (blue
9

vertical bars in Fig. 6) decreases the execution time of the CPU im-
plementation by a factor of 3.7 in the best case. Transferring matrices
from the CPU to the GPU, and vice versa, is computationally expensive;
nonetheless, the highly optimized routines in the CUBLAS library are
able to significantly reduce computational execution times.

Most importantly, our custom kernels described in Section 4 speed
up calculations by a factor of 6.7 on average; for large matrices, the
speedup is even more impressive with a factor of 11.4. In addition
to offloading compute-intensive operations, such as matrix⋅matrix and
matrix⋅vector calculations to the GPU, we attribute the gains in per-

formance to the following 5 improvements: (1) Our custom kernels
work in batches and exploit parallel processing in Algorithm 1, line 7,
which take a large number of banded complex matrices as input and
compute the inverses simultaneously. Working with large batches al-

lows for the efficient movement of matrices between the CPU and GPU
and vice versa (i.e., it is more efficient to move large chunks of data
between these devices than moving small chunks of data). In our im-

plementation, the size of the batch (512) is limited by the size of the

GPU memory and not by our algorithm. For GPUs having larger main

Computer Physics Communications 296 (2024) 109017J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Fig. 6. Comparison of execution times as a function of matrix size. Computational speedups with respect to the standard CPU implementation are shown in
parentheses on top of the bars.
memories or systems with multiple GPUs, this parameter can be in-

creased effortlessly. (2) Our custom kernels exploit the banded structure
of the matrices as shown in Algorithms 2, 3, and 4. Executing the LU
decomposition on banded matrices is faster than decomposing square
matrices [27]. As noted by Dongarra et al. [39], major improvements
in performance can be achieved when the routines exploit the sparsity
(i.e., the band) of the matrices. (3) The layout of the rows of the banded
matrices, shown in Fig. 2, allows for coalesced reads and writes when
Algorithm 2 is executed; as a result, our kernels are able to move data
efficiently within the GPU. Also the data layout of the L𝑖 and Y𝑖 ma-

trices allows for the efficient execution of I/O operations during the
execution of Algorithm 3. Likewise, the data layout of the U𝑖, Y𝑖, and
X𝑖 matrices allows for the efficient execution of Algorithm 4. (4) By
keeping the input matrices in tiles, our kernels can reuse the rows of
the input matrices. For instance, in the case of Algorithm 2, one single
row is reused up to (𝑏 + 1) times. (5) The GPU threads in Algorithms 2,
3, and 4 work in a cooperative and independent fashion. In the case of
routine 2, operations such as reads, writes, and the movement of data
within a tile is executed by all threads in the block in a cooperative
fashion, which increases its efficiency. In this routine, once the data is
in the tile, the threads are allowed to work in an independent fashion;
i.e., a GPU thread is responsible for executing all the arithmetic calcu-

lations required by the decomposition method. The same ideas apply
for routines 3, and 4. In addition, our kernels make use of other meth-

ods, including prefetching, lazy writing, extensive use of the register
file, and minimal use of thread barriers, among others, which further
increases computational efficiency.

6. Conclusions

In this work, we have developed and provided the open-source
TRAVOLTA software package for accelerating QOC calculations on
massively-parallelized GPUs. The TRAVOLTA code utilizes a new am-

plified gradient modification that prevents floating point underflow
errors and accelerates the bisection line-search process for improved
convergence. To enable additional performance enhancements, we of-

floaded computationally intensive operations such as matrix inverses,
matrix⋅matrix, and matrix⋅vector multiplications to high-performance
GPUs. To efficiently compute matrix inverses on GPUs, we implemented
three customized high-performance kernels in our batched approach.
The first kernel computes the LU decomposition of multiple banded
matrices simultaneously, and two additional kernels compute the in-

verses via forward and backward substitution methods. In addition,
our tailored kernels implement computational techniques such as data
prefetching, coalesced read and writes, efficient utilization of shared
memory and shared registers, efficient distribution of work among the
10

GPU cores, minimization of thread divergences and synchronization
points, lazy writing, and efficient movement of data between the CPU
and GPU. These computational techniques are used in conjunction with
recent batch computation methods to enable impressive parallelization
of QOC calculations on modern multi-core GPUs.

To assess the accuracy and efficiency of our implementation, we ap-

plied the GPU-accelerated TRAVOLTA code to a variety of QOC systems
and benchmarked its performance on state-of-the-art A100 GPUs on the
Perlmutter supercomputer at NERSC. From these computational timing
tests, we show that the TRAVOLTA code generates the same results
as previous QOC benchmark calculations on CPUs but with a speedup
that is more than 10 times faster. Most notably, our computational
timings of the TRAVOLTA code demonstrate that its computational
performance actually increases with system size compared to its CPU
implementation. Looking forward, these algorithmic improvements and
GPU-parallelization techniques could enable QOC calculations of larger
systems that would otherwise be too time-consuming to run on CPUs.
For example, QOC calculations in higher dimensions are intrinsically
more computationally difficult since the size of the basis set used to
construct the Hamiltonian scales exponentially (i.e., the basis set for a
2-dimensional example is a tensor product of two 1-dimensional basis
sets). Another example where our GPU-parallelization techniques could
enable significant performance gains is QOC in quantum computing,
since the Hamiltonian increases as 2𝑛, where 𝑛 is the number of qubits
[7]. Since our GPU-accelerated routines show better performance on
larger matrices, the techniques used in this work are expected to show
even larger performance gains for all of these large quantum systems.
Similarly, we anticipate that some of our computational techniques
could be extremely useful for QOC calculations of systems with compu-

tationally intensive many-body quantum interactions (which would re-

quire additional mathematical operations on large matrices) that would
significantly benefit from the algorithmic/parallelization enhancements
used in this work.

CRediT authorship contribution statement

José M. Rodríguez-Borbón: Conceptualization, Data curation, For-

mal analysis, Investigation, Methodology, Software, Validation, Visu-

alization, Writing – original draft, Writing – review & editing. Xian
Wang: Conceptualization, Data curation, Formal analysis, Investiga-

tion, Methodology, Software, Validation, Visualization, Writing – origi-

nal draft, Writing – review & editing. Adrián P. Diéguez: Data cura-

tion, Formal analysis, Investigation, Resources, Software, Validation.

Khaled Z. Ibrahim: Funding acquisition, Investigation, Project ad-

ministration, Resources, Supervision. Bryan M. Wong: Conceptualiza-

tion, Data curation, Formal analysis, Funding acquisition, Investigation,
Project administration, Resources, Supervision, Validation, Visualiza-
tion, Writing – original draft, Writing – review & editing.

Computer Physics Communications 296 (2024) 109017J.M. Rodríguez-Borbón, X. Wang, A.P. Diéguez et al.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Scien-

tific Discovery through the Advanced Computing (SciDAC) program
under Award Number DE-SC0022209. This research used resources of
the National Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231 using NERSC award BES-ERCAP0023692.

Appendix A. Supplementary material

Supplementary material related to this article can be found online
at https://doi .org /10 .1016 /j .cpc .2023 .109017.

References

[1] D. Keefer, S. Thallmair, J.P.P. Zauleck, R. de Vivie-Riedle, A multi target approach
to control chemical reactions in their inhomogeneous solvent environment, J. Phys.
B, At. Mol. Opt. Phys. 48 (23) (2015) 234003.

[2] B.L. Brown, A.J. Dicks, I.A. Walmsley, Coherent control of ultracold molecule dy-

namics in a magneto-optical trap by use of chirped femtosecond laser pulses, Phys.
Rev. Lett. 96 (17) (2006) 173002.

[3] D. Keefer, R. de Vivie-Riedle, Pathways to new applications for quantum control,
Acc. Chem. Res. 51 (9) (2018) 2279–2286.

[4] K.C. Nowack, F. Koppens, Y.V. Nazarov, L. Vandersypen, Coherent control of a single
electron spin with electric fields, Science 318 (5855) (2007) 1430–1433.

[5] M. Kues, C. Reimer, P. Roztocki, L.R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A.
Cino, S.T. Chu, B.E. Little, et al., On-chip generation of high-dimensional entangled
quantum states and their coherent control, Nature 546 (7660) (2017) 622–626.

[6] E.M. Fortunato, M.A. Pravia, N. Boulant, G. Teklemariam, T.F. Havel, D.G. Cory,
Design of strongly modulating pulses to implement precise effective hamiltonians
for quantum information processing, J. Chem. Phys. 116 (17) (2002) 7599–7606.

[7] X. Wang, M.S. Okyay, A. Kumar, B.M. Wong, Accelerating quantum optimal con-

trol of multi-qubit systems with symmetry-based hamiltonian transformations, AVS
Quantum Sci. 5 (4) (2023) 043801.

[8] J. Cheng, H. Deng, X. Qia, AccQOC: accelerating quantum optimal control based
pulse generation, in: 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), IEEE, 2020, pp. 543–555.

[9] F. Sauvage, F. Mintert, Optimal control of families of quantum gates, Phys. Rev.
Lett. 129 (5) (2022) 050507.

[10] W. Zhu, J. Botina, H. Rabitz, Rapidly convergent iteration methods for quantum
optimal control of population, J. Chem. Phys. 108 (5) (1998) 1953–1963.

[11] A.P. Peirce, M.A. Dahleh, H. Rabitz, Optimal control of quantum-mechanical sys-

tems: existence, numerical approximation, and applications, Phys. Rev. A 37 (12)
(1988) 4950–4964.

[12] P. Brumer, M. Shapiro, Coherence chemistry: controlling chemical reactions [with
lasers], Acc. Chem. Res. 22 (12) (1989) 407–413.

[13] M. Lysebo, L. Veseth, Quantum optimal control theory applied to transitions in di-

atomic molecules, Phys. Rev. A 90 (6) (2014) 063427.

[14] K. Kormann, S. Holmgren, H.O. Karlsson, A Fourier-coefficient based solution of an
optimal control problem in quantum chemistry, J. Optim. Theory Appl. 147 (2010)
491–506.

[15] N. Dupont, G. Chatelain, L. Gabardos, M. Arnal, J. Billy, B. Peaudecerf, D. Sugny,
D. Guéry-Odelin, Quantum state control of a Bose-Einstein condensate in an optical
lattice, PRX Quantum 2 (4) (2021) 040303.

[16] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, Optimal con-

trol of coupled spin dynamics: design of NMR pulse sequences by gradient ascent
algorithms, J. Magn. Res. 172 (2) (2005) 296–305.

[17] T. Caneva, T. Calarco, S. Montangero, Chopped random-basis quantum optimiza-

tion, Phys. Rev. A 84 (2) (2011) 022326.

[18] V.F. Krotov, I. Feldman, An iterative method for solving optimal-control problems,
Eng. Cybern. 21 (2) (1983) 123–130.

[19] A. Raza, C. Hong, X. Wang, A. Kumar, C.R. Shelton, B.M. Wong, NIC-CAGE: an
open-source software package for predicting optimal control fields in photo-excited
chemical systems, Comput. Phys. Commun. 258 (2021) 107541.

[20] X. Wang, A. Kumar, C.R. Shelton, B.M. Wong, Harnessing deep neural networks
to solve inverse problems in quantum dynamics: machine-learned predictions of
time-dependent optimal control fields, Phys. Chem. Chem. Phys. 22 (40) (2020)
22889–22899.

[21] Y. Gao, X. Wang, N. Yu, B.M. Wong, Harnessing deep reinforcement learning to
construct time-dependent optimal fields for quantum control dynamics, Phys. Chem.
Chem. Phys. 24 (39) (2022) 24012–24020.

[22] A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth, K. Spafford, V. Tippa-

raju, J.S. Vetter, The scalable heterogeneous computing SHOC benchmark suite, in:
ACM Proceedings of the 3st Workshop on General-Purpose Computation on Graph-

ics Processing Units, ACM, New York, NY, USA, 2010, pp. 63–74.

[23] J.M. Rodríguez, Acceleration of Compute-Intensive Applications on Field Pro-

grammable Gate Arrays, University of California, Riverside, 2020.

[24] G. Von Winckel, A. Borzì, Computational techniques for a quantum control problem
with 𝐻1-cost, Inverse Probl. 24 (3) (2008) 034007.

[25] M. Sprengel, G. Ciaramella, A. Borzì, A COKOSNUT code for the control of the time-

dependent Kohn–Sham model, Comput. Phys. Commun. 214 (2017) 231–238.

[26] G. Paramonov, Coherent control of linear and nonlinear multiphoton excitation of
molecular vibrations, Chem. Phys. 177 (1) (1993) 169–180.

[27] G.H. Golub, C.F. Van Loan, Matrix computations, 4th edition, The Johns Hopkins
University Press, 2715 North Charles Street, Baltimore, MD, 21218, USA, 2013.

[28] D.S. Watkins, Fundamentals of Matrix Computations, 1st edition, John Wiley & Sons,
111 River St, Hoboken, NJ, USA, 1991.

[29] L.N. Trefethen, D. Bau III, Numerical Linear Algebra, 1st edition, Siam, 3600 Market
Street, 6th Floor, Philadelphia, PA, 19104, USA, 1997.

[30] M. Jacquelin, L. Lin, N. Wichmann, C. Yang, Enhancing scalability and load balanc-

ing of parallel selected inversion via tree-based asynchronous communication, in:
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
IEEE, 2016, pp. 192–201.

[31] S. Peng, S.X.-D. Tan, GLU3. 0: fast GPU-based parallel sparse LU factorization for
circuit simulation, IEEE Des. Test 37 (3) (2020) 78–90.

[32] A. Haidar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Batched matrix computa-

tions on hardware accelerators based on GPUs, Int. J. High Perform. Comput. Appl.
29 (2) (2015) 193–208.

[33] A. Haidar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Optimization for perfor-

mance and energy for batched matrix computations on GPUs, in: Proceedings of the
8th Workshop on General Purpose Processing Using GPUs, 2015, pp. 59–69.

[34] D.B. Kirk, W.-M.W. Hwu, Programming Massively Parallel Processors: A Hands-

on Approach, 2nd edition, Morgan Kaufmann, 225 Wyman Street, Waltham, MA,
02451, USA, 2013.

[35] V. Volkov, J.W. Demmel, Benchmarking gpus to tune dense linear algebra, in: SC’08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, IEEE, 2008,
pp. 1–11.

[36] NERSC, NERSC technical documentation, https://docs .nersc .gov. (Accessed 22
November 2023), 2022.

[37] NERSC, The cray BLAS libraries, https://docs .nersc .gov /development /libraries /
libsci. (Accessed 22 November 2023), 2022.

[38] NVIDIA Incorporated, CUDA toolkit documentation, https://docs .nvidia .com /
cuda/. (Accessed 22 November 2023), 2013.

[39] J. Dongarra, L. Grigori, N.J. Higham, Numerical algorithms for high-performance
computational science, Philos. Trans. R. Soc. A 378 (2166) (2020) 20190066.
11

https://doi.org/10.1016/j.cpc.2023.109017
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibC752142CF1B898DB112E22E3E04C92B4s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibC752142CF1B898DB112E22E3E04C92B4s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibC752142CF1B898DB112E22E3E04C92B4s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibDAC936EA668362DB71075CECB5324E96s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibDAC936EA668362DB71075CECB5324E96s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibDAC936EA668362DB71075CECB5324E96s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib4973114E4A98FA926321F55F58FDD1F6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib4973114E4A98FA926321F55F58FDD1F6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibE33B4911AC3B6EF7D795443CDB9473B0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibE33B4911AC3B6EF7D795443CDB9473B0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibF50E27F1183CC348EC20C1D7B0F6AB04s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibF50E27F1183CC348EC20C1D7B0F6AB04s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibF50E27F1183CC348EC20C1D7B0F6AB04s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib64A9D7C3D2D7FF0F680D3BB5D703815As1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib64A9D7C3D2D7FF0F680D3BB5D703815As1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib64A9D7C3D2D7FF0F680D3BB5D703815As1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib013C2EE104351C36EEFFDF2F3F19BE2Bs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib013C2EE104351C36EEFFDF2F3F19BE2Bs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib013C2EE104351C36EEFFDF2F3F19BE2Bs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib8C88F4322227DD3818B5B7235138596Ds1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib8C88F4322227DD3818B5B7235138596Ds1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib8C88F4322227DD3818B5B7235138596Ds1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib30D8B15B192ABFBCAD169D823E249625s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib30D8B15B192ABFBCAD169D823E249625s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib7841DEB35B0394F2B685513A34DBC8C7s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib7841DEB35B0394F2B685513A34DBC8C7s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD0A57A87151B29D09829A6D079F7E28Ds1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD0A57A87151B29D09829A6D079F7E28Ds1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD0A57A87151B29D09829A6D079F7E28Ds1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib9372A90A9011B055F937332383CC1C4Cs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib9372A90A9011B055F937332383CC1C4Cs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib58B917A7ED6E87DC321AC8C36F6B13D9s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib58B917A7ED6E87DC321AC8C36F6B13D9s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD87BD502395D604ECD5ABF9F1BB3C3D6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD87BD502395D604ECD5ABF9F1BB3C3D6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD87BD502395D604ECD5ABF9F1BB3C3D6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib29893C101053BB6413993E85F7FB8ED0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib29893C101053BB6413993E85F7FB8ED0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib29893C101053BB6413993E85F7FB8ED0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibEC90EA0091D7876704E8B9F5BCAB47A0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibEC90EA0091D7876704E8B9F5BCAB47A0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibEC90EA0091D7876704E8B9F5BCAB47A0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibA39F40B9A48BE0FD7C788CD6E1F34E35s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibA39F40B9A48BE0FD7C788CD6E1F34E35s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib808C4EF5DF92F20E9C82575568C924EDs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib808C4EF5DF92F20E9C82575568C924EDs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib890196A0DC15DF1785909B273C16A99Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib890196A0DC15DF1785909B273C16A99Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib890196A0DC15DF1785909B273C16A99Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2DEE51CBC52F42ADD51CAD44A6442898s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2DEE51CBC52F42ADD51CAD44A6442898s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2DEE51CBC52F42ADD51CAD44A6442898s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2DEE51CBC52F42ADD51CAD44A6442898s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib4CD49D39F526BEBE812C3BBDCCFC5722s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib4CD49D39F526BEBE812C3BBDCCFC5722s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib4CD49D39F526BEBE812C3BBDCCFC5722s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib5225312CBF44B1D5B7AFDEDE120C8E61s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib5225312CBF44B1D5B7AFDEDE120C8E61s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib5225312CBF44B1D5B7AFDEDE120C8E61s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib5225312CBF44B1D5B7AFDEDE120C8E61s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibB2870592A8EE3E75678FCF4B7DA0BDD0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibB2870592A8EE3E75678FCF4B7DA0BDD0s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib575404FF9D884704298E0E0401F17A58s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib575404FF9D884704298E0E0401F17A58s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibFC3735CD404CB480CF24F4CDB2AD4858s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibFC3735CD404CB480CF24F4CDB2AD4858s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib508B9BB86576ADDFACC8C204860F22C5s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib508B9BB86576ADDFACC8C204860F22C5s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib054CA0E8A5C14ECA695CD4A51D87D8FEs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib054CA0E8A5C14ECA695CD4A51D87D8FEs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibB37F3F17E8EABFB60ADCAD34E502E3BCs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibB37F3F17E8EABFB60ADCAD34E502E3BCs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2C395532C38FFE0F894C10C6705B72A6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2C395532C38FFE0F894C10C6705B72A6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib64FEF32A49AAC123E69AD63CF6EB8B4Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib64FEF32A49AAC123E69AD63CF6EB8B4Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib64FEF32A49AAC123E69AD63CF6EB8B4Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib64FEF32A49AAC123E69AD63CF6EB8B4Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib4A138141CD50CD8EAA063F18C9DE7E85s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib4A138141CD50CD8EAA063F18C9DE7E85s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2656D0598719062A02C5A7272A2A053Es1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2656D0598719062A02C5A7272A2A053Es1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib2656D0598719062A02C5A7272A2A053Es1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD04B5D0A6244ECA594E77B3EA9C2AF90s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD04B5D0A6244ECA594E77B3EA9C2AF90s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibD04B5D0A6244ECA594E77B3EA9C2AF90s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib6839CC532C1EFE63DDA6EC24559E22EDs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib6839CC532C1EFE63DDA6EC24559E22EDs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib6839CC532C1EFE63DDA6EC24559E22EDs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib60AE1ADCFB1527C60C46E51DC573911Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib60AE1ADCFB1527C60C46E51DC573911Fs1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bib60AE1ADCFB1527C60C46E51DC573911Fs1
https://docs.nersc.gov
https://docs.nersc.gov/development/libraries/libsci
https://docs.nersc.gov/development/libraries/libsci
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibB963FFE3C0584373759EE55425BC11B6s1
http://refhub.elsevier.com/S0010-4655(23)00362-4/bibB963FFE3C0584373759EE55425BC11B6s1

	TRAVOLTA: GPU acceleration and algorithmic improvements for constructing quantum optimal control fields in photo-excited sy...
	1 Introduction
	2 Theory and computational methodology
	3 Amplified gradient modification
	4 GPU acceleration
	4.1 Batched LU decomposition
	4.2 Batched inverses: forward substitution
	4.3 Batched inverses: backward substitution

	5 Computational results
	5.1 Comparison between original and amplified gradient modification
	5.2 Accuracy of the hybrid implementation
	5.3 Computational performance on GPUs and comparisons

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

