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ABSTRACT

Analytical models for virus transport in saturated, homogeneous porous media are de-

veloped. The models account for three-dimensional dispersion in a uniform flow field,

and first-order inactivation of suspended and deposited viruses with different inactiva-

tion rate coefficients. Virus deposition onto solid particles is described by two different

processes: nonequilibrium adsorption which is applicable to viruses behaving as solutes;

and colloid filtration which is applicable to viruses behaving as colloids. The governing

virus transport equations are solved analytically by employing Laplace, Fourier, and

finite Fourier cosine transform techniques. Instantaneous and continuous/periodic virus

loadings from either a point or an elliptic source geometry are examined. Further-

more, porous media with either infinite, semi-infinite, or finite thickness are considered.

The effects of virus loading conditions, aquifer boundary conditions, and virus source

geometry on virus migration in subsurface porous formations are investigated.

A model for virus transport in one-dimensional, homogeneous, saturated porous

media is also developed, accounting for virus sorption and inactivation of liquid phase

and adsorbed viruses with different time dependent rate coefficients. The virus inac-

tivation process is represented by a pseudo first-order rate expression. The pseudo

first-order approximation is shown to simulate available experimental data from three

virus inactivation batch studies better than the frequently employed constant rate in-

activation model. Model simulations indicated that the pseudo first-order approxima-

tion, compared to the constant inactivation, leads to extended survival of viruses, and

consequently more distant migration. Results from a parameter sensitivity analysis

demonstrated that estimation of pseudo first-order inactivation rate coefficients from

field observations requires data collection near the source of virus contamination during

initial stages of virus transport.

KEY WORDS: virus transport, analytical/numerical modeling, multidimensional sys-

tems, non-equilibrium adsorption, filtration, time dependent virus inactivation.
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NOTATION

Cg

Coo
d, d1, d2

Dx
Dy
Dz
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E
e
f
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]{d
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semi-axis of the elliptic source parallel to z -axis, L
defined in (33) and (34), respectively
defined in (5)
semi-axis of the elliptic source parallel to y-axis, L
defined in (6)
concentration of virus in suspension (liquid phase), M/L3
source concentration, M/L3
deposited (or filtered) virus concentration
(virus mass/solids mass), M/M
concentration of virus directly in contact with solids, M/L3

steady state virus concentration, M/L3

defined in (A48), (A49), and (A50L respectively
longitudinal hydrodynamic dispersion coefficient, L2It
lateral hydrodynamic dispersion coefficient, L2It
vertical hydrodynamic dispersion coefficient, L2/t
error function, equal to (2/rr1/2) J; e-z2 dz.
defined in (A 7)
defined in (C2)
defined in (A22)
arbitrary functions
general functional form of virus source configuration, M/L3t
Fourier inverse operator
finite Fourier cosine transform operator
finite Fourier cosine inverse operator
defined in (A30)
defined in (C12)
virus source loading function, M/t
defined in (A39), (A40) and (A41), respectively
finite aquifer thickness, L
defined in (7)
modified Bessel function of first kind of order zero
modified Bessel function of first kind of first order
Bessel function of first kind of order zero
mass transfer rate constant, t-1
clogging rate constant, t-1
declogging rate constant, t-1
partition or distribution coefficient, L3M-1
modified Bessel function of second kind of order zero
x, y and z Cartesian coordinates, respectively, of the
virus point source, L
Laplace transform operator
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(
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Laplace inverse operator
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defined in (B2)
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defined in (A32), (A33), and (A34), respectively
dummy integration variable
defined in (A52)
plaque-forming units, M
defined in (B25)
dummy integration variable
defined in (13)
defined in (B16)
radius of circular source, L
forward rate coefficient, t-1

reverse rate coefficient, M/L3t
Laplace transform variable with respect to time
defined in (A23)
defined in (C8)
sum of squared error.
time, t
arbitrary time, t
temporal period, t
average interstitial velocity, L/t
dummy integration variable
virus source geometry function, L-3
spatial coordinates, L
sensitivity coefficient for liquid phase concentration.
sensitivity coefficient for adsorbed concentration.

resistivity coefficient of liquid phase virus inactivation, t-1.

resistivity coefficient of adsorbed virus inactivation, t -1.

arbitrary constants
arbitrary constants
Fourier transform variable with respect to spatial coordinate x
Dirac delta function
dummy integration variable
defined in (BIg)
porosity (liquid volume/porous medium volume), L3/L3

defined in (C10)
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inactivation rate coefficient of liquid phase viruses, t-1
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defined in (A19)
defined in (C7)
Fourier transform variable with respect to spatial coordinate y
spectrum of known coefficients, M/t
mean virus mass release rate, M/t

- Vlll -



INTRODUCTION

Groundwater contamination by pathogens such as viruses and bacteria is a serious pub-

lic health concern. An increasing number of disease outbreaks associated with viral

contamination of groundwater has been observed in the recent years (Matthess et al.,

1988; Yahya et al., 1993; Gupta and Chaudhuri, 1995). It should be noted that even

very low numbers of viruses in groundwater may cause a serious health hazard (Bitton

and Gerba, 1984; Huber et al., 1994). Therefore, a complete understanding of the fate

and transport of viruses in subsurface formations is crucial. Typical sources of viral con-

tamination of groundwater are land disposal of sewage sludge and effluents, groundwater

recharge with reclaimed water, breakage or spillage of onsite sewage disposal units (e.g.,

septic tanks and cesspools), and land disposal of solid wastes (e.g., sanitary landfills).

Mathematical models of virus transport in porous formations can effectively be uti-

lized in determining the optimal location of wastewater or sludge disposal, in order to

minimize possible impact on groundwater quality of nearby drinking water wells (Yates

and Ouyang, 1992). However, there are only a few one-dimensional analytical (i.e.,

Vilker et al., 1978; Sim and Chrysikopoulos, 1995; Chrysikopoulos and Sim, 1996) and

numerical (i.e., Grosser, 1984; Haridas, 1984; Tim and Mostaghimi, 1991; Park et el.,

1992; Yates and Ouyang, 1992; Sim and Chrysikopoulos, 1996) models available in the

literature for the prediction of fate and transport of viruses in subsurface formations.

Furthermore, although several multidimensional analytical models for solute transport

are available in the literature (i.e., Hunt, 1978; Goltz and Roberts, 1986; van Dujin

and van del' Zee, 1986; Batu, 1989, 1993; Batu and van Genuchten, 1990; Leij and

Dane, 1990; Leij et ai., 1991, 1993; Bellin et ai., 1993; Chrysikopoulos et al., 1994;

Chrysikopoulos, 1995; van Kooten, 1996), multidimensional analytical models describ-

ing virus fate and transport in subsurface porous media are nonexisting.



Viruses are submicron particles containing nucleic acids, either RNA or DNA, in

a protein coat called capsid. Viruses may lose their infectivity due to disruption of

coat proteins and degradation of nucleic acid (Gerba, 1984). This process is known as

inactivation. In subsurface formations, inactivation is controlled mainly by the physic-

ochemical characteristics of viruses (e.g., size, chemical composition, protein coat pack-

aging) (Yamagishi and Ozeki, 1972), and external factors associated with geochemical

heterogeneities of the porous medium (e.g., formation properties, temperature varia-

tions) (Yates and Yates, 1988). Therefore, the relatively complex nature of subsurface

formations may lead to spatially as well as temporally variable virus inactivation.

Temporal variation of inactivation rate coefficientsdue to variabilities of virus char-

acteristics has been observed in several experimental studies. Parkinson and Huskey

(1971) and Pollard and Solosko (1971) noticed that becieriopbege-). and T4 popula-

tions consist of two subpopulations with different resistance to heat (biphasic inacti-

vation). They observed that the most sensitive viruses inactivate rapidly, while the

remaining more resistant viruses undergo slower inactivation. Similarly, Yamagishi and

Ozeki (1972) reported that the inactivation of bectetioptiege-). exhibits two or more

distinct phases (multiphasic inactivation), corresponding to subpopulations undergoing

sequential inactivation with different inactivation rate coefficients. Grant et al. (1993)

also observed multiphasic sequential inactivation of becteriophege-); during batch ex-

periments with and without the presence of sand.

Tradi tionally, models for virus transport through porous formations assume that

the inactivation rate coefficients are constant (Yates and Ouyang, 1992; Chrysikopoulos

and Sim, 1996). It should be noted, however, that sequential inactivation of a virus

population requires two or more discrete first-order rate coefficients, each governing

a different inactivation phase (Crane and Moore, 1986). For mathematical simplicity,

-2-



the multiphasic sequential inactivation can be approximated by a pseudo first-order

expression with a time dependent inactivation rate coefficient.

The present study focuses on the development of analytical solutions to multidi-

mensional virus transport models. A variety of virus source configurations including

continuous as well as periodic virus loadings from either point or elliptic source geome-

tries are considered. Generalized analytical solutions applicable to viruses undergoing

nonequilibrium adsorption or filtration in aquifers of semi-infinite as well as finite thick-

ness are derived. Furthermore) the present work introduces a model for one-dimensional

virus transport in homogeneous, saturated porous media accounting for virus sorption

and inactivation with time dependent rate coefficients. The inactivation process is

represented by a pseudo first-order expression with time dependent rate coefficients

determined from available experimental data. Model simulations are compared to the

frequently considered case of constant inactivation rate coefficients. In addition) sen-

sitivity analysis is conducted to evaluate the response of the virus transport model to

inactivation rate fluctuations.

-3-



MODEL DEVELOPMENT

The transport of viruses in saturated, homogeneous porous media, accounting for three-

dimensional hydrodynamic dispersion in a uniform flowfield, virus adsorption (or filtra-

tion), and first-order inactivation of liquid phase and deposited viruses with different

inactivation rate coefficients, is governed by the following partial differential equation
8C(t, x, y, z) !!.. 8C*(t, x, y, z) _ D 82C(t, x, y, z) _ D 82G(t, x, y, z)

8t +e 8t x 8x2 y 8y2

_ D 82C(t, x, y, z) U 8CCt, x, y, z) ic« ) \* eC*(t )
z 8z2 + 8x + /\ ,X, y, Z + /\ e ,x, y, Z

= pet, x, y, z), (1)

where C is the liquid phase virus concentration; C* is the virus concentration deposited

onto the solid matrix; Dx, Dy, and Dz are the longitudinal, lateral, and vertical hydro-

dynamic dispersion coefficients, respectively; U is the average interstitial velocity; t is

time; x, y, and z are the spatial coordinates in the longitudinal, lateral, and vertical

directions, respectively; p is the bulk density of the solid matrix; ()is the porosity of the

porous medium; .\ is the inactivation rate coefficient of liquid phase viruses; .\* is the

inactivation rate coefficient of deposited viruses; and F is a general form of the virus

source configuration. The accumulation of deposited viruses onto the solid matrix is

described by the following generalized mass balance expression

p8C*(t,x,y,z) ( ) *( ) *p '" )8 8t =T1C t,x,y,z -r2C t,x,y,z -.\ BC (t,x,y,z, (2)

where 1'1 and 1'2 are the forward and the reverse rate coefficients.

Assuming that initially there are no deposited viruses present in the porous for-

mation, the expression describing C'" is obtained by solving (2) subject to the initial

condition C*(O, x, y, z) = ° to yield

(3)
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where T is a dummy integration variable. In view of (2) and (3) the governing equation

(1) can be written as

8C(t, x, y, z) _ D 82C(t, x, y, z) _ D 82C(t, x, y, z) _ D 82C(t, x, y, z)
ot x ox2 Y oy2 Z 8z2

t

8C(t, x, u. z) AC( ) B J C( ) -'H{t-T)d - F( ) (4)+U 8x + t,x,y,z - r,x,y,z e T- t,x,y,z,
o

where the following substitutions have been employed

A = rl + A, (5)

B = 'rl'r2(} , (6)
P

7-i = r2(} + A* . (7)
p

The derived integrodifferential equation (4) is solved analytically in the subsequent

sections for the cases of aquifers with infinite, semi-infinite, and finite thickness.

Aquifer with Infinite Thickness

The appropriate initial and boundary conditions for the case of an aquifer with in-

finite longitudinal, lateral, and vertical directions, as illustrated schematically in Figure

l a, are as follows

C(O,x,y,z) = C*(O,x,y,z) = 0, (8)

C(t, ±oo, y, z) = 0, (9)

C(t, x, ±oo, z) = 0, (10)

(11)
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Figure 1: Schematic illustaration of point and elliptic sources of virus contamination
with coordinates RXe} RYe} Rzo in an aquifer with (a) infinite} (b) semi-infinite, and
(c) finite thickness. Note that the positive direction for the vertical coordinate is
inverted.
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Equation (4) subject to conditions (8)-(11) is solved analytically by straightforward

but laborious procedures. Taking Laplace transforms with respect to time variable t

and Fourier transforms with respect to space variables z, y, and z of (4) and subse-

quently employing the transformed initial and boundary conditions, followedby inverse

transformations yields the desired analytical solution (see Appendix A)

1/2 t 00 00 00

C(t,x,y,z)= (161r2~xDy) J J J J exp[U~D~q)]F(t-r,q,v,p)
o -00 ~oo-oo

[
8Q (r x - q y - v z - p)]

x 'HQ(r,x-q,y-v,z-p)+ ' 8r ' dpdvdqdr, (12)

where

t 1/2
Q(t, X, u. z) =e-Jit J 10 [2(B((t - ()) 1/2] (41r ~z(3 )

o

[
1 (x2 y2 z2 ) ( U2 ) ]x exp - - -- + - + - - ( A + - - 'H d(,
4( o; o, o. 4Dx (13)

( 1 ) 1/2 [1 (X2 y2 z2 ) ( u2 )]X 3 exp - - -- + - + - - ( A + - - 'H d(
41ru.c 4( o; o, o, 4Dx

( 1 ) 1/2 [1 (x2 y2 z2 ) ( U2 ) ]+ e-Jtt 3 exp - - - + - + - - t A + -- - 'H ,
47fDzt 4t o; o, ti, 4Dx (14)

p, q, v, and ( are dummy integration variables, and 10 and h are the modified Bessel

functions of the first kind of zeroth and first order, respectively. It should be noted

that the Leibnitz rule (Greenberg, 1978, eq. 1.41, p. 18) as well as the Bessel function

relationships dIo[,u]/d,u = i,[,u](Abramowitz and Stegun, 1972, eq. 9.6.27, p. 376) and

10 [0]= 1 were employed in the derivation of (14).



Virus Source Configuration

The virus source configuration is represented by the following general function

F(t, X, y, z) = G(t)W(x, y, Z), (15)

where G(t) is the virus mass release rate from the source; and W(x, y, z) signifies the

inverse of the source volume from which the virus mass is introduced into a porous

medium. It should be noted, however, that G(t) characterizes the source loading type.

In the inifinite thickness aquifer case, instantaneous as well as continuous or temporally

periodic source loading functions are considered.

Point Source Geometry

The point source geometry can be applied to represent virus sources such as broken

sewer pipelines, leaking septic tanks, and groundwater recharge by injection wells, as

described mathematically by the followingexpression

(16)

coordinates of the virus point source, respectively; and b is the Dirac delta function. It

should be noted that here G represents the virus mass release from point source.

Instantaneous Virus Loading from a Point Source Geometry

For the case of instantaneous virus loading the mass release rate function is de-

scribed by the following expression

G(t) = Mb(t - to), (17)

-8-



where M signifies the total virus mass released; and to is the time of instantaneous virus

release. Combining (12) and (15)-(17) yields

M ( 1 ) 1/2 [U(X - €xJ]
C(t, x, y, z) = e 167r2DxDy exp 2Dx

x [HQ(t-t -€ -€ -€)+ 3Q(t-to,x-eXoly-eYO,z-.ezJ] (18)
01 X Xo , Y Yo' Z Zo at '

where the following property of Dirac delta function was employed

0;2J Jo(t)b(t - to) dt = 10(to),
0'1

(19)

and 10 is an arbitrary function. The desired analytical solution for the case of instan-

taneous virus loading conditions is obtained by substituting (13) and (14) into (18), to

yield

t-to 1/2

cu.X, u, z) =~ J (647r3 Dx~yDz(3 )
o

Al(t-to) A2(t-to) A3(C,x-€xo'Y-€Yo,z-€zJ d(

M ( 1 )1/2
+e 641f3 DxDyDz(t - to)3

Al(t - to) A3(t - tOlX - PXOl Y - .eYo'z - pzJ, (20)

where the following definitions were employed

Al (t) = exp [ - H t] ,

( )

1/2

A2(t) = t ~\ i.[2(8((t - ()) 1/2] 1

(21a)

(21b)

[
Ux 1 (X2 y2 z2 ) ( U2 )]A3 (t, x, y, z) = exp - - - - + - + - - t A + - - 'H . (21c)
2Dx 4t o; o; o, 4Dx

-9-



Continuous or Periodic Virus Loading from a Point Source Geometry

For the case of a continuous or temporally periodic virus loading, the mass release

rate function can be represented by a generalized Fourier series (Hassani, 1991)

- ~ [i2mrt]G(t) = n+ ~nnexp T ' (22)

where n represents the mean value of the virus mass release rate from the source; On is

a spectrum of known coefficients; n is the wave number; and tp is the temporal period of

fluctuation. It should be noted that for the special case of an infinite period (tp --). 00),

(22) reduces to a constant rate source loading (G = 0). In view of (19), combining (12)

with (15), (16) and (22) yields

1/2 t

(
1 ) J [U (x - RxJ] G(t - r)C(t,x,y,z) = 167r2DxDy exp 2Dx B

o

X
[
'1..JQ( _II _II _II )+OQ(r,X-RX01Y-RY01Z-RzJ]d
I L T, X {,xo' Y {,Yo' Z {,zo or r. (23)

The desired analytical solution for continuous/periodic virus loading conditions is ob-

tained by substituting (13) and (14) into (23), to yield

(24)

-10 -



Aquifer with Semi-infinite Thickness

The appropriate initial and boundary conditions for this aquifer, as illustrated

schematically in Figure 1b, are (8)-(10) and the following semi-infinite vertical bound-

ary conditions
8C(t, x, y, 0) = 0

8z '
8C(t,x,y,oo) =0

8z '

(25)

(26)

where the boundary condition (25) represents a zero dispersive flux boundary and (26)

preserves concentration continuity for a semi-infinite vertical aquifer thickness. The

vertical level z = 0 defines the location of the water table or a confining layer. Equation

(4) subject to conditions (8)-(10), (25), and (26) is solved analytically by straightfor-

ward but laborious procedures. It should be noted that z increases in the downward

direction. Taking Laplace transforms with respect to time variable t and space variable

z, and Fourier transforms with respect to space variables x and y of (4) and subse-

quently employing the transformed initial and boundary conditions, followed by inverse

transformations yields the desired analytical solution for an aquifer with semi-infinite

thickness (see Appendix B)
1 1/'2 t 00 00 00

C(t,x,y,z) = (647r3DxDyDz) J J J J F(t-r,q,v,p) A1(r)
o -00 -00 0

where the following definitions were employed

[
U x 1 (x2 y'2 ) ( U'2 )]A4(t,x,y)=exp --- -+- -t A-'H+- ,

2Dx 4t »; o, 4Dx

A5(t,z) ==l4;:t]
(28a)

(28b)
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Virus Source Configuration

In the semi-infinite thickness aquifer case, continuous/periodic virus loading from

point as well as two-dimensional source geometries are considered.

Continuous/Periodic Virus Loading from a Point Source Geometry

Substituting (15) and (16) into (27) yields the analytical solution for the case of a

point source geometry

t

(
1 ) 1/2 J G(t - r)

C(t,x,V,Z) = 641f3DxDyDz () Al(r)
o

Continuous/Periodic Virus Loading from an Elliptic Source Geometry

The elliptic source geometry can be applied to represent virus sources such as

land disposed sewage sludge, groundwater recharge by basin, and sanitary landfills, as

described mathematically by the following expression

{

8(z - RzJ
W(X,y,Z) = ~ (30)

otherwise,

where Rxo' Ryo' Rzo are x, V, z Cartesian coordinates, respectively, of the center of the

elliptic source geometry, and a and b represent the semi-axes of the ellipse parallel to

x- and v-axes, respectively.
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Substituting (15) and (30) into (27) leads to the analytical solution for the case of

an elliptic source geometry

where

(32)

(33)

(34)

(35)

(36)

erf[ ] is the error function, and the following transformation and integral relationship

were employed
v-v

K = ---=-------:---:--;-::-
(4tDy)1/Z'

-dv
d« = (4tDy)1/Z' (37a, b)

~2 liZJ exp[-KZ] d« = -?T2 {erf[KIJ - erf[KzJ}.
~l

(38)

As noted by Chrysikopoulos (1995), solving for an elliptic source geometry is advanta-

geous because the appropriate solution for a circular source can easily be obtained by

setting a = b = r in (32)-(36), where r is the radius of the circular source.
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Aquifer with Finite Thickness

The desired analytical solution for the case of an aquifer with finite thickness, as

illustrated schematically in Figure l c, is obtained by solving (4) subject to conditions

(8)~(1O), (25), and the following finite vertical, lower boundary condition,

8C(t,x,y, H) = 0
8z '

(39)

where H is the aquifer thickness. The boundary condition (39) implies that the aquifer

is confined by an impermeable layer at depth z = H. Taking Laplace transform with

respect to time variable t, Fourier transforms with respect to space variables x and y,

and finite Fourier cosine transform with respect to space variable z of equation (4), and

subsequently employing the transformed initial and boundary conditions, followed by

inverse transformations yields (see Appendix C)

{

T

A2(T) ....
X !(A4((,x-q,y-v) A,(,F(t-T,q,V,O),F(t-T,q,V,,p=)) d(

A4(T,X-q,y-v) ( .. .. )}+ T A7 T, F(t - T, q, v, 0), F(t - T, q, v, 'lj;rn) dudqdr, (40)

where

A7(t, it,h) = ~ + ~ f 12 exp [-'Ij;~DztJ cos ('Ij;1nz) ,
m=l

(41)

(42)

m is the integer summation index, F(t, x, y, 'lj;rn) represents the finite Fourier cosine

transform of F(t, x, y, z) with respect to space variable z with corresponding finite

Fourier cosine transform variable 'lj;1n,and hand 12 are arbitrary functions.
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Virus Source Configuration

In the finite thickness aquifer case, continuous/periodic virus loading from point as

well as two-dimensional source geometries are considered.

Continuous/Periodic Virus Loading from a Point Source Geometry

The desired analytical solution for the case of point source geometry is obtained

by substituting the corresponding expression for F(t, x, y, 'l/Jm) into (40). Substituting

(16) into (15) and subsequently taking the finite Fourier cosine transform with respect

to space variable z of the resulting expression yields
H.. I G(t)F(t, x, y, 'ljJm)= -e-b(x - exJb(y - eyJb(z - ezJ COS('¢mz) dz
o

(43)

where the latter formulation in (43) is a consequence of employing (19). In view of (43)

and (19) the general solution (40) reduces to the following form
t

(
1 )1/2/G(t_r)

C(t,x,y,z) = 1611'2DxDy e Al(r)
o

{IT A2(r) ()x 0 ( A4((, x - £Xo' y - eyJ A7 (,1, cos ('l/JmezJ d(

+ A'(T,.~ -;0' Y - £yo) A7(T, 1, cos (1f;=f.J ) } dr. (44)

Continuous/Periodic Virus Loading from an Elliptic Source Geometry

In view of (30) the finite Fourier cosine transform of (15) with respect to z is given

by
(x - exJ2 (y - £yJ2

a2 + b2 :s; 1,

otherwise.

(45)
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Substituting (45) into (40), the desired analytical solution for the case of elliptic source

geometry is as follows

(
1 )1/2jtja2G(t_T)

C(t,x,y,z) = 167rD
x

B Al(r)
o al

(46)

Virus Attachment onto the Solid Matrix

Nonequilibrium Virus Adsorption (8 MODEL)

Assuming that the adsorption process consists of virus diffusion to the outer layer

of a solid particle by nonequilibrium mass transfer and virus immobilization onto the

solid particle while in equilibrium with the liquid phase virus concentration in the outer

layer, the expression for accumulation of adsorbed viruses (2) can be replaced by (Sim

and Chrysikopoulos, 1996)

p8C*(t,x,y,z) k[C( ) ( )] *P *( )B 8t = t,x,y,z - Cg t,x,y,z - A BC t,x,y,z, (47)

where k is the mass transfer rate constant; and C9 is the liquid phase concentration of

virus in direct contact with solids. Furthermore, it is assumed that the following linear

equilibrium relationship is valid

C* (t, z ,y, z) = KdCg (t, X, y, z), (48)

where Kd is the partition or distribution coefficient. In view of (2), (47), and (48) the

following substitutions

(49)
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(50)

can be employed into (20), (24), (29), (31), (44), or (46) to yield the corresponding S

model solutions for each combination of virus source loading and geometry for different

aquifer types.

Virus Filtration (C MODEL)

Assuming that the colloid filtration theory is applicable to virus attachment onto

the solid matrix of a subsurface formation, the accumulation of filtered viruses can be

written as

poC*(t,x,y,z) k C( ) k PC*( ) ,*PC·( )o at = c t,x,y,z - rO t,x,y,z -/\ 0 t,x,y,z, (51)

where C* is now the virus concentration retained in the porous medium by the filtration

process; kc is the clogging rate constant; and k; is the declogging rate constant. In view

of (2) and (51) the following substitutions

(52)

(53)

can be employed into (20), (24), (29), (31), (44), or (46) to yield the corresponding C

model solutions for each combination of virus source loading and geometry for different

aquifer types.
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MODEL SIMULATIONS AND DISCUSSION

Model simulations under nonequilibrium virus adsorption (S model) as well as virus

filtration (C model) conditions are performed for a variety of virus source configura-

tions. The integrals present in the analytical solutions are evaluated numerically by

the integration routines Q1DA and QDAG) which utilize globally adaptive quadrature

algorithms (IMSL) 1991; Kahaner, 1989). The infinite series part of the solution for

the case of an aquifer with finite thickness (41) is evaluated by considering up to 1000

terms (m=1000). The groundwater table and the bottom of the finite thickness aquifer

are assumed to be located at z = 0 cm and z =H = 6 em) respectively. For simplicity)

the values forM and n are set to unity. Unless otherwise specified, the fixed parameter

values used in the simulations are those listed in Table 1. Furthermore, the concentra-

tions generated under continuous virus loading conditions are normalized by the steady

state concentration evaluated at t = 100 d (Coo) as suggested by Hunt (1978).

Table 1. Model Parameters for Simulations

Parameter Value Reference

Dx 15 cm2/hr Sim and Chrysikopoulos (1995)

Dy =Dz 1.13 cm2/hr Goltz and Roberts (1986)

Kd 20 ml/g Vilker (1981)

A = A· Od

p 1.5 g/cm3 Yates and Ouyang (1992)

() 0.25 Park et aL (1992)
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Two-dimensional snapshots of virus concentration simulated by the C model under

instantaneous point source conditions for an aquifer with infinite thickness (eqs. 20, 52,

53) at three successive times are illustrated in Figure 2. The viruses are assumed to be

highly conservative (ke = k; = .\= .\* ~ 0). As the center of mass moves downstream

from the source, enhanced but symmetric spreading is observed in both longitudinal

and lateral directions.

The general behavior of the S model is similar to the C model. For example, Figure 3

illustrates two-dimensional snapshots of virus concentrations on the z , y plane, at three

successive times as predicted by the S model under continuous but constant (G = 0)

point source conditions for an aquifer with infinite thickness (eqs. 24, 49, 50). For the

case examined here, the virus loading is continuous as opposed to instantaneous loading

considered in Figures 2. It should be noted that the elongation of the virus plume in

Figure 3 along the longitudinal direction is caused by the assumption Dx > Dy•

Figure 4 illustrates two-dimensional snapshots of virus concentration at three suc-

cessive times simulated by S model for an aquifer with semi-infinite thickness (eqs. 29,

49, 50). A point source is assumed to be located inside the aquifer at f.xo = 20 ern,

f.Yo = 0 em, f.zo = 3 cm. It is observed that as the virus plume spreads with increasing

time, viruses accumulate at the groundwater table (z = 0 em), whereas no accumulation

of viruses occurs anywhere else below the water table because the aquifer extends to

infinity without boundary (eq. 26). Consequently, the observed virus plume is asym-

metric with respect to the flowdirection along the plume centerline. In contrast, Figure

5 illustrates symmetric virus plumes at three successive times, as predicted by S model

for an aquifer with finite thickness and point source geometry (eqs. 44, 49, 50). This is

due to the presence of a fixed impermeable lower boundary (eq. 39) in addition to the

upper groundwater table boundary. Virus accumulation progressively increases not

- 19-
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Figure 2: Concentration contours in the Xl y plane obtained by the C model under
instantaneous loading of highly conservative viruses at (a) t = 1.0 d, (b) t = 3.0
d, and (c) t = 5.0 d (Here z = 100 cm, kc = k; = 0 hr:", and U = 4 em/hr).
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Figure 3: Concentration contours in the z , y plane obtained by the S model under
continuous virus loading conditions at (a) t = 0.1 d, (b) t = 0.2 d) and (c) t = 0.5
d, (Here z = 100 em, k = 0.0001 hr-1, and U = 4 cmjhr).
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Figure 4: Concentration contours in the x, z plane obtained by the S model with
point source under semi-infinite vertical boundary condition at (a) t = 0.1 d, (b)
t = 0.2 d, and (c) t = 0.5 d (Here fxo = 20 em, fyo = 0 em, fzo = 3 em, Y = 0
em, k = 0.0006 hr-1, and U = 8 cmjhr).
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(c) t = 0.5 d (Here lxo = 20 em, eyo = 0 em, lzo = 3 em, Y = 0 em, k = 0.0006
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only at the groundwater table (z = 0 em) but also at the fixed impermeable boundary

(z = H = 6 em). Comparing Figures 4 and 5, it is clear that the vertical migration

of viruses is hindered by the two fixed boundaries. Furthermore, the presence of these

boundaries contributes to the enhancement of virus transport downstream from the

source in the direction of groundwater flow.

In order to clearly demonstrate the different effects of the semi-infinite and finite

vertical aquifer domains on virus transport, concentration profiles are predicted along

the vertical cross sections A, Band C (shown in Figure 4c), and AI, B' and G' (shown in

Figure 5c) and they are presented together in Figure 6. At x = 24 em (cross sections A

and AI, see Figure 6a), the difference in concentration levels simulated for the two differ-

ent sets of boundary conditions examined here is insignificant since the plume spreading

in vertical direction is relatively small and thus the majority of viruses are still concen-

trated near the plume centerline. However, with increasing distance from the source

(see Figures 6b and 6c), due to increased spreading of the virus plume, the model for

the aquifer with finite vertical thickness predicts a considerable accumulation of viruses

both at the upper (z = 0 cm) and lower (z = 6 em) boundaries, whereas for the case

of a semi-infinite aquifer, viruses continue to spread vertically downward. Therefore,

the difference between the two model simulations becomes more pronounced. These

results suggest that the presence of a shallow impermeable boundary may significantly

influence virus concentrations.

The effect of the lower impermeable boundary condition is also demonstrated for the

case of an elliptic source geometry. Two-dimensional snapshots of virus concentrations

at t = 0.1 d are predicted by S model with an elliptic source geometry for an aquifer with

semi-infinite thickness (eqs. 31, 49, 50, Figure 7a) as well as for an aquifer with finite

thickness (eqs. 46, 49, 50, Figure 7b). Similarly to the case of point source geometry,

the presence of a shallow impermeable aquitard significantly constricts the
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Figure 6: Concentration snapshots obtained by S model with point source under semi-
infinite and finite vertical boundary conditions along the cross sections (a) A and
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in Figures 4e and 5e (Here y = 0 em, k = 0.0006 hr-1, and U = 8 cmjhr).
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Figure 7: Concentration contours in the x, z plane obtained by the S model with
elliptic source at t = 0.1 d under (a) semi-infinite and (b) finite vertical boundary
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vertical spreading of viruses, which consequently leads to an enhanced virus migration

in the direction of groundwater flow.
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TIME DEPENDENT INACTIVATION RATE MODEL

Governing Equations

The transient virus transport through one-dimensional, homogeneous, saturated

porous media, accounting for virus adsorption and inactivation, is governed by the

following partial differential equation (Sim and Chrysikopoulos, 1995)

aC~~,x) +~ac~~,x) = Da2~;~x) _uEJC~;x) -'\(t)C(tlX)-'\*(t)~C*(t,x), (54)

where the accumulation of adsorbed viruses is represented by (47)-(50).

Time Dependent Inactivation

In the present work, inactivation rate coefficients are considered to be time depen-

dent, and consequently the inactivation of viruses in the liquid phase and solid phase

are described by the following modified first-order rate expressions

d~~t) = -.\(t)C(t),

dC~t(t) = -.\*(t)C*(t),

(55)

(56)

respectively, where the time dependent inactivation rate coefficients of viruses in the

respective phases are described by

(57)

(58)

where .\0 and .\~ are the initial inactivation rate coefficients of viruses in the respective

phases; and 0: and 0:* are the resistivity coefficients of viruses in the respective phases.
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The magnitude of a is proportional to the resistivity of the dominant subpopulation,

because the overall inactivation is controlled by the dominant subpopulation. The in-

activation rate coefficients of viruses in the liquid phase are assumed to be twice as

large as the coefficients of adsorbed viruses (A~ = Ao/2) (Reddy et al., 1981;Yates and

Ouyang, 1992). Furthermore, the resistivity coefficient of adsorbed viruses is considered

to be equal to the resistivity coefficient of viruses in the liquid phase (a* = a). Substi-

tuting (57) into (55) and solving the resulting expression subject to the initial condition

G(O) = Gi, where C, is the initial liquid phase virus concentration, yields

(59)

The parameters Ao and a can be obtained by fitting the preceding equation to existing

experimental data.

Table 2. Estimated Virus Inactivation Parameters for Three Data Sets

Poliovirus (l°C) Bacteriophage-A (~ 150 C) Bacteriophage-A'T'" (60° C)
Parameter (Hurst et al., 1980) (Grant et al., 1993) (Parkinson and Huskey, 1971)

Time Dependent Inactivation

Ao (d-1) 0.25 2.66

a (d-1) 0.42 2.41

sse 0.68 0.27

Constant Inactivation

A (d-1) 0.018 0.17

sse 2.45 0.40

226.02

24.65

1.67

32.28

26.71
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Figure 8: Batch inactivation experimental data (circles) for (a) Poliovirus at 1 °C
with distilled water under anaerobic conditions adopted from Hurst et al. (1980),
(b) becteiiopbege-). at ::=. 15°C with 10 mM NaCl electrolyte and pH 7 under
aerobic conditions adopted from Grant et al. (1993), and (c) becierioptuige-s+"
at 60°C with 10mM MgS04 under aerobic conditions adopted from Parkinson
and Huskey (1971), and simulated concentration history based on the pseudo
first-order inactivation model (solid curves) and constant rate inactivation model
(dashed lines).
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Figure 8 presents virus inactivation experimental data fitted by both (8) and the

constant inactivation rate model (A(t) = '\). The estimated parameters for both inacti-

vation rate models considered together with the corresponding residual sums of squared

error (sse) are listed in Table 2. Clearly, the pseudo first-order inactivation rate model

simulates the experimental data much better than the constant inactivation rate model,

which fails to match the data at early and late times (see Figure 8). The slope of a

tangent to a solid curve represents the inactivation rate coefficient at the particular

time.

Initial/Boundary Conditions

The appropriate initial and boundary conditions for a semi-infinite, one-dimension-

al porous formation in the presence of a continuous source of viruses are (Sim and

Chrysikopoulos, 1995):

C(O, x) = C*(O, x) = 0, (60)

_Dac~;o) + UC(t,0) = UC01 (61)

aC(t, (0) = 0
ax ' (62)

where Co is the source concentration. The condition (60) establishes that there is no

initial liquid phase and adsorbed virus concentrations within the porous medium. The

constant flux boundary condition (61) implies virus concentration discontinuity at the

inlet. The downstream boundary condition (62) preserves concentration continuity for

a semi-infinite system. The governing virus transport equation (54) in conjunction

with the relationships (53), (54), (57), and (58) is solved numerically subject to ini-

tial/boundary conditions (60)-(62). The numerical solution is obtained by using the

IMSL one-dimensional partial differential equation (PDE) solver MOLeR (IMSL, 1991).
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Model Simulations

The effect of temporally variable inactivation on liquid phase virus concentration

in saturated porous media is investigated by conducting model simulations. The fixed

parameter values used for virus transport simulations are: D = 32.04 cm2/hr and U =
5.04 cm/hr (Bales et al., 1991); Kd = 2.08 X 10-2 ml/rng (Vilker, 1981); k = 1.2 hr-I

(Vilker and Burge, 1980); P = 1.5 g/cm3 (Yates and Ouyang, 1992); and e = 0.25 (Park

et al., 1992). The pseudo first-order inactivation rate parameters are estimated from

the experimental data collected by Grant et al. (1993) (see Figure 8b).

At early time, the simulated concentration profile for the case of pseudo first-

order inactivation is lower than the one for the case of constant inactivation rate (see

Figure 9a), whereas at late time the concentration levels are reversed (see Figure 9b).

The temporally variable inactivation allows rapid inactivation of the most sensitive

subpopulations at early time, and extended survival of the most resistive subpopulations

at late time. Therefore, viruses may remain infective in porous media for an extended

period of time and thus travel farther downstream from the source.

Parameter Sensitivity Analysis

In order to investigate the response of the virus transport model to perturbations of

the pseudo first-order inactivation parameters a and .Ao, a formal parameter sensitivity

analysis is conducted. A parameter sensitivity coefficient that represents the degree of

spatial and temporal change in the dependent variable (i.e., concentration) due to the

fluctuation of a particular model parameter, was obtained by differentiating the depen-

dent variable with respect to the parameter of interest (Koda et al., 1979; Knopman

and Voss, 1987).
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The sensitivity coefficientswith respect to the resistivity coefficient for liquid phase

and adsorbed virus concentrations are given by

Z ( )
_ 8C(t,x)

0: t, x - 80:. '
Z*(t ) = 8C*(t,x)

0: ,x 80:.' (63a, b)

respectively. Differentiating the governing equations (1)-(3) with respect to 0:. yields

8Zo:(t,x) + p8Z;'(t,x) = D82Zex _U8Zo: +>.(t) [tC(t )-Z (t x)] ->'*(t)f!.Z*(t x)
8t e 8t 8x2 8x ' X a, e a , ,

(64)

(65)£8Z~(t,x) = k[Z (t x) _ Z~(t,x)] - >'*(t)f!.Z*(t x)e 8t a , K d e ex , •

Similarly, the corresponding initial and boundary conditions are obtained from (60)~(62)

as follows

Za(O,x) = Z:(O,x) = 0,

_D8Z~~,0) + UZo:(t,O) = 0,

oz;«. (0)-.,;;.;".,:.....:..-..:....= O.
8x

(66)

(67)

(68)

The sensitivity coefficients Zo: and Z; are evaluated by solving (64) and (65) subject to

(66)-(68) together with the governing equations (54) and (47)-(50) subject to conditions

(60)-(62). A numerical solution is obtained by the IMSL one-dimensional PDE solver

MOLeR (IMSL, 1991).

The sensitivity coefficients with respect to the initial inactivation rate coefficient

for liquid phase and adsorbed virus concentrations are given by

8C(t,x)
Z'>"o(t,x) = 8>'0 ' Z* ( ) _ 8C*(t, x)

'>"0 i, x - a>.o ' (69a, b)

respectively. The desired partial differential equations are obtained in a fashion similar

to the case of resistivity coefficient

aZ>.oCt, x) + f!.az~Jt,x) = D82Z.>..o _ u8Z.>..o_ -atC(t )
at e 8t 8x2 ax e , x

- >'(t)Z'>"o(t,x) - >'*(t)~zt(t,x), (70)
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8Z* (t x) [ Z* (t X)]e >'0 ' = k Z (t ) - >'0 ' ' - ,.\ * (t) £. Z,. (t )e at >'0 , x K d e >'0 ,x, (71)

The sensitivity coefficients Z>"o and Zt are evaluated by solving numerically (70) and

(71) subject to conditions (66)-(68) with substitution of Zo: and Z~ by Z>'o and Z~o'

in conjunction with the governing equations (54) and (47)-(50) subject to conditions

(60)-(62),

Figure lOa shows that at different locations within the one-dimensional porous

medium, Zo: approaches a zero value with increasing time, because the system reaches

a steady state, where C(t, x) is insensitive to variations in 0::, The impact of 0:: on

liquid phase virus concentration is most significant near the source, However, it should

be noted that although the peak value of Zo: decreases with increasing distance from

the source, the time interval over which 0: influences the liquid phase concentration

increases with increasing distance from the source, The spatial variation of Zo: at

different simulation times is illustrated in Figure lOb. It is observed that the peak value

of Zo: progressively decreases with increasing time, because the system approaches a

steady state. Therefore, liquid phase virus concentrations are highly sensitive to 0:

near the source and during early stages of virus transport, The temporal and spatial

variations of the sensitivity coefficient Z>'0 exhibit similar trends to the ones observed

for Zo: in Figure 10.
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Figure 10: Variation of Zo: as a function of (a) time and (b) space.
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SUMMARY

Analytical models for virus transport in saturated, homogeneous porous media were de-

veloped, accounting for three-dimensional hydrodynamic dispersion in a uniform flow

field, first-order inactivation of liquid phase and deposited viruses with different in-

activation rate coefficients, and virus attachment onto the solid matrix of the porous

formation by either nonequilibrium adsorption (8 model) or modified colloid filtration

(C model). The governing transport equations were solved analytically by employing

Laplace, Fourier, and finite Fourier cosine transform techniques. Aquifers with either

infinite, semi-infinite or finite thickness are considered. The derived analytical solu-

tions are general enough to accommodate a variety of source loadings and virus source

geometries. The simulations presented in this study are based on an instantaneous or

continuous source loading from either point source or elliptic source geometry. It was

shown that virus transport in subsurface porous media is significantly influenced by

the aquifer boundary conditions. For an aquifer confined by a shallow impermeable

aquitard, virus migration in the vertical direction is restricted whereas virus transport

in the direction of groundwater flow is enhanced, compared to the case of a relatively

thick aquifer. The present work focused on developing virus transport models useful

for a variety of practical applications. Therefore, the analytical models developed here

are particularly useful for preliminary estimation of virus migration, characterization

of virus contamination sources, examination of possible aquifer boundary conditions,

validation of numerical solutions, and determination of virus transport parameters from

laboratory or well defined field experiments.

A model for one-dimensional virus transport in saturated, homogeneous porous

media is developed, accounting for inactivation of liquid phase and adsorbed viruses

with different time dependent inactivation rate coefficients which are represented by
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functional relationships determined from experimental data. The significant impact of

temporally variable inactivation rate coefficients on virus transport was demonstrated

by model simulations, It was concluded from a formal parameter sensitivity analysis

that virus transport data collected in the vicinity of the source of contamination at

early time are most reliable for estimation of inactivation rate coefficients, The model

is particularly useful for improving our understanding of virus inactivation processes

in conjunction with studying virus transport through packed columns under controlled

laboratory conditions, The applicability of this model to field investigations is lim-

ited to relatively homogeneous subsurface formations. The methodology of this work

can provide a starting point for generalization to multidimensional virus transport in

heterogeneous porous or fractured media,
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ApPENDIX A:

Derivation of the Analytical Solution for an Aquifer with
Infinite Thickness

The desired analytical solution is obtained by solving the problem described by the
following integrodifferential equation and initial/boundary conditions

8C(t, x, y, z) _ D 82C(t, x, y, z) _ D 82C(t, x, y, z) _ D 82C(t, X, y, z)
8t a: 8x2 Y 8y2 Z 8z2

t

ec«, x, u, z) ( ) J ( ) -H(t-r) - ( ) (A )+U 8x +.AC t,x,y,z -8 C 7,X,y,Z e dr-F t,x,y,z, 1
o

C(O, X, y, z) = 0,

C(t, ±oo, y, z) = 0,

C(t, X, ±oo, z) = 0,

C(t,x,y,±oo) = o.

(A2)

(A3)

(A4)

(A5)

Taking Laplace transform with respect to time variable t and Fourier transforms with
respect to space variables z , y, and z of equation (AI) and subsequently employing
transformed initial condition (A2) yields

(A6)

where
2 2 BE = w Dy + 1; Dz +.A + 8 - 'H's+

and the following properties were employed for the Laplace and Fourier transformations
(Roberts and Kaufman, 1966; Kreyszig, 1993)

(A7)

oo

O(s, x, y, z) = J C(t, X, u, z)e-stdt,
o

(A8)

00

0(8,/, y, z) = (27r~l/2 J 0(8, X, u. z)e-irXdx,
-00

(A9)
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00

C(8lllWlZ) = (27r~1/2 J C(8l~/'YlZ)e-iWYdy,
-00

(AID)

* CX):A.
- I J ~ "¢C(8, I' W, ¢) = (27r)1/2 C(8, Il W, z)e-~ "dz ;

-00

(All)

where the tilde signifies Laplace transform and 8 is the Laplace domain variable; the
hat, overbar, and overdot signify Fourier transforms with respect to space variables z ,
y, and z with corresponding Fourier domain variables Il w, and ¢l respectively; and
i=(-1)1/2.

The Fourier inverse transformation of (A6) with respect to I is

(;(s, x, w, 1» = (21f~'/2 r' {i(s, "(,w, 1» } * r:' { "{2Dx+ ~"{U+ E }

F(8, X, w, ¢) ( I /00 ei'yx )
= (27r )l/2 * (27r) 1/2 -00 12Dx + ijU + E dl

= j; (8, X, w, ¢) * (/00 c~s IX d /00 i sin IX
27rDx ,,\,2+ ~ +....!L ' + 2 + i'yU + E

-00 J D", D", -00 I Dx Dx

d"{) , (A12)

where ;:-1 is the Fourier inverse operator; the asterisk represents convolution with
respect to space variable X; and the followingdefinitions of the Fourier inverse transform
were employed 00

;:--1 {h(J)} = (27r~1/2 / h (J)ei'yXdl,
-00

(AI3)

(AI4)

where it and h are arbitrary functions of x; and ~ is a dummy integration variable.
It should be noted, however, that the latter expression in (A12) is a consequence of
employing Euler's formula

ehx = cos ,x + isin IX. (AI5)

In view of (AI4) and the following integral identities (Gradshteyn and Ryzhik, 1980,
eq. 3.724.1 & 2, p. 407)

Joo sin IX d, = -7r (a? _ (32)-1/2 sin (f3x) exp [-x (0::2 _ (32)1/2] ,
12 + (3,+ 0::2 4 2 4-00

(A16)
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00 2 -1/2 [ 2 1/2]COS I'X f3 (3x f3J dl' = 7r (0;2 - -) COS (-) exp -X (0;2 - -) j

1'2 + f31'+ 0;2 4 2 4
-00

(A17)

the expression (A12) is simplified as

C::::.-( "') _ F(s,x,w,cp) {'Tr[ (iUX) _ .. (iUX)]}s, x, w, If' - 27rDx * '±' cos 2Dx ~sin 2Dx

= F(s,x,w,cp) * {'II [~]}
271'Dx exp 2Dx ' (A18)

where

(E U2)-1/2 [ (E U2)1/2]
II' = 7r Dx + 4Di exp -x Dx + 4Di ' (A19)

and the latter expression in (A18) is obtained by using the following complex trigono-
metric functions (Kreyszig, 1993, p.737)

COS(iUX) = ~{exp[~] +exp[-~]},2Dx 2 2Dx 2Dx

sin(~~:) = ~{exp[2~] - exp[ - 2~]}'

In view of (A13), (A14), and (A19), the expression (A18) is written as

(A20a)

(A20b)

00

f5 ( s, X, w, cp) = J if.(s, q, w, cp) f (s, x - q, w, ¢) dq,
-00

(A21)

where

(
1 ) 1/2 [ Ux ] [ (2 Dy) 1/2]f(s,x,w,¢) = 4DxDy (w2 +S) exp 2Dx exp -x (w +s) Dx '

(A22)

1 ( 2 B U
2

)S = Dy cp Dz + A + s - s + 1{ + 4Dx . (A23)

In view of (Al3), (A14), and (A22), the Fourier inverse transformation of (A21)
with respect to w is given by

C(s, x, v, 1» = C61r' ~xDy t'l exp [U~D~ q)] {FC', q, y, 1» *-l i[>e'w.rM} dq
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(
1 ) 1/2 100

[U(X _ q)]
= 167[2DxDy exp 2Dx

-00

x { F(s, q, y, 1» * [l iP cos(wy)dw +_l iiPSin(WY)dW] } dq, (A24)

where

(
1 ) 1/2 [ ( D ) 1/2]<I>= w2 + S exp -(x - q) (w2 + S) D: ' (A25)

and the latter expression in (A24) is a consequence of employing (15). It should be
noted that <I> as well as cos(wy) are even functions of w, whereas sin(wy) is an odd
function of w. Therefore, the trigonometric integrals are evaluated as follows

00 00 [ 1/2]1<Dcos(wy) di» = 2J ipcos(wy) dio = 2Ko Sl/2 (y2 + (x _;~2Dy) ,
-00 0

(A26)

001i<I> sin(wy) do: = 0,
-00

(A27)

where K; is the modified Bessel function of the second kind of zeroth order; and the
following integral identity was utilized in (A26) (Gradshteyn and Ryzhik, 1980, eq.
3.961.2, p. 498)

00

1 cos(wy) [ (3 (2 2)1/2] [ (2 2)1/2]1/2 exp - w + a: dw = K 0 a: y + (3 .
(w2 + a:2)o

(A28)

In view of (A26), (A27) and application of the convolution theorem, (A24) reduces to

00 00

0(8, x, y, ¢) = J 1F(8, q, v, ¢) g(s, x - q, y - v, ¢) dv dq, (A29)
-00-00

where

(
1 ) 1/2 [U] [ ( 2D ) 1/2]g(s,x,y,cP) = 47f2DxDy exp 2;;x K; Sl/2 y2 + XDxY . (A30)
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In view of (A13), (A14L (A23) and (A30), the Fourier inverse transformation of
(A29) with respect to ¢ is given by

1/2 00 00- (1) J J [U(X - q)]O(s, x, y, z) = 16rr4DxDy exp 2Dx
-00 -00

x { F(s, q, v, z) * [ I [(0 [N(8, X - q, Y - v, q,)] co,(q,z) d¢
-00

+ I [(0 [N(s, x - q, Y - v, q,)]i sin( q,z) dq,]} dv dq, (A31)
-00

where the following substitutions were employed

[ ]
1/2

N(s,x,y,cp) = ¢2 +N1(S) N2(x,y), (A32)

1 ( B U
2

)Nl (s) = D z A + s - s + H + 4Dx '

(
2 2) 1/2

A( ( ) _ y Dz x Dz
JV2 X, Y - Dy + Dx '

(A33)

(A34)

and the latter expression in (A31) is a consequence of employing (A15). It should be
noted that Nand cos(¢z) are even functions of ¢, whereas sin(¢z) is an odd function
of ¢. Therefore,

00 00J tc, [N(s, x, y, ¢)J cos(¢z) d¢ = 2 J x; [N(s, z,y, ¢)] cos(¢z) d¢
-00 0

(A35)

00J iKo[N(s,x,y,¢)] sin(¢z) dcp= 0,
-00

(A36)
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where the following integral identity was employed in (A35) (Gradshteyn and Ryzhik,
19S0, eq. 6.677.5, p. 736)

In view of (A35), (A36), and application of the convolution theorem, (A31) reduces to

00 00 00

0(8, X,u. z) = J J J i\8, q, v,p) h(8, x - q, Y - v, z - p) dp dv dq, (A3S)
-00 -00-00

where
h(8, X, y, z) = hI (8, X, y, z) h2(x, y, z), (A39)

( ) _ [Nl/2(Ar2 2)1/2]hI 8, x, y, z - exp - 1 J V 2 + z , (A40)

(A41)

Furthermore, for mathematical convenience, let

(A42)

The inverse Laplace transform of (A3S) with respect to 8 can be found by employing
the following relationship

t

c -1 { 8 : ]-{10 (8 + 'H - 8: 'H) } = e -7-it J 10 [2 (d( (t - ()) 1/2]f0 ( () sc, (A43)
o

where £-1 is the Laplace inverse operator; 10(8) is the Laplace transform ofthe arbitrary
function fo(t); and d is an arbitrary constant. Equation (A43) was obtained from the
inverse Laplace transform pair reported by Lapidus and Amundson (1952) modified
by direct application of the Bessel function relationship 10 [1]] = Jo [i7]], where Jo is
the Bessel function of the first kind of zeroth order, and 'I] is an arbitrary argument
(Abramowitz and Stegun, 1972, eq. 9.6.3, p. 375). In view of (A33) , (A34), and (A40),
To (s) is assumed to be of the following form

To (s) = exp [-s, (s + d2) 1/2] ,
- 43-
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where d1 and dz are arbitrary constants. Furthermore, the inverse Laplace transform
of foes) is (Roberts and Kaufman, 1966)

Equation (A44) can also be used to express h1 as

h, =];, (S+fi- S: H)= exp [- (s +~)'j2 {8' + s(2H + d,) + H(H + d,) - dr/2] .
(A46)

Substitution of (A33) into (A40) yields

[ (Hi + zZ ) 1/2 {2 ( u2 ) ( o» ) } 1/2]
hl = exp - Dz(s + H) S + s H + A + 4Dx + H A + 4Dx - B .

(A47)
The unknown constants d, d1, and d2 are obtained by simple comparison of (A46) and
(A47)

d=B,

_ (Hi + z2) 1/2
d1 - Dz '

(A48)

(A49)

U2
d2 = A + - - H.4Dx

(A50)

In view of (A43), (A45), and (A48)-(A50), the following inverse Laplace transform is
derived

(A51)

where

jt ( A rz 2) 1/2-Jtt 1/2 ./vz + zpet, x, u. z) =e 10 [2(B((t - ()) ] 47rD
z
(3

o

[
N,z + zz ( UZ )]x exp - 2 - ( A + - - H d(.

4Dz( 4Dx
(A52)

Furthermore, the following Laplace transform property (Kreyslzig, 1993, eq. 6.2, p.
317)

f' { 8P (t 1 z , y, z) } - ( ) ( )
J.-- 8t = sP 8, X, y, Z - P 0, X, y, Z , (A53)
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where E is the Laplace transform operator, together with P(O, X, y, z) = 0 suggests that

r-l{ sh1 } = r-l{ -D( )} = 8P(t,x,y,z)J..- '1..1 J..- sr S, X, y, z 8'
S+n t

(A54)

In view of (A42), (A51) and (A54), the inverse Laplace transformation of (A3S) is given
by

toooooo

C(t, x, y, z) = J J J J F (t - T, q, v, p) h2 (x - q, Y - v, z - p)
o -00 -00-00

[
dP (T X - q y - v z - p)]x 1tP(T,X-q,y-v,z-p)+ ' ~r ' dpdvdqdr,(A55)

where the following inverse Laplace transform relationship was employed

t

£,-l{ h(s)h(s)} = h(t) * 12(t) = J h(t - r)12(r) dr. (A56)
o

Backsubstituting (A34), (A41) and (A52) into (A55) yields the desired generalized an-
alytical solution (12)-(14).
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ApPENDIX B:

Derivation of the Analytical Solution for an Aquifer with
Semi-Infinite Thickness

The analytical solution for the case of semi-infinite thickness is obtained by solving (4)
subject to (8)-(10), (25), and (26). Taking Laplace transforms with respect to time
variable t and space variable z and Fourier transforms with respect to space variables
x and y of equation (4) and subsequently employing (8) and transformed boundary
condition (25) yields

~ ...•..

~ ) ¢C(8",W,0) . F(8",W,¢)
C(s",w,¢ = (¢+M)(¢-M) - Dz(¢+M)(¢-M)' (B1)

where
1 ( B ) 1/2

M = D;/2 8+ ,2 Dx + itU + w
2 Dy +A - 8+ 'H. '

(A8)-(AlO), and the following property was employed for the Laplace transformation
(Roberts and Kaufman, 1966)

(B2)

(B3)

where the overdot signifies Laplace transform with respect to space variable z and ¢ is
the corresponding the Laplace domain variable.

The Laplace inverse transformation of (B1) with respect to ¢ is

~ ~ (e-MZ + eMZ)C(8, " W, z) = ci« J', W, 0) 2

z
1 J ~ (e-M(Z-p) - eM(z-p) )

+ Dz F(s",w,p) 2M dp,
a

(B4)

where (A56) and the following Laplace inversion identities were utilized (Roberts and
Kaufman, 1966)

{
¢ } ae-az (3e-{3z£-1 _ + __

(¢ + a) (¢ + (3) - ex - (3 (3- a '

{
1 } e-a:z - e-{3z

£ -1 (¢+ a) (¢ + (3) = (3 - ex

(B5)

(B6)

- 46-



x.

Applying boundary condition (26) in (B4) and taking the limit z ~ 00, 3(s, ,",(,w, 0)
is evaluated to be

(B7)

Substituting (B7) into (B4) yields

6(s, 'Y,w, z) = 2~z { 7i(s, 'Y, w,p) ['I>, (s, 'Y,w, z -+ p) -+ '1>,(8, 'Y,w, P - z)] dp
o

-+ I i(s, 'Y,W,p) ['I>, (8, 'Y, W, z - p) - '1>,(8, 'Y,w,p - z)] dP}, (BS)

where
e-.Mz

tI>1 (s, ,",(,w, z) = ~.

Furthermore, for mathematical convenience, let

(B9)

(BlO)

The inverse Laplace transformation of q>1(8,,",(, W, z) with respect to s can be found by
employing (A43), where in view of (B9L 10(8) is assumed to be of the following form

(Bl1)

where aI, a2, and a3 are arbitrary constants. Furthermore, the inverse Laplace trans-
form of 10(s) is (Roberts and Kaufman, 1966, eq. 3.2.16, p. 246)

(B12)

In view of (B9)-(B12), and by following the procedures outlined in Appendix A,
the inverse Laplace transform of (B8) with respect to 8 is given by

;;:... 1 jtjCO;;:... [ »: OPl(T,'"'(,W,Z+p)
C(t",W,Z) = 2Dz F(t-T",W,p) HPl(T,'"'(,W,Z+p)+ OT

o 0

'LIP~ ( ) OP1(T,'"'(,W,p - Z)] d d+ IL 1 T,'"'(,W,p - Z + OT P T, (B13)
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where

(BI5)

(BI6)

The inverse Fourier transformation of (BI3) with respect to "( is

1/2 t oo oo

C(t,x,W,Z) = (87T~;) J J J F(t-r,q,w,p)
o +oo 0

[
vp- ( ) oP1(r,x-q,w,z+p)
ILl r, x - q, w, z + P + or

- oP1(y,x-q,w,P-Z)] ()+ 7-iP1(r, x - q,w,p - z) + or dp dq dr, BI7

where the definitions of the Fourier inverse transform (AI3) and (AI4)were employed.
In order to obtain the inverse Fourier transformation of (BI4) with respect to ,,(,

only the term Q(,,(, t) defined in (BI6) requires inversion, and is obtained as follows

{ }
1 J(Xl [ ( iU)]. ( 1 ) 1/2

F-1 Q(,,(, t) = (27T)l/2 exp -Dxt "(2 + Dx "t et'Yx d"( = 2Dxt r;(x, t),
+oo

(BI8)
where

[
1 (U2

t X2 ux)]r;(x, t) = exp - Dx 4 + 4t - 2 ' (BIg)
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and the latter expression in (BI8) is a consequence of employing (AI5) and the following
integral identities (Gradshteyn and Ryzhik, 1980, eq, 3.923.1 & 2, p. 485)

00J exp [ - (,611'2+ 2,621')] COS(2,631')dl'
-00

00J exp [ - (,611'2+ 2(321')] sin(2,631') dl'
-00

where ,61, ,62, and (33are arbitrary constants. Therefore, in view of (B18L the inverse
Fourier transformation of (B14) is

t 1/2
- -Ht J [( )1/2] ( o, )PI (t, X, w, z) = e 10 2 B((t - () 27rDx(2

o

x exp [- 4~:(- (w' o,+A -H) (] ry(x, o «; (B22)

The inverse Fourier transformation of (B17) with respect to w is

too 0000

C(t, x, u, z) = 47r~z J J J J F(t - T, q, v,p)
a -00 -00 a

[
'1.IP ( ) ap1(T,x-q,y-v,z+p)x It. 1 T, X - q, Y - v, z + P + aT

aPl (r x - q y - v P - z)]+HP1(r,x-q,y-v,p-z)+ ' ar ' dpdvdqdr. (B23)

In view of the following inverse Fourier transform relationship (Kreryszig, 1993, eq.
9, p. 621)

(B24)
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the inverse Fourier transformation of (B22) is

t 1/2
PI (t, X, y, z) = e-1-it J 10 [2(B((t - ()) 1/2J (47["D~;y(3 )

o

x exp [- 4;:( - 4~:(- (A-H)(] TJ(x,() ac. (B25)

Furthermore, in order to complete the description of (B23), the derivative of PI (t, X, y, z)
with respect to t is obtained as follows

(B26)

Substituting (B19) into (B25) and (B26) and subsequently substituting the resulting
expressions into (B23) yields the desired generalized analytical solution (27) and (28).
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ApPENDIX C:

Derivation of the Analytical Solution for an Aquifer with
Finite Thickness

The analytical solution for the case of an aquifer with finite thickness is obtained by
solving (4) subject to (8)-(10), (25), and (39). Taking Laplace transform with respect
to time variable i, Fourier transforms with respect to space variables x and Y ,and
finite Fourier cosine transform with respect to space variable z of (4) and subsequently
employing transformed initial condition (8) yields

(C1)

where
2 2 BE = w Dy + 1./JmDz + A + s - H 1s+

the Laplace and Fourier transformation properties (AS)-(A10), and the following finite
Fourier cosine transformation and operational property were employed (Churchill, 1955,
p. 294)

(C2)

.. H

8(s", w, 1./Jm) = J 8(s", w, z) cos('l/Jmz)dz, (C3)
o

where the double over-dot signifies finite Fourier cosine transform with respect to space
variable z with corresponding finite Fourier cosine transform variable 1./Jm = mn / H; :Ffc
is the finite Fourier cosine transform operator; and 13 is an arbitrary function.

The Fourier inverse transformation of (C1) with respect to 'Y is

(C5)

where the definitions of the Fourier inverse transform (A13) and (A14) and Euler's
formula (A15) were employed.



In view of the integral identities (A16) and (A17), (C2), and application of the
convolution theorem, (C5) is simplified as

00

8(8, x, w, 'ljJm) = J ];.(s, q, w, 'ljJm) WI (8, X - q, W, 'ljJm) dq, (C6)
-00

where

(
1 ) 1/2 [ UX ] [ (2 Dy) 1/2]

WI (s, x, W, 'Ij}m) = 4DxDy (w2 + 5d exp 2Dx exp -x (w + Sl) Dx '

(C7)

(C8)

In view of (A13), (A14), and (C7), the inverse Fourier transformation of (C6) with
respect to w is given by

x { F(s, q, v, 1jJm) * [18 cos(wy)dM! +1i8sin(wy)dM! ] } dq,(C9)

where

(
1 ) 1/2 [ ( D ) 1/2]e = w2 + Sl exp -(x - q) (w2 + 51) D: ' (ClO)

and Euler's formula (A15) was employed for the derivation of (C9). It should be noted
that e as well as cos(wy) are even functions of w, whereas sinewy) is an odd function
of w. Therefore, the trigonometric integrals are evaluated by employing the similar
procedures as shown by (A26)-(A28).

In view of (A26), (A27), and application of the convolution theorem, (C9) reduces
to

00 oo

O(s, x, y, 'ljJm) = J J F(s, q, v, 'ljJm) 90(8, X - q, Y - v, 'ljJm) dv dq, (C11)
-(Xl -00

where
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In view of (C8) and (C12), the inverse Laplace transformation of (Cl l ) with respect
to s is given by

where

(
B ) 1/2

Ml =M2 8 - S + 7-i +M3 , (CI4)

_ [(x - q)2 (y _ V)2] 1/2
M2 - D + D '

x y
(CI5)

(C16)

For mathematical convenience, let

(C17)

The inverse Laplace transformation of K; [M1 (8, X - q, y - v, 'l/Jm)] with respect to 8

can be found by employing (A43), where, in view of (C14), 10(8) is assumed to be of
the following form

(CI8)

The inverse Laplace transform of 10(8) is given by (Roberts and Kaufman, 1966, eq. 3,
p. 169 & eq. 13.2.1, p. 304)

In view of (CI4)-(C19), and by following the procedures outlined in Appendix A,
the inverse Laplace transformation of (CI3) with respect to s is as follows

1/2 t 00 00" (1) 11 1 [U(x-q)] -'HT"C(t, x, y, 'l/Jm) = 167[2DxDy exp 2Dx e F{t - T, q, v, 'l/Jm)
o -00-00
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x {J (((r ~ ()t\[2(B(r - ())'/2]
o

exp [-( (~~Dz + A + 4~x -H)]

[_~ ((x - q)2 (y - V)2)] ac
x exp 4( Dx + Dy .."

+ ~exp [-7 (1P~Dz +A + 4~x - 1-{) ]

x exp [- 4~ eX ;,q)2 + (y ;yV)
2
) J} d» dq dr. (C20)

The inverse Fourier cosine transformation of (C20) with respect to 1/Jm is given by

1/2 t 00 00

) - ( 1 ) iii [U(x - q)] -'J-iTC(t, X, y, Z - 167r2 DxDy exp 2Dx e
o -00-00

X {iT( B ) 1/2 11[2(8«(7 _ ()) 1/2] exp [_~ ((X - q)2 + (y - V)2)]
«(7-() 4( o; o,

o

x cxp [-( (A + 4~x -1{)] Ff~' {P(t - -r, q, v, 1j'm)exr[-1,b;'D,(] } d(

+ ~ exp [-~ ((x - q)2 + (y - v?)] exp [-T(A + ~ _ H)]
7 4T o; o, 4Dx

X Ff~] { p(t - r, q, V, 11)m)exp [-1,b;,D,r] } } dv dq dr, (C21)

where Ff~l is the inverse finite Fourier cosine operator defined as

0:; z :; H. (C22)

In view of (C22), (C21) is simplified to the form of the generalized analytical solution
(40)-(42).
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