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Veress et al. 

  Abstract - 
 The 4D NURBS-based Cardiac-Torso (NCAT) phantom, which provides a realistic 

model of the normal human anatomy and cardiac and respiratory motions, is used in medical 

imaging research to evaluate and improve imaging devices and techniques, especially 

dynamic cardiac applications. One limitation of the phantom is that it lacks the ability to 

accurately simulate altered functions of the heart that result from cardiac pathologies such as 

coronary artery disease (CAD). The goal of this work was to enhance the 4D NCAT phantom 

by incorporating a physiologically based, finite-element (FE) mechanical model of the left 

ventricle (LV) to simulate both normal and abnormal cardiac motions.  The geometry of the 

FE mechanical model was based on gated high-resolution x-ray multi-slice computed 

tomography (MSCT) data of a healthy male subject. The myocardial wall was represented as 

transversely isotropic hyperelastic material, with the fiber angle varying from -90 degrees at 

the epicardial surface, through 0 degrees at the mid-wall, to 90 degrees at the endocardial 

surface. A time varying elastance model was used to simulate fiber contraction, and 

physiological intraventricular systolic pressure-time curves were applied to simulate the 

cardiac motion over the entire cardiac cycle. To demonstrate the ability of the FE mechanical 

model to accurately simulate the normal cardiac motion as well abnormal motions indicative 

of CAD, a normal case and two pathologic cases were simulated and analyzed.  In the first 

pathologic model, a subendocardial anterior ischemic region was defined.  A second model 

was created with a transmural ischemic region defined in the same location. The FE based 

deformations were incorporated into the 4D NCAT cardiac model through the control points 

that define the cardiac structures in the phantom which were set to move according to the 
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predictions of the mechanical model. A simulation study was performed using the FE-NCAT 

combination to investigate how the differences in contractile function between the 

subendocardial and transmural infarcts manifest themselves in myocardial SPECT images.  

The normal FE model produced strain distributions that were consistent with those reported in 

the literature and a motion consistent with that defined in the normal 4D NCAT beating heart 

model based on tagged MRI data. The addition of a subendocardial ischemic region changed 

the average transmural circumferential strain from a contractile value of –0.19 to a tensile 

value of 0.03.  The addition of a transmural ischemic region changed average circumferential 

strain to a value of 0.16, which is consistent with data reported in the literature.  Model results 

demonstrated differences in contractile function between subendocardial and transmural 

infarcts and how these differences in function are documented in simulated myocardial 

SPECT images produced using the 4D NCAT phantom.  In comparison to the original NCAT 

beating heart model, the FE mechanical model produced a more accurate simulation for the 

cardiac motion abnormalities. Such a model, when incorporated into the 4D NCAT phantom, 

has great potential for use in cardiac imaging research.  With its enhanced physiologically-

based cardiac model, the 4D NCAT phantom can be used to simulate realistic, predictive 

imaging data of a patient population with varying whole-body anatomy and with varying 

healthy and diseased states of the heart that will provide a known truth from which to evaluate 

and improve existing and emerging 4D imaging techniques used in the diagnosis of cardiac 

disease.  
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Index Terms -  Left Ventricle, NCAT, SPECT phantom, ischemia, mechanical model, finite 
element, cardiac imaging research. 
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I. INTRODUCTION 

 Diagnostic imaging techniques play a vital role in reducing the mortality rate and 

strain on the healthcare system caused by coronary artery disease (CAD) by providing more 

efficient methods to screen and manage cardiac patients. Left ventricular (LV) function is a 

major diagnostic and prognostic indicator in patients with CAD [1-4].  Many non-invasive 

imaging modalities and tools are being studied and developed for diagnosing cardiac disease 

based on an analysis of the LV function. The goal of these studies is to develop methods that 

better detect, stratify, and monitor therapy for patients with CAD. As new imaging techniques 

and diagnostic methods emerge in response to cardiac disease, a major challenge is how to 

evaluate which technique is best in terms of patient diagnosis and treatment and how these 

techniques may fit together to form a complete patient management strategy of diagnosis, 

stratification, and therapy.   
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 Medical imaging methods and devices are commonly evaluated through computer 

simulation. Computer-generated phantoms are used to model the patient anatomy and 

physiology, as well as the imaging process itself [5-7].  Given a model of the imaging 

process, imaging data of a computer phantom can be simulated as if it were an actual patient. 

A major advantage to using computer-generated phantoms in simulation studies is that the 

exact anatomy and physiological functions of the phantom are known, thus providing a gold 

standard from which to evaluate and improve medical imaging devices and techniques.  

Realistic computer phantom modeling of human anatomy and function is a vital aspect of 

simulation.  

 The 4D NURBS-based cardiac-torso (NCAT) phantom (Figure 1) [5-7] was developed 

to provide an accurate model of the human anatomy and physiology and is widely used in the 
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evaluation of medical imaging devices and techniques. It includes a realistic model for the 

cardiac and respiratory motions based on tagged MRI data and respiratory-gated CT data, 

respectively. Both datasets were acquired from normal patients. Combined with accurate 

models of the imaging process, the 4D NCAT can produce simulated images that mimic those 

acquired from actual patients. With this ability, the 4D NCAT has gained and continues to 

gain widespread use in medical imaging research, especially for evaluating and improving 

cardiac imaging instrumentation, data acquisition techniques and image processing and 

reconstruction methods [7-9]. It is widely used in myocardial SPECT, providing a tool to 

study the effects of anatomy and patient motions. The 4D NCAT phantom models the beating 

heart motion of a particular normal subject using the cardiac motion documented by a set of 

gated tagged MRI data of a normal male volunteer. One major limitation of the 4D NCAT 

phantom is that it does not have the ability to realistically simulate abnormal motions due to 

coronary artery disease. The effects of CAD are simulated to a limited extent by defining 

ischemic regions resulting from a blockage in the coronary arteries as low perfusion pie-

shaped wedges in the NCAT (Figure 1). The motion in this region can be reduced through 

scaling operations to simulate the altered function of the LV due to the coronary blockage; 

however, this is a very simple, unrealistic method with no physiological basis.  
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 In the present research, this limitation was overcome by incorporating a 

physiologically based finite-element (FE) mechanical heart model into the 4D NCAT 

phantom. Like the original NCAT heart model based on tagged MRI data of a normal subject, 

the FE model is capable of accurately simulating the normal motion of the left ventricle. The 

FE model does, however, offer an improved definition of ischemia over the current NCAT 

implementation in that it provides a more accurate representation of the abnormal motion of 
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the LV due to the effects of ischemia. With its physiological basis, the FE model has the 

flexibility to simulate a wide variety of motion abnormalities of the heart. Defects of any 

given size and location within the heart can be realistically modeled. Combined with the 4D 

NCAT, the FE model can be used to produce realistic sets of imaging data from a variety of 

patients in which the normal or abnormal cardiac function is accurately represented.  5 
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II.  METHODS 

A. Finite Element Model Generation 

 A gated high resolution CT image set of a normal male subject acquired on a 32-slice 

Siemens x-ray multi-slice CT (MS CT) scanner (Siemens AG, Erlangen, Germany) at the 

Johns Hopkins Hospital was selected and used as the basis for the cardiac geometry of the 

finite element model.  The image data was provided by Dr. Elliot Fishman of the Johns 

Hopkins Hospital in accordance with the HIPPA standards.  The patient study consisted of 9 

time frames during the cardiac cycle. Each time frame consisted of a 512×512×231 image 

array with a pixel size and slice thickness of 0.421 mm.  
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 The image dataset obtained at the beginning of diastole was used to define the 

undeformed configuration of the FE model.  The boundaries of the epi- and endocardial 

surfaces of the left ventricle were manually segmented using the software program 

SURFdriver [10]. The segmented closed contours were used to define a FE mesh of 8,676 

nodes for the LV (Figure 2). The FE model for the LV was surrounded by a soft tether mesh 

represented by an isotropic hypoelastic constitutive model with relatively soft elastic material 

properties (modulus of elasticity E=0.30 KPa and bulk modulus K=0.12 KPa) to provide 

tethering with the outer edges of the image domain. The tether mesh was fully constrained to 

eliminate rigid body motion.  The bulk modulus of the tethering is more than three orders of 

magnitude less than the bulk modulus of the myocardial wall definition (see below) and 

modulus of elasticity of the tethering is 25 times less stiff than the modulus of elasticity of the 

myocardial wall.  The tethering, therefore, does not contribute to the strain distribution of the 

model.  This type of constraint has been used previously for this type of cardiac modeling 

[11].   
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1)  Passive Material Model:  The LV myocardium was represented as a transversely isotropic 

hyperelastic material with the fiber angle varying from –90o at the epicardial surface, through 

0o at the midwall, to 90o at the endocardial surface. The strain energy definition for the 

material describes a material that consists of fibers imbedded in an isotropic ground substance 

[12]: 
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2
1 1 2( ) ( ) [ln( )]

2
KW F I F Jλ= + +%% ,     (1)  

where F1 represents the behavior of the matrix surrounding the fibers, F2 represents the 

behavior of the fibers, and the final term represents the bulk (volumetric) behavior, where K is 

the bulk modulus of the material.  F is the deformation gradient tensor.  J is the Jacobian and 

is defined as J = det(F).   is the first deviatoric invariant of the right Cauchy deformation 

tensor [13,14]. The scalar 
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1I%

%λ  is the deviatoric stretch ratio along the local fiber direction, a.  

 A neo-Hookean form was used to represent the ground substance matrix: 

1 1 1( ) ( 3),F I Iμ= −% %        (2) 

where μ is the shear modulus of the ground substance. The passive Cauchy stress tensor is: 15 

( ) ( )( )
1 1 1

2 1 ,
3

p p W W W I W
J λ λλ λ⎡ ⎤= + + ⊗ − +⎢ ⎥⎣ ⎦

T 1 B a a 1% %% % % %       (3) 

where , and W1W% λ
%  are strain energy derivatives with respect to  and 1I% %λ  [14], B%  is the 

deviatoric left deformation tensor, and “⊗” represents the vector outer product operation. 

 The stress-stretch behavior for the fiber direction ( Wλλ %
% ) was represented as an 

exponential, with no resistance to a compressive load: 20 
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The material coefficients C3 and C4 scale the fiber stress and control its rate of rise with 

increasing stretch, respectively.  Details of this constitutive model can be found in Weiss et 

al. [12].   

 The material properties of the myocardial wall were determined through least squares 

fit of biaxial data published by Humphrey [15] which were extrapolated from test data 

reported by Guccione et al. [16].  The cross-fiber equibiaxial data was used to determine the 

shear modulus (μ) of the material model.  The equibiaxial test in fiber direction was then used 

to define the exponential behavior of the material (C
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3 and C4).  C4 was then adjusted until the 

radial displacement of the epicardium was approximately 3 mm.  This 3 mm radial 

displacement was the average of the radial displacement documented in the gated CT image 

data from which the geometry was defined.  The material coefficients for the passive LV were 

μ = 2.50 kPa, C3 = 0.27 kPa, and C4 =21.0. A bulk modulus K of 195.00 kPa was used in all 

of the FE models and represented the highest bulk modulus that did not cause numerical 

instability in the model due to volumetric locking [13].  Using this value for the bulk 

modulus, the average change in relative volume was less than 6% for all of the models in this 

study [17]. 

2)  Elastance Active Contraction Model:  A time varying “elastance” active contraction model 

[18,19] was used to yield a constitutive model that could simulate both the passive mechanics 

of diastole and the active contraction during systole. The total Cauchy stress T is defined as 

the sum of the active stress tensor ( )( )aT ⊗a a  and the passive stress tensor :  ( )pT
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( ) ( )p aT T T= + ,         (5) 

where a is the deformed fiber vector (unit length), defined as 0λ = ⋅a F a .  The time varying 

elastance model is a modification of the standard Hill equation that scales the standard 

equation by the variable Ct  which governs the shape of the activation curve [19]. The active 

fiber stress T(a)  is defined as 5 

2
( ) 0

max 2 2
0 50

,a
t

CaT T C
Ca ECa

=
+

    (6)     

where Tmax = 135.7 KPa is the isometric tension under maximal activation at the peak 

intracellular calcium concentration of Ca0 = 4.35 μM.  The length dependent calcium 

sensitivity is governed by the following equation: 

[ ]
0 max

50
0

( ) ,
exp ( ) 1

CaECa
B l l

=
− −

    (7) 10 

15 

20 

where (Ca0)max = 4.35 μM is the maximum peak intracellular calcium concentration, B = 4.75 

μm-1 governs the shape of the peak isometric tension-sarcomere length relation, l0  = 1.58  μm 

is the sarcomere length at which no active tension develops, and l is the sarcomere length 

which is the product of the fiber stretch λ (deformed length/reference length) and the 

sarcomere unloaded length lr = 2.04 μm.  A detailed description of this model can be found in 

Guccione et al. [18,19]. 

 In the FE implementation, the active contraction is governed by the product TmaxCt (an 

active contraction stress) in (6), which was used to define a “load curve”, specifying the 

degree of contraction and subsequent relaxation during the cardiac cycle (Figure 3A). The 

intraventricular systolic pressure-time curve from Guccione et al. [19] was used with the 

diastolic portion of the pressure-time curve corresponding to passive filling [20] (Figure 3B). 
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The analyses were conducted using NIKE3D, a non-linear, large deformation FE package 

[21]. Transmural strain distributions were determined for the entire normal LV. The predicted 

FE deformations were exported to the NCAT model in order to create the synthetic 

myocardial SPECT image data sets 

3) Modeling Regional Ischemia:  Ischemic regions in the FE model are simulated as detailed 

by Mazhari et al. [22].  The length dependent calcium sensitivity (7) was reduced by 

increasing the intracellular calcium concentration (Ca
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0)max from 4.35 μM to 7.90 μM in the 

ischemic regions. This change in calcium concentration, which causes a complete cessation of 

the contractile function within the ischemic region, can be made by changing a single variable 

in the material model definition within the finite element model input file.  The passive 

diastolic function of the myocardium remained unchanged, as this is dependent entirely upon 

the passive constitutive model definition.  The ischemic regions were defined to be similar in 

size and shape as depicted in Figure 1B and were exactly the same size and shape in all of the 

analyses.  The computations were carried out on a Compaq DS20E SMP computer, consisting 

of two 667 MHz Alpha 21264 CPUs and 4 GB of core memory requiring approximately an 

hour and a half of analysis time.  This relatively short analysis time allowed for multiple 

iterations of the analyses for the normal model.  For example, this type of iterative analysis 

was used to reproduce epicardial radial deformation through modification of the C4 parameter 

of the material model.   

 More complex modifications to the FE model may be carried out in the pre-processor 

used to create the geometry and mesh (TrueGrid, XYZ Scientific Applications, Livermore, 

CA).  Relatively simply modifications to the size of the ischemic region can be made with 

ease, with less than 5 minutes in development time.  Changing the shape of the ischemic 
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region requires more development time (on the order of several hours) to modify the FE 

discretization to conform to the new geometry. 

 

B. Evaluation of the Finite Element Model 

 Three cases were modeled using the FE representation of the LV described above, a 

normal model to serve as a baseline and two pathological models to study the effects of 

ischemia on cardiac function.  In order to determine the accuracy of the normal FE model, the 

gross deformations (wall thickening, twist, etc.) of the model were compared with the gross 

deformations of the NCAT phantom, which are based on tagged MRI data of a normal male 

subject. In the first pathological model, a subendocardial anterior ischemic region was 

defined. A second ischemic model was created with a transmural ischemic region defined in 

the same location as the subendocardial ischemia model. The subendocardial ischemic region 

extended through half the thickness of the myocardium (Figure 1), while the transmural 

ischemic region encompassed the full thickness of the wall.  The strain distributions for a 

single cross-section through the ischemic regions were compared for the three FE models. 

The mean and standard deviations for the fiber, radial and circumferential strains within the 

ischemic regions were determined for each case. The transmural strain distributions were 

compared within ischemic regions.   
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 The deformation results based on the FE model predictions for myocardial ischemia 

were compared with deformation results obtained using the simple definition of ischemia 

within the NCAT simulation. In the current version of the NCAT phantom, ischemic regions 

are modeled by just limiting or eliminating the motion of the LV myocardium in the region.  
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The transmural ischemia region FE mechanical model was adjusted to model this simple 

definition of ischemia for two cases.  In the first case, the nodes in the ischemic region were 

set to move 50% as much as they would in the normal FE mechanical model over the entire 

cardiac cycle. In the second case, the displacements within the ischemic region were 

completely eliminated (100% reduction) over the entire cardiac cycle.  These two cases 

represent the most common traditional definitions of ischemia used in 4D NCAT simulations 

[23]. The active contraction within the ischemic region of the FE model as well as the 

pressure load on the endocardial surface were eliminated so that the displacement based 

boundary conditions were the only loads on this region. The strain distributions were then 

compared with the strain distributions determined for the transmural ischemia FE model 

described above.  Specifically, the radial, circumferential, in-plane shear (shear strains within 

the short-axis plane) and the fiber strain were compared.  The fiber strains are defined as the 

strain along the direction of the defined fibers in the model.  
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C. Incorporation of the FE Model into the 4D NCAT Phantom 

 The organ models in the NCAT phantom are defined using 3D cubic NURBS surfaces 

[5,24,25].  The size and shape of each NURBS surface model is determined by a set of control 

points with each control point having a weight of 1. A surface can be altered by applying 

affine and other transformations to the control points in order to model anatomical variation 

or patient motion. The motion of the NCAT heart was modeled by defining time-position 

cubic NURBS curves for each of the control points of the heart surfaces creating time-

dependent 4D NURBS surfaces. The time curves were originally derived from a gated tagged 
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MRI dataset of a normal human volunteer. The 3D positions of the control points over the 

cardiac cycle were determined from the motion of the taglines in the dataset. A cubic NURBS 

curve was then fit to the time-changing location for each control point using established 

methods for interpolating a 3D NURBS curve to a given set of points in space [24,25]. From 

the continuous time-position curves defined for the control points, an infinite number of time 

frames over the cardiac cycle can be produced. Time samples in between the pre-defined 

locations of the control points obtained from the tagged MRI analysis are simply obtained 

through cubic spline interpolation.   
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 The FE mechanical model of the LV was converted to 4D NURBS surfaces, which 

were then incorporated into the NCAT cardiac model. The LV surface of the NCAT phantom 

was setup so that the control points which define it lie approximately on the surface (within 

0.02 mm’s to their corresponding surface points). Given this approximate one-to-one 

correspondence, the node points of the FE mesh at time 0 were used to define the control 

points for an inner, outer, and five mid-ventricular NURBS surfaces for the LV (Figure 4). 

The motion of the node points over the cardiac cycle as determined by the FE analysis were 

used to define the time-position cubic NURBS curves for the control points creating time-

varying 4D NURBS surfaces for the LV.  These surfaces replaced the previous LV beating 

heart model of the NCAT phantom. The motion of the 4D NURBS surfaces originally defined 

for the atria were modified to accommodate the new ventricular surfaces created from the 

mechanical model. For each subsequent time frame, the atria models are manipulated to fit the 

motion of the ventricles and to fit a volume curve for a normal, healthy human male [26].  

The atria are first translated downward by an amount equal to the longitudinal contraction of 

the ventricles. The atria are then scaled longitudinally (z) depending on the amount of 
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longitudinal contraction by the ventricles. The origin for this scaling operation is set to be the 

bottom center of each atria model. The height of the atria is increased by this scaling 

operation by an amount equal to the amount of longitudinal contraction of the ventricles. 

Once the atria are scaled longitudinally, the control points located at the bottom of each atria 

model are then set to the control points of the corresponding ventricle model to blend the two 

models together. The atria models are then scaled transversely in the x- and y-directions until 

they fit a certain volume on the predetermined volume curve from a normal male. 
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 A software application was developed to perform the above tasks seamlessly. 

Currently, the beating heart is defined in the NCAT software by a time series of heart files. 

Each file contains the 3D NURBS surfaces defined for the cardiac structures at a specific time 

point in the cardiac cycle.  The phantom application reads in the time files describing the 

heart’s motion over one cardiac cycle, then fits cubic 3D NURBS curves to the time changing 

position of each structure’s control points using the spline interpolation methods of Piegl et 

al. [24,25].  The program then generates the beating heart at any time point in its cycle 

(Figure 5). A software application was developed that reads in the 4D NCAT heart files and 

the output of the FE analysis consisting of the ventricular node points and their movement in 

time, converts this information into new 4D NURBS surfaces for the ventricles and atria, and 

saves these surfaces into a new time series of heart files that can be read by the NCAT 

phantom application. By establishing this link, the FE computational heart model can be used 

to produce numerous datasets representing healthy and diseased hearts for use in medical 

imaging research.    

D. Myocardial SPECT Simulation Study Using the FE-NCAT 

 Using the technique described above, the FE mechanical models for the normal heart 
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and ischemic hearts were incorporated into the 4D NCAT phantom. To demonstrate the use of 

the improved phantom, a myocardial SPECT simulation was performed to investigate how the 

differences in contractile function between the subendocardial and transmural infarcts 

manifest themselves in myocardial SPECT images. Using the 4D NCAT, 16 time frame 

phantoms were generated each modeling the radioactivity concentrations and attenuation 

distributions in the different organs over the cardiac cycle (1 beat per second). The 

distribution of radioactivity concentration was set to model the uptake of a typical Tc-99m 

sestamibi patient study [27]. 
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 Each generated 3D phantom was stored in a 128×128×128 array with a pixel size and 

slice thickness of 0.31 cm. For each heart model, the 16 time frames were averaged to create a 

phantom of the average beating heart motion for that case.   For each phantom, emission 

projection data were generated using a realistic parallel projection model simulating an L-

configured dual-camera SPECT system equipped with a transmission source. A complete 

projection dataset was generated over the typical 180° (45° right anterior oblique to 45° left 

posterior oblique) rotational arc around the patient. The simulations used a projection model 

that included the effects of non-uniform attenuation, detector response, and scatter. A low-

energy high-resolution (LEHR) collimator with a thickness of 4.1 mm and hexagonal holes 

with a flat-to-flat size of 0.19 mm was simulated. The 128×128 simulated emission projection 

images were collapsed to 64×64 to simulate sampling used in a clinical data acquisition. 

 The emission projection data were reconstructed using the iterative ordered subset 

expectation maximization (OS-EM) reconstruction method with compensation for 

attenuation, scatter, and collimator-detector response [28]. The attenuation phantoms 
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generated to simulate each case were used to compensate for the effects. The images were 

reconstructed into 64×64 arrays with 64 slices and a pixel width and slice thickness of 0.63 

cm. The ejection fractions, wall thickening, long-axis contraction were calculated within the 

NCAT phantom for the all of the simulations based on the FE models.   

 The SPECT images based on the FE models simulating subendocardial and transmural 

ischemia were simulated in the 4D NCAT as having a 20% and 50% reductions in perfusion 

in the ischemic regions respectively.  This allowed for evaluation of both the abnormal 

motion produced by the FE models as well as the effects of changes in perfusion in the 

simulated images.  These images were compared with the normal FE based NCAT SPECT 

simulation. 
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 The FE based ischemia simulations were further compared with simulated SPECT 

images based on the simple definition of ischemia available in the NCAT phantom.  These 

image data sets were based on the ischemia cases in which the wall motion is reduced by 50% 

as well as the fixed case in which there is 100% reduction in wall motion.  All of the 

simulated SPECT images were defined as having normal perfusion.  Image intensity profiles 

were taken across the anterior (ischemic) regions thus providing a means to compare changes 

in intensity due to alterations in geometry alone. 
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III.  RESULTS 

A. Analysis of the Normal Finite Element Model 

 The motion of the normal FE LV mechanical model compared favorably to that 

previously defined in the NCAT phantom which is based on tagged MRI data from a normal 

male subject.  The 4D NCAT heart model accurately represents the contracting motion of the 

heart that has been previously described using tagged MRI analysis [29-33]. As it contracts, 

the beating heart exhibits a wringing-like twisting motion of the left ventricle and radial (wall 

thickening) and longitudinal (base to apex) contraction of the heart walls. The twisting motion 

of the LV consists of the clockwise rotation of the base and a counterclockwise rotation of the 

apex during systole  (Figure 6). The LV twisting motion and radial contraction of the normal 

FE model were found to be very similar to that of the 4D NCAT cardiac model.  The 

longitudinal contraction of the FE model was slightly smaller than that found in the 4D 

NCAT cardiac model (Table 1).   However, it was identical to that observed in the gated 

MSCT data upon which it was based.  
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 The normal FE model had an ejection fraction of 62%, which is in the range for 

healthy patients (55-75%) [34]. The highest radial and circumferential transmural strains 

occurred at the endocardium with a near linear decrease from endocardium to epicardium 

(Figure 7). In contrast, the fiber stretch maximum occurred at the mid-wall. The longitudinal 

strains and in plane shear strains showed a flat distribution throughout the wall with average 

strains of 0.10 and 0.01, respectively.  
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B. Analysis of the Ischemic Finite Element Models 

 The two ischemic (subendocardial and transmural) LV FE mechanical models showed 

a reduced wall thickening in the anterior region of the LV (Table 1), the location of the defect. 

The FE LV model with the transmural defect had the largest reduction in wall thickening. As 

a result, the motion abnormality of the transmural defect was more pronounced when viewing 

animations of the models. The defects did not affect the longitudinal contraction of the LV 

base due to their mid-ventricular location. 
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 Both the subendocardial ischemia and the transmural ischemia FE models 

demonstrated reduced ejection fractions (58% and 55%, respectively). The average 

transmural fiber strain in the subendocardial ischemic region changed from a contractile value 

of -0.09 to a tensile value of 0.03 (Figures 8 and 9A).  The transmural ischemic region 

produced an average tensile fiber strain of 0.05 with the mid-wall having a near constant fiber 

strain of 0.11 (Figure 9A). The average circumferential strain was -0.12 in the normal model, 

0.02 for the subendocardial ischemia model and 0.13 in the transmural ischemic model 

(Figures 8 and 9B). Similarly, the average radial strain was 0.18 in the normal model, 0.09 in 

the subendocardial ischemia model and 0.01 in the transmural ischemia model (Figures 8 and 

9C). 

 

C. Comparison of the FE Ischemic Models to Those Derived from the Current 4D NCAT 

Phantom 

 The comparison of the displacements of the subendocardial and transmural FE models 

with the displacements determined from the simple definition of ischemia in the 4D NCAT 

simulation show that the NCAT ischemic region had strain distributions that were relatively 
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low in magnitude throughout these regions (Figures 10 and 11).  The 50% reduction in 

displacement indicated that the fiber strain resulting from this ischemia definition would show 

less than 8% average strain transmurally with other strain measures showing less than 5% 

strain.  The fixed case (100% reduction in displacement) would produce strains that were 

essentially zero in magnitude for all measures of strain (Figures 10 and 11).  5 

10 

15 

20 

 

D. Myocardial SPECT Simulation Study 

 The subendocardial ischemia FE based NCAT simulations showed little discernable 

difference with respect to the normal model regardless of the level of perfusion (20% or 50% 

reduction) used in the simulation (Figure 12).  The transmural simulations demonstrate that 

the wall thinning in the ischemic anterior region is apparent even in the case where the 

perfusion has been reduced by only 20%. These reconstructed short-axis images are shown 

for each heart model at the end-systolic time frame. 

 The FE-based simulations were found to produce differences that were observable 

even using low-resolution myocardial SPECT. Figure 13 illustrates how the differences in the 

two ischemia definitions (the simple definition implemented in the 4D NCAT and the 

physiologically-based definition in the FE models) manifest themselves visually in simulated 

myocardial SPECT images.  The FE based NCAT simulation shows an appreciable reduction 

in the vertical intensity profile across the wall while the profiles of the other models show 

relatively little  (Fig. 13 top) reduction in intensity.  The difference in vertical intensity is due 

to the wall thinning evident in the transmural FE model (Fig. 13 bottom).   
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IV. DISCUSSION 

 We developed a functionally realistic FE mechanical model of the LV to simulate 

normal and abnormal functions of the beating heart with the purpose of incorporating it into 

the 4D NCAT phantom for use in cardiac imaging research. Three different cases, one normal 

and two pathological (subendocardial and transmural anterior ischemic regions) were 

simulated and analyzed to evaluate the FE model.  The normal FE model produced an ejection 

fraction within the range for a normal patient (62%) while the ischemic models showed 

reduced ejection fractions, (58%) and (55%) for the subendocardial and transmural defects 

respectively (Table 1).   

5 
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15 

20 

 The radial, circumferential and longitudinal strain distributions of the three models 

showed similar trends as reported in the literature.  Fiber strain predictions from the normal 

FE model were in good agreement with the predictions of the cylindrical numerical model 

developed by Guccione et al. [19].  The maximum fiber contraction for the normal model was 

-0.09 (referenced to the beginning of diastole) and showed little variation transmurally while 

the Guccione model showed a maximum of -0.06 using the same reference configuration. The 

maximum fiber strain value for the Guccione model was at the midwall with the fiber strain 

values decreasing toward the epi- and endocardial surfaces. The predicted transmural fiber 

strain distributions for the normal FE model and fiber strain distribution within the ischemic 

region of the transmural FE model were non-uniform.  Uniform fiber strain distributions have 

been reported in both the normal LV [35,36]  and in stunned canine myocardium strain 
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myocardium [37]. This discrepancy is likely due to the assumed non-patient specific fiber 

distributions used in the models [38-40].  

 The normal FE model predicted a maximum average systolic radial strain of 0.33 at 

the endocardium (referenced to end-diastole) decreasing to a value of 0.15 at the epicardium 

(Figure 6), The Guccione model showed a similar radial strain distribution with the maximum 

average radial strain value of 0.40 also occurring at the endocardium and decreasing to a 

value of 0.26 at the epicardial surface again referenced to end-diastole.  The circumferential 

strain distributions were also similar between the two models.  The FE model had a maximum 

average circumferential systolic strain of -0.30 at the endocardium which decreased to a value 

of -0.08 at the epicardium.  The Guccione model had a maximum circumferential strain of –

0.20 at the endocardium decreasing to a value of -0.14 at the epicardium.  The differences in 

strain values are likely due to the use of a realistic geometry in the present study as opposed 

to the cylindrical geometry used in the referenced study.    
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 The average LV fiber strain (-0.16 ± 0.08), referenced to end-diastole, was higher than 

that reported by Tseng et al. (-0.12 ± 0.01) [35] for the mid-ventricle but consistent to the 

values reported by MacGowan et al. (-0.15) [36] for the entire LV. The change in 

circumferential, in-plane shear and radial strain predictions were also consistent with 

measured values found in the literature (Table 2).  The six unique measures of strain 

determined from the normal FE model were found to be comparable with strain data (Table 3) 

from the canine study of Waldman et al. [41].  However, the predicted circumferential strain 

at the endocardium was found to be higher than reported in the referenced study.  

 The transmural fiber strains predicted by the ischemic FE model were consistent with 

those reported for an ischemic (stunned) dog model [37] (Figure 8). Mazhari et al. measured 
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transmural fiber systolic strains of approximately 14.8%. These values compare well with the 

12% transmural strains found in the mid-wall of the transmural ischemia model (Figure 8A). 

However, the average value for the transmural ischemic region was 0.05 due to the decreases 

in fiber strain at the endo- and epicardial walls. This non-uniformity of the strain distribution 

is likely due to the assumed fiber distributions used in the models [38-40] 5 

10 

15 

20 

 The transmural circumferential strain results were consistent with the results of the 

canine ischemia study results of Kraitchman et al. [42]  compared with the normal contractile 

value of 15% (Figure 8B).  A canine ischemia study by looked at using fast harmonic phase 

(FastHARP) MRI to detect the onset of ischemia. For this study, they measured ischemia as a 

50% reduction in myocardial blood flow as determined by microsphere measurements. Their 

strain measurement results indicated that ischemic tissue showed tensile circumferential strain 

values of 10-18% immediately following the onset of ischemia (<40 sec from onset) in 

contrast to the contractile value of 18% measured in the normal tissue distant from the 

ischemic region.  Their results compare well with our transmural ischemia model which 

predicted an average tensile value of 16% strain in the ischemic region.    

 The use of material coefficients obtained by fitting mechanical data of normal 

myocardium in order to model stunned myocardium appears to be justified.  Recent work by 

Pislaru et al. [43] indicated that there is no difference in the passive material behavior of 

normal and stunned myocardium. Using strain echocardiography, they estimated the tissue 

stiffness by determining the relationship between the intraventricular pressure and the change 

in wall thickness and found that the stiffnesses of stunned myocardium and normal remote 

myocardium were not significantly different.  In contrast, infarcted myocardium was 
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substantially stiffer than stunned or normal myocardium, with infarcted tissue showing little 

deformation during diastolic loading. 

 The systolic contractile behavior of stunned myocardium appears to be 

indistinguishable from necrotic myocardium using the imaging modalities of cine MRI and 

tagged MRI. Juergens et al. [44] looked at the changes in global measures such as ejection 

fraction as well as local measures such as changes in principal strains in normal, ischemic and 

infarcted myocardium during systole as measured by tagged MRI strain analysis. Both 

stunned and infarcted (necrotic) tissue were easily distinguishable from normal tissue due to 

the lack of contraction in these tissue types. However, the behavior of nectrotic and stunned 

tissue as measured by changes in the maximum and minimum in-plane (short axis) principal 

strains were not statistically different from one another.  Thus, the studies of Pislaru [43] and 

Juergens [44] provide the framework for the development of a FE based 4D NCAT simulation 

for infarction. The passive properties of infarcted tissue could be estimated by reproducing 

the wall stiffening measured by Pislaru in the FE model, while the systolic behavior of 

infarcted myocardium could be modeled as ischemic, as done in the present study.  
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 The normal and abnormal FE models showed reasonable agreement with strain 

measurements reported in the literature. However, several limitations of the FE model should 

be acknowledged. Recent work suggests that orthotropic material models provide a more 

accurate representation of the passive material behavior of the myocardium than a transverse 

isotropic model such as was used in the current study.  Usyk et al. [48] found that the use of 

an orthotropic material model in a finite element model provided better agreement with 

experimental end-diastolic strain distributions than a transversely isotropic material model.  

The authors stated that they believed that the contribution of the orthotropic passive material 
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definition to end-systolic strains was likely small, however, they found that the addition of an 

active stress transverse to the muscle fibers greatly improved the agreement between 

measured and modeled transverse end-systolic shear strains.  Biaxial tests on myocardial 

tissue by Lin et al. [49] suggested that this in-plane, cross-fiber contractile stress was 

approximately 40% of the muscle fiber stress and was likely to contribute to the end-systolic 

strain distributions.  Recent work by Walker et al. [50] indicated that cross-fiber active 

contraction stress was necessary for the accurate prediction of end-systolic strain 

distributions.  In this study, the strain measurements from tagged MRI analysis of sheep LV 

with MI induced ventricular aneurysms were compared with subject-specific FE LV models.  

The inclusion of in-plane, cross-fiber active contraction stress reduced the overall RMS error 

in strain from 7.4% to 5.4%, a 27% decrease in error.  In the future, cross-fiber active 

contraction stress components will be added to the active contraction material model 

presented above in order to improve our strain predictions.   
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 Studies in the literature have reported uniform fiber stretch distributions [35,45-47] 

while the FE model predicted mid-wall fiber stretches were higher than those at the endo- and 

epicardial surfaces (Figures 5 and 8). It should also be noted that while the FE model 

geometry was patient-specific, the fiber angle distribution was idealized. It is likely that the 

assumed fiber angle distribution directly contributed to the non-uniformity of the transmural 

strain distribution in the normal LV results as well as the transmural ischemic results. Work is 

currently underway to allow for the use of realistic fiber distribution definitions based on 

DTMRI and the incorporation of an orthotropic material definition into the FE models.  

 Despite these limitations, the motion of the normal FE model was found to be very 

similar to that defined in the normal NCAT heart model, which illustrates the same 

 26



Veress et al. 

contracting, wringing motion of the heart observed in tagged MRI studies of normal patients. 

The two ischemic FE models showed no overall contraction in the location of the defect, with 

the transmural defect showing circumferential elongation and wall thinning. As mentioned 

above, the abnormal FE mechanical models were found to produce a more accurate 

simulation for the cardiac motion abnormalities as compared to the original NCAT phantom. 

The NCAT definition may be more appropriate for modeling infarcted regions in which the 

scar tissue is relatively stiff compared with the normal tissue and thus would undergo little 

passive deformation [43] or in the 50% displacement case where the ischemic tissue retains 

some contractility.   
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 These studies indicate that a continuum based mechanical model is necessary to 

reproduce realistic deformations within the ischemic regions.  The non-FE based ischemia 

definition does not produce the circumferential elongation and wall thinning found ischemic 

regions. Nor does simply reducing the contraction in the ischemic regions reproduce the 

subtleties of the subendocardial ischemia where the normally contracting epicardium and 

subepicardium contracts against the passive ischemic subendocardium.  These geometric 

changes also cause a reduction in the intensity levels above that resulting from the ischemia 

induced reduction in perfusion (Fig. 13), as illustrated by the intensity profile across the wall 

from the model simulating the transmural defect.  Despite its shortcomings, the NCAT 

definition ischemia is likely to be more appropriate for modeling infarcted regions in which 

the scar tissue is relatively stiff compared with the normal tissue and thus would undergo little 

passive deformation [43] or in the 50% displacement case where the ischemic tissue retains 

some contractility. 
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 The normal and abnormal FE mechanical models were incorporated into the NCAT 

phantom and used in a simulation study to investigate how the contractile differences between 

the subendocardial and transmural infarcts manifest themselves in myocardial SPECT images. 

Ex vivo studies have documented that the blood flow and metabolism requirements for the 

subendocardium can be markedly different than for the sub-epicardium [51-56]. The 

vulnerability to ischemia for the two regions is likewise dissimilar. Cell death due to ischemia 

is thought to begin in the subendocardial layer and then develop as a wavefront towards the 

endocardium [57,58].  Therefore, it is of great clinical importance to be able to detect 

differences in in vivo blood flow, metabolism and other properties between the 

subendocardium and sub-epicardium. There is evidence that the transmural extent of ischemic 

damage in the myocardium due to subendocardial ischemia [59,60] as shown by blood flow 

can be a predictor for return of contractile function following coronary artery reperfusion 

[61]. Currently, only MRI techniques are beginning to emerge that would allow transmural 

functional characterization of some aspects of the myocardium [59,60].  However, it is 

unlikely that MR techniques will adequately address such issues as differentiated lipid and 

glucose metabolism and ligand binding. This is where nuclear medicine techniques such as 

SPECT can be very useful. As demonstrated with the NCAT simulations, at the resolutions 

currently in use, SPECT would have difficulty in the delineation of subendocardial ischemia 

from normal myocardium.  There was relatively little visible difference between the normal 

myocardium SPECT image and the subendocardial ischemic SPECT images (Figures 12, 13). 

The simulation results demonstrate the great potential that the FE-NCAT combination has for 

use in cardiac imaging research. 
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 Incorporation of the FE mechanical model into the 4D NCAT phantom provides a 

more realistic, physiological basis for the cardiac motion of the phantom. The FE mechanical 

cardiac model combined with the 4D NCAT phantom and other simulation tools, developed 

in this work is capable of providing realistic, predictive imaging data of a patient population 

with varying whole-body anatomy and healthy and diseased states of the heart. With its 

physiological basis, the FE model has the flexibility to simulate a wide variety of motion 

abnormalities of the heart. With the ability to simulate imaging data consistent to that from 

actual patients, the enhanced 4D NCAT phantom will provide a vital simulation tool in 

medical imaging research, supplying a known truth from which to evaluate and improve 

existing and emerging cardiac imaging methods that assess cardiac function through 

measurements of myocardial deformation.  
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TABLES 

 

Heart  LV Twist  
(Base, 
Apex) 

Longitudinal 
Contraction of 
LV Base (mm) 

LV Wall Thickening 
(lateral, septal, 

inferior, anterior) (%) 

Ejection 
Fraction (%) 

4D NCAT (5°, -13°) 14 (27,31,41,29) 60 
Normal FE Model (6°, -11°) 10 (33,38,37,23) 62 
Subendo FE Model (7°, -11°) 10 (31,36,37,12) 58 

Trans FE Model (7°, -10°) 10 (29,33,37,3) 55 
 
Table 1: Comparison of the LV Motion of the Normal Mechanical [FE] Model to that of the 

4D NCAT Phantom indicate excellent agreement between the gross deformations predicted 

by the FE models and deformations of the NCAT phantom.  The NCAT results are based on 

tagged MRI displacements for a normal human subject.  The NCAT results are based on 

detailed measurements using tagged MRI analysis of the cardiac deformation for a normal 

male subject. 

5 

10 

 
 
 
 

Strain 
Component 

FE Model Sinusas [47] Guccione [16] Omens [45] 

 Endo Epi Endo Epi Endo Epi Endo Epi 
Circumferential 0.29 0.07 0.15 0.07 0.15 0.09 0.22 0.05 

Radial 0.33 0.15 0.25 0.15 0.34 0.19 0.18 0.12 
In-plane Shear 0.01 0.01 <0.02 0.06 0.01 0.03 0.02*

 15 
Table 2.    Comparison of the FE strain predictions to values found in the literature.  The 

forward FE results are in reasonable agreement with published experimental results.  * 

Reported a mid-wall peak of 0.08. 
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Strain Component FE Model Waldman Data ([41]) 
 Endo Epi Endo Epi 

Circumferential (C) 0.29 0.07 0.15 0.09 
Radial (R) 0.33 0.15 0.34 0.19 

Longitudinal (L) 0.09 0.10 0.07 0.05 
In-plane Shear (CR) 0.01 0.01 0.06 0.01 

Circ./Long. Shear (CL) 0.01 0.04 0.04 0.04 
Radial/Long. Shear (RL) 0.08 0.01 0.08 0.00 

 
Table 3.  Comparison of the absolute values of the FE strain predictions to values found in 

the Waldman canine study [41].  The forward FE results are in excellent agreement with these 

published experimental results for all of the strain values with the exception of the 

endocardial circumferential strain which the normal model prediction is higher than that 

measured in the Waldman study indicating a greater cirumferential strain gradient across the 

wall than that measured in the referenced study.  

5 
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FIGURE CAPTIONS 

Fig. 1.  (A) Anterior view of the 3D NCAT phantom showing detailed segmented organs from 

the Visible Human CT dataset. (B) A 3D image of the cardiac model of the NCAT phantom 

with the left anterior descending (LAD) and left circumflex (LCX) branches of the coronary 

artery superimposed on the outer surface of the heart model.  The inner and outer surfaces and 

the motions of the left and right ventricles were extracted from gated tagged MR images of a 

normal male subject.  Since the tagged MRI data did not cover the atria, the right and left atria 

models were created based on a separate set of MRI data from the University of Auckland        

[S. Thrupp, Cardiac MRI Anatomical Atlas, Available: 

www.scmr.org/education/atlas/intro/index.html]. This data was used to define the initial 

anatomy of the atria. The time curves for the cardiac volumes for a healthy male [M. Guyton, 

Textbook of Medical Physiology, Philadelphia: W.B. Saunders Co., 2000.] were used as a 

guide to scale the atria in 3D to fit the time-changing ventricular models. (C) A 3D image of 

the left ventricle model of the NCAT phantom showing the inner and outer surfaces, the LAD 

and LCX branches of the coronary artery tree, a simulated atherosclerotic plaque and a 

highlighted anterior myocardial infarction. 

5 

10 

15 

20 

 

Fig. 2.  Left – finite element mesh for left ventricle model. Yellow elements surrounding the 

myocardium depict the tether mesh, which restricts rigid body motion.  Right – Detail of the 

LV mesh with the tether mesh removed. 

 

Fig. 3.  (A) Active contraction stress and (B) the left ventricular pressure load were used as 

inputs to the normal and pathological FE models.  Simulations were performed from time 
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zero, which represents beginning diastole, and continued through end-diastole (425 msec) and 

end-systole (650 msec).  The active contraction stress (TmaxCt) was modified by the length 

dependent components of Equation (6) for each element in the model. 

 

Fig. 4.  (Left) Long-axis view of the node points defining the FE mesh for the LV at time 0. 

(Right) Short-axis view of the node points located at the base of the LV. The node points 

were arranged in a regular order, facilitating the definition of control points for an inner, 

outer, and five mid-ventricular NURBS surfaces. 
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Fig. 5.  NURBS surfaces defined from the FE model developed for the normal heart. Three 

time points in the cardiac cycle are shown.  Sets of time-position cubic NURBS curves 

derived from the FE analysis define the motion of the surfaces over the cardiac cycle. From 

the continuous time-position curves, an infinite number of time frames over the cardiac cycle 

can be produced using cubic spline interpolation.   

 

Fig. 6:  Views of the normal FE model at end-diastole (left column) and end-systole (right 

column).  Base of LV (top), mid-ventricular cross-section (middle) and anterior view 

(bottom).  Wall thickening and apical twist at end-systole can be seen in the figures on the 

right column as well as the movement of the base toward the apex. 

 

Fig. 7: Mean transmural strain distributions of radial strain (solid line), circumferential strain 

(long dashed line), and fiber strain (dashed line with two dots) for the entire normal LV.  The 

error bars indicate plus and minus one standard deviation of the corresponding mean.  
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Negative values indicate compression and positive values indicate tension.  Maximum 

circumferential and radial strain values occurred at the endocardium.  All values are with 

respect to end-diastole.   

 

Fig. 8.  Comparison of strains predicted by FE models for the mid-ventricular cross-section. 

(A) Highlighted rectangular portion of the anterior LV indicates location of the ischemic 

region, while the cutting plane indicates location of short axis slices. Short axis cross-sections 

of the systolic strain distributions for the (B) normal, (C) subendocardial, and (D) transmural 

ischemic models.  The top row indicates the radial strain results, the middle row depicts the 

circumferential strain results, and the bottom row is fiber strain. Strain values are referenced 

to the geometry at the beginning of diastole. The cross-sections are in radiological orientation 

with the anterior portion of the LV at the 12:00 position.  The anterior wall of the LV as 

depicted in the normal model shows fiber and circumferential contraction as well as radial 

wall thickening.  In the subendocardial model, the subendocardial region is undergoing 

elongation in the fiber and circumferential directions and little change in wall thickness in the 

radial direction.  In the transmural model, results show transmural elongation in the fiber and 

circumferential directions and wall thinning. 
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Fig. 9. Transmural strain distributions predicted by the three FE models.  (A) fiber strain, (B) 

circumferential strain and (C) radial strain, for the ischemic region shown in Figure 8A for the 

normal (solid line) tissue, subendocardial ischemic (long dashed line) tissue and transmural 

ischemic (short dashed line) tissue. The error bars indicate plus and minus one standard 

deviation of the corresponding mean value.  Detailed analysis of the entire ischemic region 
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indicates that the normal model shows fiber and circumferential contraction as well as radial 

wall thickening.  The results for the subendocardial model indicate that the subendocardial 

region is undergoing elongation in the fiber and circumferential directions and little change in 

wall thickness in the radial direction while the epicardial region is undergoing fiber and 

circumferential contraction.  The transmural model results show transmural elongation in the 

fiber and circumferential directions and wall thinning. 
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Fig. 10.   Short axis cross-sections of the systolic strain distributions for the (A) normal, (B) 

subendocardial, and (C) transmural ischemic FE models compared with the NCAT-based 

strain distributions for the cases of (D) 50% and (E) 100% reduction in displacement in the 

transmural ischemic region. Top row indicates the radial strain results, the middle row depicts 

the circumferential strain results, and the bottom row is fiber strain. Strain values are 

referenced to the geometry at the beginning of diastole. Both of the NCAT-based transmural 

strain distributions show little in the way of strain changes.  Strain values are referenced to 

the geometry at the beginning of diastole.  

 

Fig. 11. Transmural strain distributions predicted by the transmural FE model compared with 

the strain distribution from the NCAT ischemia definition.  (A) fiber strain, (B) 

circumferential strain and (C) radial strain for the ischemic region shown in Figure 8A for the 

FE based transmural ischemic (solid line) model, the 50% reduction NCAT based ischemia 

results (long dashed line) and the fixed NCAT based ischemia (short dashed line) results.  The 

fixed NCAT based transmural strain distribution shows little strain magnitude or variation 

over the entire thickness within the ischemic region. 
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Fig. 12. Mid-ventricular simulated SPECT short axis images with a 20% reduction in 

perfusion, and a 50% reduction in perfusion.  These NCAT simulation are based on the (row 

A) normal FE model, (row B) the subendocardial FE model and (row C) the transmural FE 

model. The subendocardial models are difficult to distinguish from the normal simulations for 

both of these perfusion cases.  The arrow indicates the site of the ischemic region in the 

transmural simulation with a 50% reduction in perfusion.  
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10 

15 

 

Fig. 13.  Intensity profiles (top) across the anterior region of the LV taken from short-axis 

images (bottom) indicate that the transmural defect based on the FE model shows the greatest 

reduction in intensity with respect to the normal.  This is only due to the wall thinning which 

resulted from the FE model simulation.  The other cases show no wall thinning.  All of the 

simulations were defined having normal perfusion so the changes in intensity across the wall 

are due to geometric affects only.  The labels “NCAT Trans. 50%” and “NCAT Trans. 100%” 

refers to the simple definition of ischemia implemented in the 4D NCAT where the wall 

motion is reduced by 50% and 100% respectively. 
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FIGURES 
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Figure 2. 
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(column width) 
 
 5 

 

Percent Wall Position
0 20 40 60 80 100

G
re

en
 S

tr
ai

n 
(m

m
/m

m
)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Radial
Circumferential
Fiber

Endo Epi 

 52



Veress et al. 

 Figure 8. 
 
(page width) 
 
 5 

fiber strain 

circ. strain 

radial strain 0.30 

-0.20 

-0.20 

0.30 

0.27 

-0.20 

B C D A 

 

 53



Veress et al. 

 
Figure 9 
 
(column width)  
 5 
 

0 20 40 60 80 100
-0.2

-0.1

0.0

0.1

0.2

0 20 40 60 80 100

G
re

en
 S

tr
ai

n 
(m

m
/m

m
)

-0.4

-0.2

0.0

0.2

0.4

Normal 
Subendo 
Transmural

Percent Wall Position
0 20 40 60 80 100

-0.2

-0.1

0.0

0.1

0.2

0.3

A 

C 

B 

Endo Epi 

 54



Veress et al. 

 Figure 10 
 
(page width)

B A C E 0.30 

-0.20 
0.35 

fiber strain 

circ. strain 

radial strain D 

-0.20 
0.27 

-0.20 

 55



Veress et al. 

Figure 11 
 
 (column width)

0 20 40 60 80 100
-0.1

0.0

0.1

0.2

0 20 40 60 80 100

G
re

en
 S

tr
ai

n 
(m

m
/m

m
)

-0.1

0.0

0.1

0.2

0.3

Transmural
50% Reduction
Fixed

Percent Wall Position
0 20 40 60 80 100

-0.2

-0.1

0.0

0.1

0.2

0.3

A 

C 

B 

Endo Epi 

 56



Veress et al. 

Figure 12 
 
(column width) 
 

B 

C 

A 

20% reduction in perfusion 50% reduction in perfusion 

 57



Veress et al. 

Figure 13 
 
(page width)  
 

D 0.30 

-0.20 

0.35 

-0.20 
0.27 

-0.20 

  FE normal                     FE Subendo                    FE Transmural        NCAT Trans (50%)         NCAT Trans (100%) 

 5 
 

 58


	 ,       


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




