UC Davis Working Papers

Title Net-Zero Emissions Energy Systems

Permalink https://escholarship.org/uc/item/7qv6q35r

Journal Science, 360(6396)

Authors

Davis, Steven J Lewis, Nathan S. Shaner, Matthew <u>et al.</u>

Publication Date

2018-06-29

Peer reviewed

Providing energy services without net addition of carbon dioxide to the atmosphere

Steven J. Davis^{1,2}, Nathan S. Lewis³, Matthew Shaner⁴, Sonia Aggarwal⁵, Doug Arent^{6,7}, Inês L. Azevedo⁸, Sally M. Benson^{9,10,11}, Thomas Bradley¹², Jack Brouwer^{13,14}, Yet-Ming Chiang¹⁵, Christopher T. M. Clack¹⁶, Armond Cohen¹⁷, Stephen Doig¹⁸, Jae Edmonds¹⁹, Paul Fennell^{20,21}, Christopher B. Field²², Bryan Hannegan²³, Bri-Mathias Hodge^{6,24,25}, Martin I. Hoffert²⁶, Eric Ingersoll²⁷, Paulina Jaramillo⁸, Klaus S. Lackner²⁸, Katharine J. Mach²⁹, Michael Mastrandrea⁴, Joan Ogden³⁰, Per F. Peterson³¹, Daniel L. Sanchez³², Daniel Sperling³³, Joseph Stagner³⁴, Jessika E. Trancik^{35,36}, Chi-Jen Yang³⁷, and Ken Caldeira³²

¹ Department of Earth System Science, University of California, Irvine, Irvine, CA

² Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA

³ Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA

⁴ Near Zero, Carnegie Institution for Science, Stanford, CA

- ⁵ Energy Innovation, San Francisco, CA
- ⁶ National Renewable Energy Laboratory, Golden, CO
- ⁷ Joint Institute for Strategic Energy Analysis, Golden, CO.

⁸ Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA

9 Stanford University, Global Climate & Energy Project, Stanford, CA

¹⁰ Stanford University, Precourt Institute for Energy, Stanford, CA

¹¹ Stanford University, Department of Energy Resource Engineering, Stanford, CA

¹² Department of Mechanical Engineering, Colorado State University, Fort Collins, CO

¹³ Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA

¹⁴ Advanced Power and Energy Program, University of California, Irvine, CA

¹⁵ Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA

¹⁶ Vibrant Clean Energy, LLC

¹⁷ Clean Air Task Force, Boston, MA

¹⁸ Rocky Mountain Institute, Boulder, CO

¹⁹ Pacific National Northwestern Laboratory, College Park, MD

²⁰ Department of Chemical Engineering, South Kensington Campus, Imperial College London, London, UK

²¹ Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA

²² Stanford University, Woods Institute for the Environment, Stanford, CA

²³ Holy Cross Energy, Glenwood Springs, CO

²⁴ Department of Electrical, Computer & Energy Engineering - University of Colorado Boulder

²⁵ Department of Chemical & Biological Engineering - Colorado School of Mines

²⁶ Department of Physics, New York University, New York, NY

²⁷ Lucid Strategy, Cambridge, MA

²⁸ The Center for Negative Carbon Emissions, Arizona State University, Tempe, AZ.

²⁹ Stanford University, Department of Earth System Science, Stanford, CA

³⁰ Environmental Science and Policy, University of California, Davis, Davis, CA

³¹ Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA

³² Department of Global Ecology, Carnegie Institution for Science, Stanford, CA

³³ Institute of Transportation Studies, University of California, Davis, Davis, CA

³⁴ Department of Sustainability and Energy Management, Stanford University, Stanford, CA

³⁵ Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA

³⁶ Santa Fe Institute, Santa Fe, NM

³⁷ Independent researcher

Main Text:

10 pages of text (excluding references, and figure legends)

Figs. 1-3

Table 1

Supplementary Materials:

7 pages of text

[Single-sentence summary]: Achieving an energy system that adds no CO₂ to the atmosphere
 will require focused innovation and cross-sector coordination. [124 characters]

3 [Abstract] Some energy services and industrial processes, such as long-distance freight transport, air travel, highly reliable electricity, and steel and cement manufacturing, are 4 particularly difficult to provide without adding carbon dioxide (CO₂) to the atmosphere. Rapidly 5 6 growing demand for these services, combined with long lead times for technology development and 7 long lifetimes of energy infrastructure, make decarbonization of these services both essential and 8 urgent. We examine barriers and opportunities associated with these difficult-to-decarbonize 9 services and processes, including possible technological solutions and research and development 10 priorities. A range of existing technologies could meet future demands for these services and 11 processes without net addition of CO₂ to the atmosphere, but their use may depend on a combination of cost reductions via research and innovation, as well as coordinated deployment and 12 13 integration of operations across currently discrete energy industries. [129 words]

People do not want energy itself, but rather the services that energy provides and the products that rely on these services. Even with substantial improvements in efficiency, global demand for energy is projected to increase markedly over this century (I). Meanwhile, net emissions of CO₂ from human activities—including not only energy and industrial production, but also land use and agriculture—must approach zero to stabilize global mean temperature (2, 3). Indeed, international climate targets such as

avoiding more than 2 °C of mean warming are likely to require an energy system with net-zero (or netnegative) emissions later this century (Fig. 1) (3).

21 Energy services such as light duty transportation, heating, cooling, and lighting may be relatively 22 straightforward to decarbonize by electrifying and generating electricity from variable renewable energy sources (such as wind and solar) and dispatchable (i.e. "on-demand") non-renewable sources (including 23 24 nuclear energy and fossil fuels with carbon capture and storage). However, other energy services essential 25 to modern civilization entail emissions that are likely to be more difficult to fully eliminate. These 26 difficult-to-decarbonize energy services include aviation, long-distance transport, and shipping; 27 production of carbon-intensive structural materials such as steel and cement; and provision of a reliable 28 electricity supply that meets varying demand. To the extent carbon remains involved in these services in 29 the future, net-zero emissions will also entail active management of carbon.

In 2014, difficult-to-eliminate emissions related to aviation, long-distance transportation and shipping; structural materials; and highly-reliable electricity totaled ~9.2 Gt CO₂, or 27% of global CO₂ emissions from all fossil fuel and industrial sources (Fig. 2). Yet, despite their importance, detailed representation of these services in integrated assessment models remains challenging (*4*, *5*, *6*).

Here, we review the special challenges associated with an energy system that does not add any CO₂ to the atmosphere (a net-zero emission energy system). We discuss prominent technological opportunities and barriers for eliminating and/or managing emissions related to the difficult-to-decarbonize services; pitfalls in which near-term actions may make it more difficult or costly to achieve the net-zero emissions goal; and critical areas for research, development, demonstration, and deployment. Our scope is not comprehensive; we focus on what now seem the most promising technologies and pathways. Our 40 assertions regarding feasibility throughout are not the result of formal, quantitative economic modeling;

- rather, they are based on comparison of current and projected costs with stated assumptions about
- 42 progress and policy.

43 A major conclusion is that it is vital to integrate currently discrete energy sectors and industrial

processes. This integration may entail infrastructural and institutional transformations, as well as active
 management of carbon in the energy system.

46 Aviation, long-distance transport, and shipping

47 In 2014, medium- and heavy-duty trucks with mean trip distances of >160 km (>100 miles)

 $\label{eq:constant} 48 \qquad \text{accounted for \sim270 Mt CO_2$ emissions, or 0.8% of global CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions, or 0.8% of global CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions, or 0.8% of global CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions, or 0.8% of global CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions, or 0.8% of global CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions, or 0.8% of global CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion and α accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions from fossil fuel combustion accounted for \sim270 Mt CO_2$ emissions for $<$270 Mt CO_2$ emissions for $<$270 Mt CO_2$ emissions for $<$270 Mt CO_2$$

49 industry sources (estimated using 11, 12, 13). Similarly long trips in light-duty vehicles accounted for an

additional 40 Mt CO₂, and aviation and other shipping modes (such as trains and ships) emitted 830 and

51 $1,060 \text{ Mt CO}_2$, respectively. Altogether, these sources were responsible for ~6% of global CO₂ emissions

52 (Fig. 2). Meanwhile, both global energy demand for transportation and the ratio of heavy- to light-duty

53 vehicles is expected to increase (13).

54 Light-duty vehicles can be electrified or run on hydrogen without drastic changes in performance

55 except for range and/or refueling time. In contrast, general-use air transportation and long-distance

56 transportation, especially by trucks or ships, have additional constraints of revenue cargo space and

57 payload capacity that mandate energy sources with high volumetric and gravimetric density (7). Closed-

58 cycle electrochemical batteries must contain all of their reactants and products. Hence, fuels that are

59 oxidized with ambient air and then vent their exhaust to the atmosphere have a substantial chemical

60 advantage in gravimetric energy density .

61 Battery- and hydrogen-powered trucks are now used in short-distance trucking (8), but at equal range,

62 heavy-duty trucks powered by current lithium-ion batteries and electric motors can carry ~40% less

63 goods than can trucks powered by diesel-fueled, internal combustion engines. The same physical

64 constraints of gravimetric and volumetric energy density likely preclude battery- or hydrogen-powered

65 aircraft for long-distance cargo or passenger service (9). Autonomous trucks and distributed

66 manufacturing may fundamentally alter the energy demands of the freight industry, but if available,

67 energy-dense liquid fuels are likely to remain the preferred energy source for long-distance transportation 68 services (*10*).

69 Options for such energy-dense liquid fuels include the hydrocarbons we now use, as well as

70 hydrogen, ammonia, and alcohols/ethers. In each case, there are options for producing carbon-neutral or

10 low-carbon options that could be integrated to a net-zero emissions energy system (Fig. 1), and each can

also be interconverted through existing thermochemical processes (Table 1).

73 *Hydrogen and ammonia fuels*

74 The low volumetric energy density of hydrogen favors transport and storage at low temperatures

75 (-253°C for liquid hydrogen at atmospheric pressure) and/or high pressures (350 to 700 bar), thus

requiring heavy and bulky storage containers (14). To contain the same total energy as a diesel fuel

storage system, a liquid hydrogen storage system would weigh roughly six times more and be about eight

times larger (Fig. 3A). However, hydrogen fuel cell or hybrid hydrogen-battery trucks can be more energy

- refficient than those with internal combustion diesel engines (15), requiring less onboard energy storage to
- achieve the same traveling range. Toyota has recently introduced a heavy duty (36,000 kg), 500 kW fuel
- cell/battery hybrid truck designed to travel 200 miles on liquid hydrogen and stored electricity, and

Nikola has announced a similar battery/fuel cell heavy duty truck with a claimed range of 1300 to 1900 km, comparable to today's long-haul diesel trucks (*16*). If hydrogen can be produced affordably without

CO₂ emissions, its use in the transport sector could ultimately be bolstered by the fuel's importance in

85 providing other energy services.

Ammonia is another technologically viable alternative fuel that contains no carbon and may be directly combusted in an engine or may be cracked to produce hydrogen. Its combustion must be carefully

controlled to minimize production of highly oxidized products such as NO_x (17). Furthermore, like

89 hydrogen, ammonia's gravimetric energy density is considerably lower than that of hydrocarbons such as

90 diesel (Fig. 3A).

91 Biofuels

Conversion of biomass currently provides the most cost-effective pathway to non-fossil, carboncontaining liquid fuels. Liquid biofuels at present represent about 4.2 EJ of the roughly 100 EJ of energy consumed by the transport sector worldwide. Currently, the main liquid biofuels are ethanol from grain and sugar cane and biodiesel and renewable diesel from oil seeds and waste oils. They are associated with substantial challenges related to their life-cycle carbon emissions, cost, and scalability (*18*).

97 Photosynthesis converts <5% of incident radiation to chemical energy, and only a fraction of that 98 chemical energy remains in biomass (19). Conversion of biomass to fuel also requires energy for 99 processing and transportation. Land used to produce biofuels must have water, nutrient, soil, and climate characteristics suitable for agriculture, thus putting biofuels in competition with other land uses. This has 100 101 implications for food security, sustainable rural economies, and the protection of nature and ecosystem 102 services (20). Potential land-use competition is heightened by increasing interest in bioenergy with carbon 103 capture and storage (BECCS) as a source of negative emissions (that is, carbon dioxide removal), which 104 biofuels can provide (21).

Advanced biofuel efforts include processes that seek to overcome the recalcitrance of cellulose to allow use of different feedstocks (e.g., woody crops, agricultural residues, and wastes), to achieve large-

scale production of liquid transportation fuels at costs roughly competitive with gasoline (e.g., U.S.

108 \$19/GJ or U.S. \$1.51/gallon of ethanol) (22). As technology matures and overall decarbonization efforts

109 of the energy system proceed, biofuels may be able to largely avoid fossil fuel inputs such as those related

to on-farm processes and transport, as well as emissions associated with induced land use change (23, 24).

111 The extent to which biomass will supply liquid fuels in a future net-zero emissions energy system thus

depends on advances in conversion technology, competing demands for bioenergy and land, the

113 feasibility of other sources of carbon-neutral fuels, and integration of biomass production with other

114 objectives (25).

115 Synthetic hydrocarbons

116 Liquid hydrocarbons can also be synthesized by industrial hydrogenation of feedstock carbon, such as

117 the reaction of carbon monoxide and hydrogen by the Fischer-Tropsch process (26). If the carbon

118 contained in the feedstock is taken from the atmosphere and no fossil energy is used for the production,

processing, and transport of feedstocks and synthesized fuels, the resulting hydrocarbons would be

120 carbon-neutral (Fig. 1). For example, emissions-free electricity could be used to produce H_2 by

121 electrolysis of water, which would be reacted with CO₂ removed from the atmosphere either by direct air

capture or photosynthesis (which in the latter case could include CO₂ captured from the exhaust of

123 biomass or biogas combustion) (27, 28).

124 At present, the cost of electrolysis is a major barrier. This cost includes both the capital costs of

electrolyzers and the cost of emissions-free electricity; 60 to 70% of current electrolytic hydrogen cost is

electricity (Fig. 1C) (28, 29). The cheapest and most mature electrolysis technology available today uses

alkaline electrolytes (such as KOH or NaOH) together with metal catalysts to produce hydrogen at an

efficiency of 50 to 60% and a cost of ~ U.S. $5.50/kg H_2$ (assuming industrial electricity costs of U.S.

129 \$0.07/kWh and 75% utilization rates) (29, 30). At this cost of hydrogen, the minimum price of

130 synthesized hydrocarbons would be \$1.70 to \$1.50/liter of diesel equivalent (or \$5.50 to \$6.50/gallon and

131 \$42 to 50 per GJ; assuming carbon feedstock costs of \$0-100 per ton of CO₂ and very low process costs

132 of 0.05/liter or 1.50 per GJ (28)). For comparison, H₂ from steam reforming of fossil CH₄ into CO₂ and

H₂ currently costs \$1.30 to 1.50 per kg (red line in Fig. 3B) (29, 31). Thus, the feasibility of synthesizing

hydrocarbons from electrolytic H_2 may depend upon demonstrating valuable cross-sector benefits, such as

balancing variability of renewable electricity generation, or else a policy-imposed price of ~\$400 per ton

of CO₂ emitted (which would also raise fossil diesel prices by \sim \$1.00/liter or \sim \$4.00/gallon).

137 In the absence of policies or cross-sector coordination, hydrogen costs of \$2.00/kg (i.e., approaching 138 the cost of fossil-derived hydrogen and synthesized diesel of ~\$0.79/liter or \$3.00/gallon) could be achieved, for example, if electricity costs were \$0.03/kWh and current electrolyzer costs were reduced by 139 140 60 to 80% (29) (Fig. 3B). Such reductions may be possible (33) but may require centralized electrolysis (34) using less mature but promising technologies, such as high-temperature solid oxide or molten 141 carbonate fuel cells, or thermochemical water splitting (30, 35). Fuel markets are vastly more flexible 142 than instantaneously balanced electricity markets due to the relative simplicity of large, long-term storage 143 of chemical fuels. Hence, using emissions-free electricity to make fuels represents a critical opportunity 144 for integrating electricity and transportation systems to supply a persistent demand for carbon-neutral 145

146 fuels while boosting utilization rates of system assets.

147 Direct solar fuels

Photoelectrochemical cells or particulate/molecular photocatalysts directly split water using sunlight to produce fuel by artificial photosynthesis, without land-use constraints associated with biomass (*36*). Hydrogen production efficiencies can be high, but costs, capacity factors, and lifetimes need to be improved to obtain an integrated, cost-advantaged approach to carbon-neutral fuel production (*37*). Short-lived laboratory demonstrations have also produced liquid carbon-containing fuels using concentrated CO_2 streams (*38*) (Fig. 1H), in some cases using bacteria as catalysts.

154 Outlook

Large-scale production of carbon-neutral and energy-dense liquid fuels may be critical to achieving a net-zero emissions energy system. Such fuels could provide a highly advantageous bridge between the stationary and transportation energy production sectors, and may therefore deserve special priority in energy research and development efforts.

159 Structural materials

160 Economic development and industrialization are historically linked to the construction of

161 infrastructure. Between 2000 and 2015, cement and steel use persistently averaged 50 and 21 tons per

162 million dollars of global GDP, respectively (~1 kg per person per day in developed countries) (4).

163 Globally, \sim 1,320 and 1,740 Mt CO₂ emissions emanated from chemical reactions involved with

164 manufacture of cement and steel, respectively (Fig.2) (12, 40, 41); altogether, this equates to ~9% of

165 global CO₂ emissions in 2014 (purple and blue in Fig. 1). Although materials intensity of construction

166 could be substantially reduced (42, 43), steel demand is projected to grow by 3.3% per year to 2.4 billion

tons in 2025 (44) and cement production is projected to grow by 0.8 to 1.2% per year to 3.7 to 4.4 billion

tons in 2050 (45, 46), continuing historical patterns of infrastructure accumulation and materials use seen

169 in regions such as China, India and Africa (4).

170 Decarbonizing the provision of cement and steel will require major changes in manufacturing

processes, use of alternative materials that do not emit CO_2 during manufacture, or carbon capture and storage (CCS) technologies to minimize the release of process-related CO_2 to the atmosphere (*39*) (Fig.

173 1B).

174 *Steel*

During steel making, carbon (coke from coking coal) is used to reduce iron oxide ore in blast 175 furnaces, producing 1.6 to 3.1 tons of process CO_2 per ton of crude steel produced (41). This is in addition 176 to CO_2 emissions from fossil fuels burned to generate the necessary high temperatures (1100 to 1500 °C). 177 Reductions in CO₂ emissions per ton crude steel are possible through use of electric arc furnace (EAF) 178 179 "minimills" that operate using emissions-free electricity; efficiency improvements (such as top gas 180 recovery); new process methods (such as "Ultra-low CO2 Direct Reduction," ULCORED); process heat fuel-switching; and decreased demand via better engineering. For example, a global switch to ultrahigh-181 strength steel for vehicles would avoid ~ 160 Mt CO₂ annually. The availability of scrap steel feedstocks 182

183 currently constrains EAF production to $\sim 30\%$ of global demand (47, 48), and the other improvements

184 reduce—but do not eliminate—emissions.

Prominent alternative reductants include charcoal (biomass-derived carbon) and hydrogen. Charcoal was used until the 18^{th} century, and the Brazilian steel sector has increasingly substituted charcoal for coal to reduce fossil CO₂ emissions (49). However, the ~0.6 tons of charcoal needed per ton of steel produced require 0.1 to 0.3 hectares of Brazilian eucalyptus plantation (49, 50). Hundreds of millions of hectares of highly productive land would thus be necessary to meet expected charcoal demands of the steel industry, and associated land use change emissions could outweigh avoided fossil fuel emissions, as has happened in Brazil (49). Hydrogen might also be used as a reductant, but quality could be compromised because
carbon imparts strength and other desirable properties to steel (51).

Cost notwithstanding, capture and storage of process CO₂ emissions has been demonstrated and may be feasible, particularly in designs such as top gas recycling blast furnaces, where concentrations and partial pressures of CO and CO₂ are high (40 to 50% and 35% by volume, respectively; Figs. 1G and 1E)

196 (*52*, *53*).

197 *Cement*

About 40% of the CO_2 emissions during cement production are from fossil energy inputs, with the 198 remaining CO_2 emissions arising from the calcination of CaCO₃ (typically limestone) (54). Eliminating 199 the process emissions requires fundamental changes to the cement-making process and cement materials, 200 and/or installation of carbon-capture technology (45) (Fig. 1G). CO_2 concentrations are typically ~30% by 201 202 volume in cement plant flue gas (compared to ~ 10 to 15% in power plant flue gas; 55), improving the viability of post-combustion carbon capture. Firing the kiln with oxygen and recycled CO₂ is another 203 204 option (56) but it may be challenging to manage the composition of gases in existing cement kilns that are 205 not gas-tight, operate at very high temperatures (~1500 °C), and rotate (57).

A substantial fraction of process CO_2 emissions from cement production is reabsorbed on a time scale of 50 years through natural carbonation of cement materials (58). Hence, capture of emissions associated with cement manufacture might result in overall net negative emissions as a result of the carbonation of produced cement. If complete carbonation is ensured, captured process emissions could provide an alternative feedstock for carbon-neutral synthetic liquid fuels.

211 Outlook

A future net-zero energy system must provide a way to supply structural materials such as steel and cement, or close substitutes, without adding CO_2 to the atmosphere. Although alternative processes might avoid liberation and use of carbon, the cement and steel industries are especially averse to the risk of compromising the mechanical properties of produced materials. Demonstration and testing of such alternatives at scale is therefore a priority. Unless and until such alternatives are adopted, eliminating emissions related to steel and cement will depend on CCS.

218 Highly reliable electricity

Modern economies demand highly reliable electricity; for example, demand must be met >99.9% of the time (Fig. 1A). This requires investment in energy generation or storage assets that will be used a small percentage of the time, when demand is high relative to variable or baseload generation.

As the share of renewable electricity has grown in the U.S., natural gas-fired generators have

increasingly been used to provide generating flexibility because of their relatively low fixed costs (Fig.

3B), ability to ramp up and down quickly (59), and the affordability of natural gas (60). In other countries,

225 other fossil fuel sources or hydroelectricity are used to provide flexibility. We estimate that CO₂

emissions from such "load-following" electricity were ~4,000 Mt CO₂ in 2014 (~12% of global fossil-fuel

and industry emissions), based loosely on the proportion of electricity demand in excess of minimum
demand (Fig. 2) (*61*).

229 The central challenge of a highly reliable zero-carbon electricity system is thus to achieve the

230 flexibility, scalability, and low capital costs of electricity that can currently be provided by natural gas-

231 fired generators—but without emitting CO₂. This might be accomplished by a mix of flexible generation,

energy storage, and demand management.

233 Flexible generation

234 Even when spanning large geographical areas, a system in which variable energy from wind and solar are major sources of electricity will have occasional but substantial and long-term mismatches between 235 supply and demand. For example, such gaps in the U.S. are commonly tens of petajoules (40 PJ=10.8 236 TWh=24 hours of mean U.S. electricity demand in 2015) and span multiple days- or even weeks (62). 237 238 Thus, even with continental-scale or global electricity interconnections (62-64), highly reliable electricity in such a system will require either very substantial amounts of dispatchable electricity sources (e.g., 239 240 generators or stored energy) that operate less than 20% of the time or corresponding amounts of demand management. Similar challenges apply if most electricity were produced by nuclear generators or coal-241 242 fired power plants equipped with carbon capture and storage, suggesting an important role for generators with higher variable cost, such as gas turbines using synthetic hydrocarbons or hydrogen as fuel (Fig. 1P; 243

244 see, e.g., 65).

Equipping dispatchable natural gas, biomass, or syngas generators with carbon capture and storage 245 (CCS) could allow continued system reliability with drastically reduced CO₂ emissions. When fueled by 246 syngas or biomass containing carbon captured from the atmosphere, such CCS offers an opportunity for 247 negative emissions. However, the capital costs of CCS-equipped generators are currently considerably 248 249 higher than for generators without CCS (Fig. 3B). Moreover, CCS technologies designed for generators that operate a large fraction of the time (with high "capacity factors"), such as coal-burning plants, may 250 be less efficient and effective when generators operate at lower capacity factors (66). Use of CCS-251 252 equipped generators to flexibly produce back-up electricity and hydrogen for fuel synthesis could help 253 alleviate temporal mismatches between electricity generation and demand.

254 Nuclear fission plants can operate flexibly to follow loads if adjustments are made to coolant flow rate and circulation, control and fuel rod positions, and/or dumping steam (67, 68). In the U.S., the design 255 and high capital costs of nuclear plants have historically obligated their near-continuous "baseload" 256 operation, often at capacity factors >90%. If capital costs could be reduced sufficiently, nuclear power 257 258 might also become a cost-competitive source of load-following power, but costs may be increasing over time in some places (69, 70, 71). Similar to CCS-equipped gas generators, the economic feasibility of 259 260 next-generation advanced nuclear plants may depend on flexibly producing multiple energy products such as electricity, high-temperature heat, and/or hydrogen. 261

262 Energy storage

Reliable electricity could also be achieved through energy storage technologies. The value of today's energy storage is currently greatest when frequent cycling is required, such as for minute-to-minute frequency regulation or price arbitrage (72). Cost-effectively storing and discharging much larger quantities of energy over consecutive days and less frequent cycling may favor a different set of innovative technologies, policies, and valuation (72, 73).

268 Chemical bonds. Chemical storage of energy in gas or liquid fuels is a key option for achieving an integrated net-zero emissions energy system (Table 1). Stored electrolytic hydrogen can be converted 269 270 back to electricity either in fuel cells or by combustion in gas turbines (power-to-gas-to-power or P2G2P; Figs. 1F, 1P, red curve in 3D); commercial-scale P2G2P systems currently exhibit a round-trip efficiency 271 272 (i.e. energy out divided by energy in) of >30% (74). Regenerative fuel cells, in which the same assets are used to interconvert electricity and hydrogen, could boost capacity factors, but would benefit from 273 274 improvements in round-trip efficiency (now 40 to 50% in proton-exchange membrane designs) and chemical substitutes for expensive precious metal catalysts (75, 76). 275

Hydrogen can also either be combined with non-fossil CO_2 via methanation to create renewable methane or can be mixed in low concentrations (<10%) with natural gas or biogas for combustion in existing power plants. Existing natural gas pipelines, turbines, and end-use equipment could be retrofitted over time for use with pure hydrogen or richer hydrogen blends (77, 78), although there may be difficult trade-offs of cost and safety during such a transition.

281 Current mass-market rechargeable batteries serve high-value consumer markets that prize round-trip efficiency, energy density, and high charge/discharge rates. Although these batteries can provide valuable 282 short-duration ancillary services (such as frequency regulation and backup power), their capital cost per 283 energy capacity and power capacity makes them expensive for grid-scale applications that store large 284 285 quantities of energy and cycle infrequently. For an example grid-scale use case with an electricity cost of \$0.035/kWh (Fig. 3D), the estimated cost of discharged electricity using current lithium-ion batteries is 286 287 roughly \$0.14/kWh (\$39/GJ) if cycled daily, but rises to \$0.50/kWh (\$139/GJ) for weekly cycling. Assuming that targets for halving the energy capacity costs of lithium-ion batteries are reached (e.g., 288 289 \sim \$130/kWh of capacity) (73, 79, 80), the levelized cost of discharged electricity would fall to 290 ~\$0.29/kWh (\$81/GJ) for weekly cycling. Cost estimates for current vanadium redox flow batteries are even higher than for current lithium-ion batteries, but lower cost flow chemistries are in development 291 (81). Efficiency, physical size, charge/discharge rates, and operating costs could in principle be sacrificed 292 to reduce the energy capacity costs of stationary batteries. Not shown in Fig. 3D, less-efficient (e.g., 70% 293 294 round-trip) batteries based on abundant materials such as sulfur might reduce capital cost per unit energy capacity to \$8/kWh (with a power capacity cost of \$150/kW), leading to a levelized cost of discharged 295 electricity for the grid-scale use case in the range of \$0.06-0.09/kWh (\$17-25 per GJ), assuming 20-100 296 cycles per year over 20 years (81). 297

Utilization rates might be increased if electric vehicle batteries were used to support the electrical grid (vehicle-to-grid, V2G), presuming that the disruption to vehicle owners from diminished battery charge would be less costly than an outage would be to electricity consumers (82). For example, if all of the ~150 million light duty vehicles in the U.S. were electrified, 10% of each battery's 100 kWh charge would provide 1.5 TWh, which is commensurate with ~3 hours of the country's average ~0.5 TW power demand. It is also not yet clear how owners would be compensated for the long-term impacts on their

304 vehicles' battery cycle life, whether periods of high electricity demand would be coincident with periods

- 305 of high transportation demand, whether the ubiquitous charging infrastructure entailed would be cost-
- 306 effective, whether the scale and timing of the consent, control, and payment transactions would be
- 307 manageable at grid-relevant scales (~30 million transactions per 15 minute period), or how emerging
- technologies and social norms (such as shared autonomous vehicles) might affect V2G feasibility.
- 309 *Potential and kinetic energy.* Water pumped into superposed reservoirs for later release through
- 310 hydroelectric generators is a cost-effective and technologically mature option for storing large quantities
- 311 of energy with high round-trip efficiency (>80%). Although capital costs of such pumped storage are 312 substantial, long lifetimes of reservoirs result in competitive levelized costs of discharged electricity when
- cycled at least weekly (Fig. 3D). Major barriers are the availability of water and suitable reservoirs, social
- and environmental opposition, and constraints on the timing of water releases by non-energy
- 315 considerations such as flood protection, recreation, and the storage and delivery of water for agriculture
- 316 (83). Underground and undersea designs, as well as weight-based systems that do not use water, might
- expand the number of possible sites, avoid non-energy conflicts, and allay some social and environmentalconcerns (*84-86*).
- Electricity may also be stored by compressing air in underground geologic formations, underwater containers, or above-ground pressure vessels. Electricity is then recovered with turbines when air is subsequently released to the atmosphere. Diabatic designs vent heat generated during compression and thus require an external (emissions-free) source of heat when the air is released, reducing round-trip
- 323 efficiency to <50%. Adiabatic and isothermal designs achieve higher efficiencies (>75%) by storing both
- 324 compressed air and heat, and similarly efficient underwater systems have been proposed (84).
- 325 *Thermal energy*. Thermal storage systems are based on sensible heat (e.g., in water tanks, building 326 envelopes, molten salt, or solid materials such as bricks and gravel), latent heat (e.g., solid-solid or solid-327 liquid transformations of phase-change materials), or thermochemical reactions. Sensible heat storage 328 systems are characterized by low energy densities (36-180 kJ/kg or 10-50 Wh_{th}/kg) and high costs (*84, 87,* 329 *88*). Future cost targets are <15/kWh_{th}; *89*). Thermal storage is well-suited to within-day shifting of 330 heating and cooling loads, whereas low efficiency, heat losses, and physical size are key barriers to filling 331 week-long, large-scale (e.g., 30% of daily demand) shortfalls in electricity generation.

332 **Demand management**

- Technologies that allow electricity demand (Figs. 1A, 1B, and 1C) to be shifted in time (load-
- shifting or load-shaping) or curtailed to better correlate with supply would improve overall system
- reliability while reducing the need for underutilized, flexible back-up generators (*90, 91*). Smart charging of electric vehicles, shifted heating and cooling cycles, and scheduling of appliances could cost-
- 337 effectively reduce peak loads in the U.S. by ~6% and thus avoid 77 GW of otherwise needed generating
- 338 capacity (~7% of U.S. generating capacity in 2017) (92). Managing larger quantities of energy demand
- 339 for longer times (e.g., tens of PJ over weeks) would involve idling large industrial uses of electricity—
- 340 thus underutilizing other valuable capital—or effectively curtailing service. Exploring and developing
- new technologies that can manage weekly or seasonal gaps in electricity supply is an important area for
- 342 further research (93).

343 Outlook

Non-emitting electricity sources, energy-storage technologies, and demand management options that are now available and capable of accommodating large, multi-day mismatches in electricity supply and demand are characterized by high capital costs compared to the current costs of some variable electricity sources or natural gas-fired generators. Achieving affordable, reliable and net-zero emissions power systems may thus depend on substantially reducing such capital costs via continued innovation and

deployment, emphasizing systems that can be operated to provide multiple energy services.

350 Carbon management

- 351 Recycling and removal of carbon from the atmosphere (carbon management) is likely to be an
- 352 important activity of any net-zero emissions energy system. For example, synthesized hydrocarbons that
- 353 contain carbon captured from the atmosphere will not increase atmospheric CO₂ when oxidized.
- 354 Integrated assessment models also increasingly require negative emissions to limit the increase in global
- 355 mean temperatures to 2 °C (94-97), for example via afforestation/reforestation, enhanced mineral
- weathering, bioenergy with CCS, or direct capture of CO_2 from the air (20).
- 357 Capture and storage will be distinct carbon management services in a net-zero emissions energy
- 358 system (e.g., Fig. 1J and 1E). Carbon captured from the ambient air could be used to synthesize carbon-
- neutral hydrocarbon fuels or sequestered to produce negative emissions. Carbon captured from
- 360 combustion of biomass or synthesized hydrocarbons could be recycled to produce more fuels (*98*).
- 361 Storage of captured CO₂ (e.g., underground) will be required to the extent that uses of fossil carbon
- 362 persist and/or that negative emissions are needed (20).
- For industrial CO₂ capture, research and development are needed to reduce the capital costs and costs related to energy for gas separation and compression (99). Future constraints on land, water, and food resources may limit biologically mediated capture (20). The main challenges to direct air capture include costs to manufacture sorbents and structures, energize the process, and handle and transport the captured CO₂ (100, 101). Despite multiple demonstrations at scale (~15 Mt CO₂/year are now being injected underground (99)), financing carbon storage projects with high perceived risks and long-term liability discharge remains a major challenge (102).

370 Discussion

- 371 We have estimated that difficult-to-eliminate emissions related to aviation, long-distance
- transportation and shipping; structural materials; and highly-reliable electricity represented more than a
- quarter of global fossil fuel and industry CO₂ emissions in 2014 (Fig. 2). But economic and human
- development goals; trends in international trade and travel; the rapidly growing share of variable energy
- sources (103); and the large-scale electrification of other sectors all suggest that demand for the energy
- 376 services and processes associated with difficult-to-eliminate emissions will increase substantially in the
- 377 future. For example, in some of the Shared Socioeconomic Pathways that were recently developed by the
- 378 climate change research community to frame analysis of future climate impacts, global final energy

demand more than doubles by 2100 (*104*); hence, the magnitude of these difficult-to-eliminate emissions
 could in the future be comparable to the level of total current emissions.

381 Combinations of known technologies could eliminate emissions related to all essential energy 382 services and processes (Fig. 1), but substantial increases in costs are an immediate barrier to avoiding emissions in each category. In some cases, innovation and deployment can be expected to reduce costs 383 and create new options (e.g., 33, 73, 105, 106). More rapid changes may depend on coordinating 384 operations across energy and industry sectors, which could help boost utilization rates of capital-intensive 385 386 assets. In practice, this would entail systematizing and explicitly valuing many of the interconnections depicted in Fig. 1, which would also mean overcoming institutional and organizational challenges to 387 create new markets and ensure cooperation among regulators and disparate, risk-averse businesses. We 388 thus suggest two parallel broad streams of R&D effort: (1) research in technologies and processes that can 389 provide these difficult to decarbonize energy services; and (2) research in systems integration that would 390 391 allow for the provision of these services and products in a reliable and cost-effective way.

392 We have focused on provision of energy services without adding CO_2 to the atmosphere. However, many of the challenges discussed here could be reduced by moderating demand, such as by substantial 393 improvements in energy and materials efficiency. Particularly crucial are the rate and intensity of 394 395 economic growth in developing countries and the degree to which such growth can avoid fossil-fuel energy while prioritizing human development, environmental protection, sustainability, and social equity 396 (4, 107, 108). Furthermore, many energy services rely on long-lived infrastructure and systems such that 397 current investment decisions may lock in patterns of energy supply and demand (and thereby the cost of 398 399 emissions reductions) for half a century to come (112). The collective and reinforcing inertia of existing technologies, policies, institutions, and behavioral norms may actively inhibit innovation of emissions-400 401 free technologies (113). Emissions of CO_2 and other radiatively active gases and aerosols (109), from 402 land use and land-use change could also cause substantial warming (e.g., 110).

403 Conclusion

We have herein enumerated energy services that must be served by any future net-zero emission 404 energy system and have explored the technological and economic constraints of each. A successful 405 transition to a future net-zero emission energy system is likely to depend on the availability of vast 406 amounts of inexpensive, emissions-free electricity; mechanisms to quickly and cheaply balance large and 407 uncertain time-varying differences between demand and electricity generation; electrified substitutes for 408 most fuel-using devices; alternative materials and manufacturing processes for structural materials; and 409 410 carbon-neutral fuels for the parts of the economy that are not easily electrified. The specific technologies that will be favored in future marketplaces are largely uncertain, but only a finite number of technology 411 412 choices exist today for each functional role. To take appropriate actions in the near-term, it is imperative to clearly identify desired endpoints. If we want to achieve a robust, reliable, affordable, net-zero 413 emission energy system later this century, we must be researching, developing, demonstrating and 414 deploying those candidate technologies now. 415

416 [5,412words excluding abstract]

Acknowledgements. The authors wish to extend a special acknowledgment to M. I. Hoffert for inspiration on the 20th anniversary of publication of ref 1. The authors also thank Mark Dyson, Lewis Fulton, Lee Lynd, Greet Janssens-Maenhout, Michael McKinnon, Joshua Mueller, Goncalo Pereira, Micah Ziegler, and Michael Wang for helpful input. This review stems from an Aspen Global Change Institute meeting in July 2016 convened with support from NASA, the Heising-Simons Foundation, and the Fund for Innovative Climate and Energy Research. S.J.D. and J.B. also acknowledge support of the U.S. National Science Foundation (INFEWS grant EAR 1639318). D.A. and B-M.H. acknowledge Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding was in part provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

References

- 1. M. I. Hoffert *et al.*, Energy implications of future stabilization of atmospheric CO₂ content. *Nature* **395**, 881-884 (1998).
- 2. H. D. Matthews, K. Caldeira, Stabilizing climate requires near-zero emissions. *Geophysical Research Letters* **35**, L04705 (2008).
- 3. J. Rogelj *et al.*, Zero emission targets as long-term global goals for climate protection. *Environmental Research Letters* **10**, 105007 (2015).
- 4. J. C. Steckel, R. J. Brecha, M. Jakob, J. Strefler, G. Luderer, Development without energy? Assessing future scenarios of energy consumption in developing countries. *Ecological Economics* **90**, 53-67 (2013).
- 5. S. Collins *et al.*, Integrating short term variations of the power system into integrated energy system models: A methodological review. *Renewable and Sustainable Energy Reviews* **76**, 839-856 (2017).
- 6. S. Yeh *et al.*, Detailed assessment of global transport-energy models' structures and projections. *Transportation Research Part D* **55**, 294-309 (2017).
- 7. L. M. Fulton, L. R. Lynd, A. Körner, N. Greene, L. R. Tonachel, The need for biofuels as part of a low carbon energy future. *Biofuels, Bioproducts & Biorefining* **9**, 476-483 (2015).
- 8. J. Impullitti, "Zero Emission Cargo Transport II: San Pedro Bay Ports Hybrid & Fuel Cell Electric Vehicle Project." <u>https://www.energy.gov/sites/prod/files/2016/06/f33/vs158_impullitti_2016_o_web.pdf</u>
- 9. D. Cecere, E. Giacomazzi, A. Ingenito, A review on hydrogen industrial aerospace applications. *International Journal of Hydrogen Energy* **39**, 10731-10747 (2014).
- 10. M. Muratori *et al.*, Role of the Freight Sector in Future Climate Change Mitigation Scenarios. *Environmental Science & Technology* **51**, 3526-3533 (2017).
- 11. S. C. Davis, S. W. Diegel, R. G. Boundy, *Transportation Energy Data Book*. (Center for Transportation Analysis, Oak Ridge National Laboratory, Oak Ridge, TN, ed. 34, 2015).
- 12. IEA, "CO₂ emissions from fuel combustion," (International Energy Agency, 2016).
- 13. IEA, Energy Technology Perspectives 2017. (2017).
- 14. S. Satyapal, in *Hydrogen and Fuel Cells Program, Fuel Cell Technologies Office, U.S. Department of Energy, Annual Merit Review and Peer Evaluation Meeting.* (Washington, DC, 2017).
- 15. H. Zhao, A. Burke, L. Zhu, Analysis of Class 8 hybrid-electric truck technologies using diesel, LNG, electricity, and hydrogen, as the fuel for various applications. *EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium*, (2014).
- 16. D. Z. Morris, "Nikola Motors Introduces Hydrogen-Electric Semi Truck" *Fortune*. (December 4, 2016). http://fortune.com/2016/12/04/nikola-motors-hydrogen-truck/

- J. Li, H. Huang, N. Kobayashi, Z. He, Y. Nagai, Study on using hydrogen and ammonia as fuels: Combustion characteristics and NO_x formation. *International Journal of Energy Research* 38, 1214-1223 (2014).
- 18. D. Tilman *et al.*, Beneficial biofuels--the food, energy, and environment trilemma. *Science* **325**, 270-271 (2009).
- 19. E. H. DeLucia *et al.*, The theoretical limit to plant productivity. *Environmental Science & Technology* **48**, 9471-9477 (2014).
- 20. P. Smith *et al.*, Biophysical and economic limits to negative CO₂ emissions. *Nature Climate Change* **6**, 40-50 (2016).
- N. Johnson, N. Parker, J. Ogden, How negative can biofuels with CCS take us and at what cost? Refining the economic potential of biofuel production with CCS using spatially-explicit modeling. *Energy Procedia* 63, 6770-6791 (2014).
- 22. L. R. Lynd *et al.*, Cellulosic ethanol: status and innovation. *Current Opinion in Biotechnology* **45**, 202-211 (2017).
- 23. O. Cavelett, M. F. Chagas, T. L. Junquiera, M. D. B. Watanabe, A. Bonomi, Environmental impacts of technology learning curve for cellulosic ethanol in Brazil. *Industrial Crops and Products* **106**, 31-39 (2017).
- 24. N. Pavlenko, S. Searle, *A comparison of induced land use change emissions estimates from energy crops*. International Council on Clean Transportation (The International Council on Clean Transportation, 2018).
- 25. L. R. Lynd, The grand challenge of cellulosic biofuels. *Nature Biotechnology* **35**, 912-915 (2017).
- 26. N. MacDowell, P. S. Fennell, N. Shah, G. C. Maitland, The role of CO₂ capture and utilization in mitigating climate change. *Nature Climate Change* **7**, 243-249 (2017).
- 27. F. S. Zeman, D. W. Keith, Carbon neutral hydrocarbons. *Philosophical Transactions of the Royal Society* of London. Series A, Mathematical and Physical Sciences **366**, 3901-3918 (2008).
- 28. C. Graves, S. D. Ebbesen, M. Mogensen, K. S. Lackner, Sustainable hydrocarbon fuels by recycling CO₂ and H₂O with renewable or nuclear energy. *Renewable and Sustainable Energy Reviews* **15**, 1-23 (2011).
- 29. M. R. Shaner, H. A. Atwater, N. S. Lewis, E. W. McFarland, A comparative technoeconomic analysis of renewable hydrogen production using solar energy. *Energy & Environmental Science* 9, 2354-2371 (2016).
- 30. J. D. Holladay, J. Hu, D. L. King, Y. Wang, An overview of hydrogen production technologies. *Catalysis Today* **139**, 244-260 (2009).
- 31. "H2A (Hydrogen Analysis) Model," (U.S. Department of Energy, 2017).
- 32. P. Jaramillo, W. M. Griffin, H. S. Matthews, Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT Liquid Fuels from Coal and Natural Gas. *Environmental Science & Technology* **42**, 7559-7565 (2008).
- 33. O. Schmidt *et al.*, Future cost and performance of water electrolysis: An expert elicitation study. *International Journal of Hydrogen Energy* **42**, 30470-30492 (2017).
- 34. "Technical Targets for Hydrogen Production from Electrolysis," (https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis, 2018).
- 35. S. M. Saba, M. Muller, M. Robinius, D. Stolten, The investment costs of electrolysis A comparison of cost studies from the past 30 years. *International Journal of Hydrogen Energy* **43**, 1209-1223 (2018).
- 36. A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, N. S. Lewis, A taxonomy for solar fuels generators. *Energy & Environmental Science* **8**, 16-25 (2015).
- 37. J. R. McKone, N. S. Lewis, H. B. Gray, Will Solar-Driven Water-Splitting Devices See the Light of Day? *Chemistry of Materials* **26**, 407-414 (2014).
- 38. N. S. Lewis, Research opportunities to advance solar energy utilization. *Science* **351**, (2016).
- 39. NETL, "Cost of capturing CO₂ from Industrial Sources," (NETL, 2014).
- 40. G. Janssens-Maenhout *et al.*, EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012. *Earth System Science Data*, (2017).
- 41. IEA, "Greenhouse gas emissions from major industrial sources III: Iron and steel production," (IEA, 2000).
- 42. A. Denis-Ryan, C. Bataille, F. Jotzo, Managing carbon-intensive materials in a decarbonizing world without a global price on carbon. *Climate Policy* **16**, S110-S128 (2016).
- 43. J. Tollefson, The wooden skyscrapers that could help to cool the planet. *Nature* **545**, 280-282 (2017).
- 44. PWC-Metals, "Steel in 2025: quo vadis?," (2015). https://www.pwc.com/gx/en/metals/pdf/metals-stahlmarkt-2015.pdf

- 45. IEA, "Cement Technology Roadmap," (International Energy Agency; World Business Council for Sustainable Development, Paris, France, 2009).
- 46. B. J. v. Ruijven *et al.*, Long-term model-based projections of energy use and CO₂ emissions from the global steel and cement industries. *Resources, Conservation and Recycling* **112**, 15-36 (2016).
- 47. IEA, "Energy Technology Perspectives: Iron & Steel Findings," (2015).
- 48. A. Carpenter, "CO₂ abatement in the iron and steel industry," (IEA Clean Coal Centre, London, UK, 2012).
- 49. L. J. Sonter, D. J. Barrett, C. J. Moran, B. S. Soares-Filho, Carbon emissions due to deforestation for the production of charcoal used in Brazil's steel industry. *Nature Climate Change* **5**, 359-363 (2015).
- 50. M.-G. Piketty, M. Wichert, A. Fallot, L. Aimola, Assessing land availability to produce biomass for energy: The case of Brazilian charcoal for steel making. *Biomass and Bioenergy* **33**, 180-190 (2009).
- 51. H. Hiebler, J. F. Plaul, Hydrogen Plasma Smelting Reduction-An Option for Steelmaking in the Future. *Metalurgija* **43**, 155-162 (2004).
- 52. T. Kuramochi, A. Ramírez, W. Turkenburg, A. Faaij, Comparative assessment of CO₂ capture technologies for carbon-intensive industrial processes. *Progress in Energy and Combustion Science* **38**, 87-112 (2012).
- 53. M. C. Romano *et al.*, Application of advanced technologies for CO₂ capture from industrial sources *Energy Procedia* **37**, 7176-7185 (2013).
- 54. C. C. Dean, D. Dugwell, P. S. Fennell, Investigation into potential synergy between power generation, cement manufacture and CO2 abatement using the calcium looping cycle. *Energy & Environmental Science* **4**, 2050-2053 (2011).
- 55. D. Barker *et al.*, "CO₂ capture in the cement industry," (IEA Greenhouse as R&D Programme, 2008).
- 56. F. S. Zeeman, K. S. Lackner, The zero emission kiln. International Cement Review 56, (2006).
- 57. L. Zheng, T. P. Hills, P. Fennell, Phase evolution, characterisation, and performance of cement prepared in an oxy-fuel atmosphere. *Faraday Discussions* **192**, 113-124 (2016).
- 58. F. Xi *et al.*, Substantial global carbon uptake by cement carbonation *Nature Geoscience* 9, 880-883 (2016).
- 59. M. Jarre, M. Noussan, A. Poggio, Operational analysis of natural gas combined cycle CHP plants: Energy performance and pollutant emissions. *Applied Thermal Engineering* **100**, 304-314 (2016).
- 60. Q. Wang, X. Chen, A. N. Jha, H. Rogers, Natural gas from shale formation The evolution, evidences and challenges of shale gas revolution in United States. *Renewable and Sustainable Energy Reviews* **30**, 1-28 (2014).
- 61. EIA, Monthly generator capacity factor data now available by fuel and technology. (2014). https://www.eia.gov/todayinenergy/detail.php?id=14611
- 62. M. R. Shaner, S. J. Davis, N. S. Lewis, K. Caldeira, Geophysical constraints on the reliability of solar and wind power in the United States. *Energy & Environmental Science*, **11**, 914-925 (2018).
- 63. A. E. MacDonald *et al.*, Future cost-competitive electricity systems and their impact on US CO₂ emissions. *Nature Climate Change*, **6**, 526-531 (2016).
- 64. NREL, "Renewable Electricity Futures Study," (National Renewable Energy Laboratory, Golden, CO, 2012).
- 65. L. Hirth, J. C. Steckel, The role of capital costs in decarbonizing the electricity sector. *Environmental Research Letters* **11**, 114010 (2016).
- 66. E. Mechleri, P. S. Fennell, N. MacDowell, Optimisation and evaluation of flexible operation strategies for coal-and gas-CCS power stations with a multi-period design approach. *International Journal of Greenhouse Gas Control* **59**, 24-39 (2017).
- 67. EPRI, "Program on Technology Innovation: Approach to Transition Nuclear Power Plants to Flexible Power Operations," (Electric Power Research Institute, Palo Alto, CA, 2014).
- 68. J.D.Jenkins *et al.*, The benefits of nuclear flexibility in power system operations with renewable energy. *Applied Energy* **222**, 872-884 (2018).
- 69. J. R. Lovering, A. Yip, T. Nordhaus, Historical construction costs of global nuclear power reactors. *Energy Policy* **91**, 371382 (2016).
- A. Grubler, The costs of the French nuclear scale-up: A case of negative learning by doing. *Energy Policy* 38, 5174-5188 (2010).
- 71. J. Koomey, N. E. Hultman, A reactor-level analysis of busbar costs for US nuclear plants, 1970–2005. *Energy Policy* **35**, 5630-5642 (2007).
- 72. W. A. Braff, J. M. Mueller, J. E. Trancik, Value of storage technologies for wind and solar energy. *Nature Climate Change* 6, 949-969 (2016).

- 73. N. Kittner, F. Lill, D. Kammen, Energy storage deployment and innovation for the clean energy transition. *Nature Energy* **2**, 17125 (2017).
- 74. M. Sterner, M. Jentsch, U. Holzhammer, "Energiewirtschaftliche und ökologische Bewertung eines Windgas-Angebotes," (Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), 2011).
- 75. Y. Wang, D. Y.C.Leung, J. Xuan, H. Wang, A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. *Renewable and Sustainable Energy Reviews* 65, 961-977 (2016).
- 76. D. McVay, J. Brouwer, F. Ghigliazza, Critical evaluation of dynamic reversible chemical energy storage with high temperature electrolysis. *Proceedings of the 41st International Conference on Advanced Ceramics and Composites* **38**, 47-53 (2018).
- 77. M. Melaina, O. Antonia, M. Penev, "Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues," (NREL, 2013).
- 78. "Transitioning the transportation sector: Exploring the intersection of hydrogen fuel cell and natural gas vehicles," (Sandia National Laboratory, 2014).
- 79. "Goals for Batteries," (U.S. Department of Energy, Vehicle Technologies Office, https://energy.gov/eere/vehicles/batteries, 2018).
- 80. R. E. Ciez, J. F. Whitacre, The cost of lithium is unlikely to upend the price of Li-ion storage systems. *Journal of Power Sources* **320**, 310-313 (2016).
- 81. Z. Li *et al.*, Air-Breathing Aqueous Sulfur Flow Battery for Ultralow Cost Electrical Storage. *Joule* **1**, 306-327 (2017).
- 82. C. Quinn, D. Zimmerle, T. H. Bradley, The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services. *Journal of Power Sources* **195**, 1500-1509 (2010).
- J. I. Pérez-Díaz, M. Chazarra, J. García-González, G. Cavazzini, A. Stoppato, Trends and challenges in the operation of pumped-storage hydropower plants. *Renewable and Sustainable Energy Reviews* 44, 767-784 (2015).
- A. B. Gallo, J. R. Simões-Moreira, H. K. M. Costa, M. M. Santos, E. M. d. Santos, Energy storage in the energy transition context: A technology review. *Renewable and Sustainable Energy Reviews* 65, 800-822 (2016).
- 85. T. Letcher, *Storing energy with special reference to renewable energy sources*. (Elsevier, Cambridge, MA, 2016), vol. 38.
- 86. (MGH Deep Sea Energy Storage, http://www.mgh-energy.com/).
- 87. A. Hauer, "Thermal Energy Storage," *Technology Policy Brief E17* (IEA-ETSAP and IRENA, 2012).
- 88. A. Abedin, M. Rosen, A critical review of thermochemical energy storage systems. *Open Renewable Energy Journal* **4**, 42-46 (2010).
- 89. "Thermal Storage R&D for CSP Systems," (U.S. Department of Energy, Solar Energy Technologies Office, https://www.energy.gov/eere/solar/thermal-storage-rd-csp-systems, 2018).
- 90. E. Hale *et al.*, "Demand Response Resource Quantification with Detailed Building Energy Models," (NREL, Nashville, TN, 2016).
- 91. P. Alstone *et al.*, "California Demand Response Potential Study," (CPUC/LBNL, Berkeley, CA, 2016).
- 92. P. Bronski *et al.*, "The Economics of Demand Flexibility: How "flexiwatts" create quantifiable value for customers and the grid," (Rocky Mountain Institute, 2015).
- 93. B. Pierpont, D. Nelson, A. Goggins, D. Posner, "Flexibility: The path to low-carbon, low-cost electricity grids," (Climate Policy Initiative, 2017).
- 94. L. Clarke et al., in Mitigation of Climate Change. Contribution of Working Group III to the IPCC 5th Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, New York, NY, 2014).
- 95. D. P. v. Vuuren *et al.*, The role of negative CO₂ emissions for reaching 2 °C—insights from integrated assessment modelling. *Climatic Change* **118**, 15-27 (2013).
- 96. E. Kriegler *et al.*, The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. *Climatic Change* **123**, 353-367 (2014).
- 97. C. Azar *et al.*, The feasibility of low CO₂ concentration targets and the role of bio-energy with carbon capture and storage (BECCS). *Climatic Change* **100**, 195-202 (2010).
- 98. J. M. D. MacElroy, Closing the carbon cycle through rational use of carbon-based fuels. *Ambio* **45**, S5-S14 (2016).

- 99. H. d. Coninck, S. M. Benson, Carbon Dioxide Capture and Storage: Issues and Prospects. *Annual Review of Environment and Resources* **39**, 243-270 (2014).
- 100. R. Socolow *et al.*, "Direct air capture of CO₂ with chemicals: A technology assessment for the APS Panel on Public Affairs," (American Physical Society, 2011).
- 101. K. S. Lackner *et al.*, The urgency of the development of CO₂ capture from ambient air. *Proceedings of the National Academy of Sciences* **109**, 13156-13162 (2012).
- 102. Z. Kapetaki, J. Scowcroft, Overview of Carbon Capture and Storage (CCS) demonstration project business models: Risks and Enablers on the two sides of the Atlantic *Energy Procedia* **114**, 6623-6630 (2017).
- 103. "Renewables 2017: Analysis and Forecasts to 2022," (IEA, Paris, France, 2017).
- 104. N. Bauer *et al.*, Shared Socio-Economic Pathways of the Energy Sector-Quantifying the Narratives. *Global Environmental Change* **42**, 316-330 (2017).
- 105. J. D. Farmer, F. Lafond, How predictable is technological progress? *Research Policy* 45, 647-665 (2016).
- 106. L. M. A. Bettencourt, J. E. Trancik, J. Kaur, Determinants of the pace of global innovation in energy technologies. *PLoS One* **8**, (2013).
- 107. K. Riahi *et al.*, The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. *Global Environmental Change* **42**, 153-168 (2017).
- 108. E. Holden, K. Linnerud, D. Banister, The Imperatives of Sustainable Development. *Sustainable Development*, (2016).
- 109. D. E. H. J. Gernaat *et al.*, Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. *Global Environmental Change* **33**, 142-153 (2015).
- 110. D. P. v. Vuuren *et al.*, Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. *Global Environmental Change* **42**, 237-250 (2017).
- 111. T. J. Lark, J. M. Salmon, H. K. Gibbs, Cropland expansion outpaces agricultural and biofuel policies in the United States. *Environmental Research Letters* **10**, 044003 (2015).
- 112. S. J. Davis, K. Caldeira, H. D. Matthews, Future CO₂ Emissions and Climate Change from Existing Energy Infrastructure. *Science* **329**, 1330-1333 (2010).
- 113. K. C. Seto *et al.*, Carbon lock-in: Types, causes, and policy implications. *Annual Review of Environment and Resources*, **41**, 425-452 (2016).
- 114. EIA, "Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2018," (https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf, 2018).
- 115. M. Itoh, M. Masuda, K.-i. Machida, Hydrogen generation by ammonia cracking with iron metal-rare earth oxide composite catalyst. *Materials Transactions* **43**, 2763-2767 (2002).
- 116. G. Thomas, G. Parks, "Potential Roles of Ammonia in a Hydrogen Economy" (U.S. Department of Energy, 2006).
- 117. A. Klerke, S. K. Klitgaard, R. Fehrmann, Catalytic Ammonia Decomposition Over Ruthenium Nanoparticles Supported on Nano-Titanates. *Catalysis Letters* **130**, 541-546 (2009).
- 118. W. I. F. David *et al.*, Hydrogen Production from Ammonia Using Sodium Amide. *Journal of the American Chemical Society* **136**, 13082-13085 (2014).

Fig. 1. Schematic of an integrated system that can provide essential energy services without adding any CO₂ to the atmosphere. Colors indicate the dominant role of specific technologies and processes: electricity generation and transmission in green, hydrogen production and transport in blue, hydrocarbon production and transport in purple, ammonia production and transport in orange, carbon management in red, and end uses of energy and materials in black.

Fig. 2. Difficult-to-eliminate emissions in current context. Estimates of CO_2 emissions related to different energy services, highlighting (e.g., by longer pie pieces in **A**) those services that will be the most difficult to decarbonize, and the magnitude of 2014 emissions from those difficult-to-eliminate emissions. Note that the shares and emissions shown here reflect a global energy system that still relies primarily on fossil fuels and that serves many developing regions. Both the shares (**A**) and the level of emissions (**B**) related to these difficult-to-decarbonize services are likely to increase in the future. Totals and sectoral breakdowns shown are based primarily on data from IEA and EDGAR 4.3 databases. The highlighted iron & steel andcement emissions are those related to the dominant industrial processes only; fossil energy inputs to those sectors that are more easily decarbonized are included with direct emissions from other industry in the Other industry category. Residential and commercial emissions are those produced directly by businesses and households, and Electricity, CHP (combined heat and power), and Heat represent emissions from the energy sector. See *Supplementary Materials* for further details.

Fig. 3. Comparisons of energy sources and technologies. Panel **A** shows the energy density of energy sources for transportation, including hydrocarbons (purple), ammonia (orange), hydrogen (blue), and current lithium ion batteries (green). Panel **B** shows relationships between fixed capital versus variable operating costs of new generation resources in the U.S., with shaded ranges of regional and tax credit variation and contours of total levelized cost of electricity, assuming average capacity factors and equipment lifetimes. "NG cc" is natural gas combined cycle. (*113*). Panel **C** shows the relationship of capital cost (i.e. electrolyzer cost) and electricity price on the cost of produced hydrogen (i.e. the simplest possible electricity-to-fuel conversion) assuming a 25-year lifetime, 80% capacity factor, 65% operating efficiency, 2 year construction time, and straight-line depreciation over 10 years with \$0 salvage value (29). For comparison, hydrogen is currently produced by steam methane reformation at costs of ~\$1.50/kg H₂ (~\$10/GJ; red line). Panel **D** compares the levelized costs of discharged electricity as a function of cycles per year, assuming constant power capacity, 20 year service life, and full discharge over 8 hours for daily cycling or 121 days for yearly cycling. Dashed lines for hydrogen and Li-ion reflect aspirational targets. See *Supplementary Materials* for further details.

Table 1. Key energy carriers and the processes for interconversion. Processes listed in each cell convert the row energy carrier to the column energy carrier. Further details about costs and efficiencies of these interconversions are available in the *Supplementary Materials*.

to	e-	H_2	C _x O _y H _z	NH3
from				
e⁻		 Electrolysis (29) (\$5-6/kg H₂) 	 Electrolysis + methanation Electrolysis + Fischer- Tropsch 	 Electrolysis + Haber- Bosch
H2	 Combustion Oxidation via fuel cell(<i>115, 116</i>) 		 Methanation (\$0.07-0.57/m³ CH₄) Fischer-Tropsch (\$4.40 to \$15.00/gallon of gasoline-equivalent) 	 Haber-Bosch (\$0.50-0.60/kg NH₃)(<i>116</i>)
CxOyHz	Combustion	 Steam reforming (\$1.29-1.50/kg H₂) Biomass gasification (\$4.80-5.40/kg H₂) 		 Steam reforming + Haber-Bosch
NH3	Combustion	 Metal catalysts (117) (~\$3/kg H₂) Sodium amide (118) 	 Metal catalysts + methanation/Fischer- Tropsch Sodium amide + methanation/Fischer- Tropsch 	