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Abstract

The quest for the ‘best’ heavy-tailed distribution for ARCH/GARCH
residuals appears to still be ongoing. In this connection, we propose
a new distribution that arises in a natural way as an outcome of an
implicit model. The challenging application of prediction of squared
returns is also discussed; an optimal predictor is formulated, and the
usefulness of the new distribution for prediction is demonstrated on
three real datasets.

JEL codes: C3; C5.
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1 INTRODUCTION

Consider data X1, . . . , Xn arising as an observed stretch from a financial
returns time series {Xt, t = 0,±1,±2, . . .} such as the percentage returns of
a stock price, stock index or foreign exchange rate. The returns series {Xt}
will be assumed strictly stationary with mean zero which—from a practical
point of view—implies that trends and other nonstationarities have been
successfully removed.

The celebrated ARCH models of Engle (1982) were designed to capture
the phenomenon of volatility clustering in the returns series. An ARCH(p)
model can be described by the following equation:

Xt = Zt

√√√√a +
p∑

i=1

aiX2
t−i. (1)

The original assumption was that the series {Zt} is i.i.d. N(0, 1). Neverthe-
less, it was soon observed that the residuals, say {Ẑt}, from a fitted ARCH(p)
model do not appear to be in accordance to the normality assumption as they
are typically heavy-tailed.

Consequently, practitioners have been resorting to ARCH models with
heavy-tailed errors. A popular assumption for the distribution of the {Zt}
is the t-distribution with degrees of freedom empirically chosen to match the
apparent degree of heavy tails as measured by higher-order moments such
as the kyrtosis; see e.g. Bollerslev et al. (1992) or Shephard (1996) and the
references therein.

Nevertheless, this situation is not very satisfactory since the choice of a
t-distribution seems quite arbitrary, and the same is true for other popular
heavy-tailed distributions, e.g. the double exponential. In the next section,
an implicit ARCH model is developed that gives motivation towards a more
‘natural’—and less ad hoc—distribution for ARCH/GARCH residuals. The
precise definition of this new distribution is given in Section 3, together with
some of its properties. The subject of maximum likelihood estimation for
ARCH and GARCH models is addressed in Section 4. In Section 5, the
problem of prediction of squared returns with ARCH/GARCH models is
discussed, and an optimal predictor is suggested. Finally, Section 6 gives an
application of volatility prediction in three datasets of interest.
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2 AN IMPLICIT ARCH MODEL

Under model (1), the residuals

Ẑt =
Xt√

â +
∑p

i=1 âiX2
t−i

(2)

ought to behave like i.i.d. standard normal random variables under the orig-
inal ARCH assumptions; in the above, â, â1, â2, . . . are estimates of the non-
negative parameters a, a1, a2, . . ..

The degree of non-conformance to the normality assumption can be cap-
tured in many ways; the easiest is to compute the empirical kyrtosis and
compare to the normal kyrtosis of 3. So let Kj

i (Y ) denote the empirical
(sample) kyrtosis of the dataset {Yi, Yi+1, . . . , Yj}. Typically, Kn

1 (Ẑ) is quite

smaller than Kn
1 (X) but still quite bigger than 3, i.e., 3 < Kn

1 (Ẑ) < Kn
1 (X).

Note that, given the data, Kn
1 (Ẑ) is a continuous function of â, â1, â2, . . ..

The question may then be asked: is there a specification for â, â1, â2, . . . that
will make the kyrtosis Kn

1 (Ẑ) of the residuals to be about 3? The answer is
not in general.

Taking another look at the ratio given in eq. (2) we may interpret it as
an attempt to ‘studentize’ the return Xt by dividing with a (time-localized)
measure of standard deviation. Nevertheless, there seems to be no reason to
exclude the value of Xt from an empirical (causal) estimate of the standard
deviation of the same Xt. Thus, if we are to include an X2

t term (with its
own coefficient, say a0 ≥ 0) in the studentization, we may define the new
empirical ratio

Ŵt =
Xt√

â + â0X2
t +

∑p
i=1 âiX2

t−i

(3)

that may be associated with a corresponding true equation of the type:

Wt =
Xt√

a + a0X2
t +

∑p
i=1 aiX2

t−i

. (4)

To repeat our question in the new set-up: is there a specification for â, â0, â1, . . .
that will make the kyrtosis Kn

1 (Ŵ ) of the new residuals Ŵt to be about 3?
The answer in general is yes!

3



To see why, note that the simple specification: â = 0, â0 = 1 and âj = 0

for j ≥ 1 results into Ŵt = sign(Xt), in which case Kn
1 (Ŵ ) = 1. But as

mentioned before, a specification with â0 = 0 typically results into Kn
1 (Ŵ ) >

3. Therefore, by the smoothness of Kn
1 (Ŵ ) as a function of â, â1, â2, . . ., the

intermediate value theorem guarantees the existence of a specification with
Kn

1 (Ŵ ) = 3.
Having residuals Ŵt that have kyrtosis equal to 3—as well as an approx-

imately symmetric1 distribution about zero—it is natural to assume that
the true Wt in equation (4) follow a mean zero normal distribution—at
least approximately. Furthermore, by proper re-scaling of the parameters
a, a0, a1, . . ., we may even assume that the Wt approximately follow a stan-
dard normal distribution

We can now re-arrange equation (4) to make it look more like model (1):

Xt = Wt

√√√√a + a0X2
t +

p∑
i=1

aiX2
t−i. (5)

Equation (5) represents an implicit ARCH model; the reason for the name
‘implicit’ is that the term Xt appears on both sides of the equation. Never-
theless, we can solve equation (5) for Xt, to give:

Xt = Ut

√√√√a +
p∑

i=1

aiX2
t−i (6)

where

Ut =
Wt√

1 − a0W 2
t

. (7)

Interestingly, the implicit ARCH model (5) is seen to be tantamount to the
regular ARCH(p) model (6) associated with the new innovation term Ut.

However, it is now apparent that exact normality may not hold for the
Wt for then the denominator of (7) would become imaginary. As a matter of
fact, both Ŵt and Wt are bounded; to see this, note that

1

W 2
t

=
a + a0X

2
t +

∑p
i=1 aiX

2
t−i

X2
t

≥ a0.

1Some authors have raised the question of existence of skewness in financial returns;
see e.g. Patton (2002) and the references therein. Nevertheless, at least as a first approx-
imation, the assumption of symmetry is very useful for model building.
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Thus, |Wt| ≤ 1/
√

a0, and similarly |Ŵt| ≤ 1/
√

â0 almost surely.
A natural way to model a situation where the Wt are thought to be close

to N(0, 1) but happen to be bounded is to use a truncated standard normal
distribution, i.e., to assume that the Wt are i.i.d. with probability density
given by

φ(x)1{|x| ≤ C0}∫ C0
−C0

φ(y)dy
for all x ∈ R (8)

where φ denotes the standard normal density, and C0 = 1/
√

a0. With a0

small enough, the boundedness of Wt is effectively not noticeable but yields
interesting implications for the distribution of the Ut defined in (7) as detailed
in the following section.

3 A HEAVY-TAILED DISTRIBUTION

FOR ARCH RESIDUALS

To summarize the discussion of Section 2, the newly derived implicit ARCH
model consists of eq. (5) together with the assumption that the {Wt} series
is i.i.d. with density given by eq. (8).

However, if Wt is assumed to follow the truncated standard normal distri-
bution (8), then the change of variable (7) implies that the innovation term
Ut appearing in the ARCH model (6) has the density f(u; a0, 1) defined as:

f(u; a0, 1) =
(1 + a0u

2)−3/2 exp(− u2

2(1+a0u2)
)

√
2π

(
Φ(1/

√
a0) − Φ(−1/

√
a0)

) for all u ∈ R (9)

where Φ denotes the standard normal distribution function. Eq. (9) describes
our proposed density for the ARCH residuals. The nonnegative parameter
a0 is a shape parameter having to do with the degree of heavy tails; note
that f(u; a0, 1) → φ(u) as a0 → 0.

It is apparent that f(u; a0, 1) has heavy tails. Except for the extreme case
where a0 = 0 where all moments are finite, in general moments are finite only
up to (almost) order two. In other words, if a random variable U follows the
density f(u; a0, 1) with a0 > 0, then it is easy to see that

E|U |d < ∞ for all d ∈ [0, 2) but E|U |d = ∞ for all d ∈ [2,∞). (10)
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The above property is reminiscent of the t2 distribution, i.e., Student’s t
distribution with 2 degrees of freedom; this is no coincidence in the sense
that

f(u; a0, 1) ∼ c(a0)(1 + a0u
2)−3/2 as u → ∞ (11)

where 1/c(a0) =
√

2π
(
Φ(1/

√
a0) − Φ(−1/

√
a0)

)
exp(1/(2a0)).

Eq. (11) shows that the rate by which f(u; a0, 1) tends to 0 as u → ∞
is the same as in the t2 case. Nonetheless, the tails of f(u; a0, 1) are quite
lighter than those of the t2 distribution as the constants associated with those
rates are very different; in particular, the constant c(a0) is much smaller. In
some sense, f(u; a0, 1) achieves its degree of heavy tails in a subtler way.

a = 1 1.9 2 2.1 3 4∫ 10
−10 |u|af(u; 0.1, 1)du 0.905 1.444 1.561 1.695 4.401 18.74∫ 100
−100 |u|af(u; 0.1, 1)du 0.923 1.745 1.983 2.290 20.27 875.45∫ 10

−10 |u|aft2(u)du 1.216 2.931 3.328 3.798 14.94 89.03∫ 100
−100 |u|aft2(u)du 1.394 6.176 7.904 10.278 194.40 9975.3∫ 10
−10 |u|aft5(u)du 0.947 1.519 1.638 1.773 4.304 15.96∫ 100
−100 |u|aft5(u)du 0.949 1.541 1.667 1.811 4.740 24.05

Table 1: Truncated moments of the f(u; 0.1, 1) density as compared to those
of the ft2 and ft5 , i.e., the densities of the t2 and t5 distributions.

To elaborate on the latter point, Table 1 gives some moments of the
f(u; 0.1, 1) density truncated to either ±10 or ±100, and comparing them
to the respective moments of the (truncated) ft2 and ft5 , i.e., the densities
of the t2 and t5 distributions. It is apparent that up to moments of order 2
(and perhaps even order 2.1), the moments of f(u; 0.1, 1) are close to those
of ft5 . By contrast, for moments of orders 3 and 4 the similarity with ft5

breaks down; at the same time, the lighter tails of f(u; 0.1, 1) as compared
to those of ft2 are quite clear.

Plots of the (right half of the) density f(u; a0, 1) are pictured in Figure 1
for a0 = 0.1 and 0.5; they are compared to the standard normal as well as the
t5, i.e., t distribution with 5 degrees of freedom. Figures 1 (a)-(c) focus on
the f(u; 0.1, 1) and the t5 since values of a0 about 0.1 and degrees of freedom
of the order of 5 seem to be typical in connection with ARCH residuals in
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Figure 1: (a) Standard normal density (shaded) vs. f(u; 0.1, 1); (b) Standard
normal density (shaded) vs. t with 5 degrees of freedom; (c) t with 5 degrees
of freedom (shaded) vs. f(u; 0.1, 1); (d) t with 1 degree of freedom (shaded)
vs. f(u; 0.5, 1).
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practice; see e.g. our Section 6.
However, Figure (d) shows what happens when the degree of heavy tails is

cranked up in both families, the f(u; a0, 1) and the t. The differences are quite
apparent; for example, as the degree of heavy tails increases—i.e., a0 increases
in f(u; a0, 1) and degrees of freedom decreases in the t distribution—the two
densities change in opposite ways around the origin: f(0; a0, 1) is increasing,
while the t density is decreasing. Thus, it could be said that f(u; a0, 1) is
more ‘leptokurtic’ than the t-family in the sense that f(u; a0, 1) becomes even
more concentrated near the origin when its degree of heavy tails increases
whereas, at the same time, as u → ∞, f(u; a0, 1) tends to zero with slower
rate than any td distribution with d > 2.

4 MAXIMUM LIKELIHOOD

In this section we consider fitting the ARCH model (6) to our data X1, . . . , Xn

under the assumption that U1, . . . , Un are i.i.d. according to the proposed
new density f(u; a0, 1). Note that we can scale the density f(u; a0, 1) to
create a two-parameter family of densities with typical member given by

f(x; a0, s) =
1

s
f(

x

s
; a0, 1) for all x ∈ R. (12)

As before, the parameter a0 is a shape parameter, while the positive para-
meter s represents scale.

Consequently, for any t > p, the density of Xt conditionally on the ob-
served past Ft−1 = {Xs, 0 < s ≤ t − 1} is given by f(x; a0, st), where the

volatility st =
√

a +
∑p

i=1 aiX2
t−i is treated as constant given Ft−1. Thus, the

likelihood of the data X = (X1, . . . , Xn) conditionally on Fp (also called the
‘pseudo-likelihood’) is given by:

L(a, a0, a1, . . . , ap|X) =
n∏

t=p+1

f(Xt; a0, st). (13)

As usual, define the maximum (pseudo)likelihood estimators â, â0, â1, . . . , âp

as the values of a, a0, a1, . . . , ap that maximize L(a, a0, a1, . . . , ap|X) subject
to the nonnegativity constraints: a ≥ 0 and ai ≥ 0 for all i ≥ 0. The
maximum (pseudo)likelihood estimators generally partake in the favorable
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properties shared by classical maximum likelihood estimators (MLE); see
e.g. Gouriéroux (1997). In addition, the maximum (pseudo)likelihood esti-
mators have recently been shown to be consistent even in the absence of finite
fourth moments although in that case their rate of convergence is slower than√

n; see Hall and Yao (2003). For simplicity, we will refer to the maximum
(pseudo)likelihood estimators â, â0, â1, . . . , âp as the MLEs in the ARCH case
with f(u; a0, 1) residuals; note, however, that this maximization must be done
numerically as no closed-form expressions for the MLEs seem to be available.

Now, and in the remainder of the paper, we will focus on Bollerslev’s
(1996) popular GARCH(1,1) model that has been shown to achieve a most
parsimonious fit. Therefore, let

Xt = stUt with s2
t = C + AX2

t−1 + Bs2
t−1 (14)

and
Ut ∼ i.i.d. f(u; a0, 1) (15)

where the nonnegative parameters A, B, C satisfy the weak-stationarity con-
dition A+B < 1. All-in-all, the above GARCH(1,1) model given by (14)–(15)
has four parameters:2 A, B, C and a0.

Back-solving in eq. (15) it is easy to see that the GARCH model (14) is
tantamount to the ARCH model (6) with p = ∞ and the following identifi-
cations:

a =
C

1 − B
, and ai = ABi−1 for i = 1, 2, . . . (16)

Not surprisingly, the parameter a0 does not figure in at all in eq. (16) as it
is solely associated with the distribution of the errors Ut.

While it is difficult to write down exactly the (pseudo)likelihood in the
GARCH case, it is easy to get an approximation. The most straightfor-
ward such approximation is to note that the exponential decay of ai given in
eq. (16) implies that ai 	 0 for all i ≥ some finite value p0. In this sense, the
GARCH(1,1) model (14) is approximately equivalent to the ARCH model (6)
with p = p0. The MLEs of A, B, C and a0 can then be obtained by maximiz-
ing L(a, a0, a1, . . . , ap0|X) of eq. (13) with respect to the four free parameters
a0, A, B, C, noting that a, a1, . . . , ap0 are simple functions of A, B, C by (16).

2The same number of parameters (four) characterizes the GARCH (1,1) model with
t–errors; the number of degrees of freedom for the best-fitting t distribution represents the
fourth parameter.
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As in all numerical optimization problems, having good starting values
significantly speeds up the search, and reduces the risk of finding local—but
not global—optimizers; to further address the latter risk, the optimization
should be run a few times with different starting values each time. More
practical details are given in the Section 6.

5 PREDICTION OF SQUARED RETURNS

WITH ARCH/GARCH MODELS

The litmus test of any model is its predictive ability. Although ARCH models
could not be expected to successfully predict the (signed) returns Xt, they
are indeed expected to have some predictive ability for the squared returns
X2

t ; see the discussion in the Introduction.
Nevertheless, the literature abounds with sugestions to the contrary. In

particular, it is widely believed that ARCH/GARCH models are character-
ized by “poor out-of-sample forecasting performance vis-a-vis daily squared
returns”; see Andersen and Bollerslev (1998) and the references therein. To
further quote from the same paper: “numerous studies have suggested that
ARCH and stochastic volatility models provide poor volatility forecasts”.

It seems, however, that these negative comments have more to do with
the commonly employed prediction method that seems suboptimal, namely
predicting X2

t by the (estimated) squared volatility ŝ2
t = Ĉ + ÂX2

t−1 + B̂s2
t−1

where Â, B̂, Ĉ are the MLEs in the GARCH model (14).
Using ŝ2

t as predictor for X2
t would be optimal if: (a) the GARCH residu-

als were normal N(0, 1); (b) Mean Squared Error (MSE) was used to measure
the quality of prediction; and (c) the returns Xt had a finite fourth moment.
If conditions (a),(b),(c) were to hold true, then s2

t would represent the con-
ditional mean of X2

t given the past Ft−1 = {Xi, 1 ≤ i ≤ t − 1} which is the
optimal (with respect to MSE) predictor of X2

t ; since ŝ2
t is our best proxy

for s2
t , the use of ŝ2

t as predictor would then be justified. However, the pre-
dictor ŝ2

t seems to perform similarly—and sometimes even a bit worse—as
compared to the crudest possible predictor, namely the sample variance of
dataset {Xi, 1 ≤ i ≤ t−1}, thus giving rise to the aforementioned criticisms.

The poor performance of ŝ2
t is not necessarily evidence against the GARCH

model (14); rather, it may be seen as evidence that one or more amongst
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Figure 2: Plot of V k
1 (X) and Kk

1 (X) as a function of k; the data X1, X2, . . .
represent daily returns of the S&P500 index spanning the period 1-1-1928 to
8-30-1991.

conditions (a),(b),(c) are not true. As a matter of fact, arguments against
condition (a) abound as mentioned in our Introduction; see e.g. Bollerslev
et al. (1992) or Shephard (1996) and the references therein. Noting that
condition (b) is contingent on condition (c) we now focus on the latter.

Let V j
i (Y ) and Kj

i (Y ) denote the empirical (sample) variance and kyrtosis
(respectively) of a general dataset {Yi, Yi+1, . . . , Yj}. Figure 2 shows a plot of
V k

1 (X) and Kk
1 (X) as a function of k with data X1, X2, . . . representing daily

returns of the S&P500 index spanning the period 1-1-1928 to 8-30-1991.
The plot of V k

1 (X) indicates convergence as k increases, giving empirical
evidence that the Strong Law of Large Numbers (SLLN) may be kicking in;
the implication is that the S&P500 data may have a finite 2nd moment. On
the contrary, the plot of Kk

1 (X) indicates divergence as k increases with the
implication that the S&P500 data may not have a finite 4th moment.3 Similar

3The point may be made that returns are ‘physically’ bounded, and hence all moments
are finite. The returns are certainly bounded from below by the value -1, so the assumption
of symmetry would go hand-in-hand with the boundedness assumption. Interestingly, the
largest outliers ever recorded are in the negative direction, e.g. the approximately -0.2
return associated with the crash of 1987, indicating that the lower bound of -1 is really
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conclusions can be drawn using different datasets, e.g. foreign exchange rates,
etc., provided the records are long enough. Hence, condition (c) seems to fail.

Thus, the failure of predictor ŝ2
t is justified due to the failure of conditions

(a),(b),(c) that need to be modified as follows: (a′) the GARCH residuals in
model (14) follow a (possibly) heavy-tailed distribution; (b′) an L1 measure
such as Mean Absolute Deviation (MAD) is used to measure the quality of
prediction; and (c′) the returns Xt have an infinite fourth moment but a
finite second moment—or, at least, an ‘almost’ finite second moment.4

Under conditions (a′),(b′),(c′), the optimal predictor of X2
t given the past

Ft−1 = {Xi, 1 ≤ i ≤ t − 1} is given by

m2 · ŝ2
t (17)

where m2 is the median of the (common) distribution of U2
t . For example,

m2 	 0.455 if Ut ∼ N(0, 1), while m2 	 0.528 if Ut ∼ t5.
Under condition (c′), it is also possible to assume the f(u; a0, 1) distribu-

tion for the GARCH residuals, i.e., to assume model (14) together with (15).
Table 2 below contains approximate values for m2 in the case Ut ∼ f(u; a0, 1)
for different values of the shape parameter a0.

a0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

m1 0.676 0.677 0.679 0.681 0.682 0.684 0.685 0.687 0.688 0.670
m2 0.457 0.459 0.461 0.463 0.465 0.467 0.469 0.471 0.473 0.475

Table 2. Approximate values for m1, the median of the distribution of |Ut|,
and m2, the median of the distribution of U2

t , in the case Ut ∼ f(u; a0, 1) for
different values of the shape parameter a0.

too far away to have any real import. But even adopting the viewpoint that returns are
bounded, Figure 2 suggests that the 2nd moment may have a moderate value while the
4th moment is (at least) 10,000 times as large; this phenomenon may be compared with
the truncation effect in Table 1: having the 4th moment equal 500 or 1,000 times the
2nd moment is tantamount (and practically indistinguishable) to having an infinite 4th
moment.

4By ‘almost’ finite second moment, a condition like eq. (10) is implied. Note that, using
finite-sample data such as those in Figure 2, one could never reject the hypothesis that
the returns have ‘almost’ finite second moment only.
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A different problem of interest is prediction of |Xt| given the past Ft−1.
It is easy to see that the optimal predictor of |Xt| with respect to MAD,
i.e., L1 loss, is given by m1ŝt, where m1 is the median of the distribution of
|Ut|. Note, however, that conditions (a′), (c′) afford us now the possibility of
adopting an L2 loss; in that case, the optimal predictor of |Xt| with respect
to MSE is given by µ1ŝt, where µ1 is the mean of the distribution of |Ut|.

Nevertheless, L1 loss seems preferable as the MAD—which is its empirical
version—is both more stable, as well as more easily interpretable. Table 2
gives approximate values for m1 in the case Ut ∼ f(u; a0, 1); the values of
m1 in case Ut follows the N(0, 1) or t5 distribution are m1 = 0.674 and
0.727 respectively. For concreteness, in what follows we focus exclusively on
predicting the squared returns X2

t .

6 PREDICTION OF SQUARED RETURNS:

THREE EXAMPLES

To evaluate and compare the predictive ability of the GARCH (1,1) model
with different distributional assumptions on the errors, we focus on three
well-known datasets.

• (Foreign exchange). Daily returns of the Yen vs. Dollar exchange
rate from January 1, 1988 to August 1, 2002; the sample size is 3600
(weekends and holidays are excluded).

• (Stock index). Daily returns of the S&P500 stock index from October
1, 1983 to August 30, 1991; the sample size is 2000.

• (Stock price). Daily returns of the IBM stock price from February 1,
1984 to December 31, 1991; the sample size is 2000.

The Yen/Dollar data were downloaded from Datastream; the other two
datasets are available as part of the garch module of the statistical language
S+.

Table 3 shows the MLEs in the GARCH (1,1) model under three possible
distributional assumptions for the GARCH errors, namely the N(0, 1), the
t distribution (with estimated degrees of freedom), and the new f(·; a0, 1)
density. The computations were carried out in S+; the GARCH models
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associated with the first two distributions were fitted using the garch module,
while the numerical optimization5 for the case of the f(·; a0, 1) density was
performed using the function nlminb. Notably, in all three datasets, the
degrees of freedom for the t distribution were estimated to be 5.

For the particular problem of numerical MLE under the density f(·; a0, 1),
good starting values for A, B, C are provided by the MLEs obtained using the
aforementioned t5 distribution for the GARCH residuals. As a matter of fact,
as Table 3 shows, the actual MLEs associated with the f(·; a0, 1) distribution
for the residuals turn out to be remarkably close to those starting values.
Regarding â0, any number in the interval [0.07, 0.10] is a good starting value
with a value around 0.08 probably being best.

â0 Â B̂ Ĉ

Yen/Dollar–N(0, 1) N/A 0.062 0.898 2.29e-06
Yen/Dollar–t distr. N/A 0.027 0.923 8.95e-07
Yen/Dollar–f(·; a0, 1) 0.089 0.028 0.938 8.38e-07

S&P500–N(0, 1) N/A 0.104 0.834 6.63e-06
S&P500–t distr. N/A 0.022 0.927 1.83e-06
S&P500–f(·; a0, 1) 0.081 0.023 0.936 1.96e-06

IBM–N(0, 1) N/A 0.104 0.807 1.72e-05
IBM–t distr. N/A 0.027 0.913 5.65e-06
IBM–f(·; a0, 1) 0.066 0.029 0.912 6.32e-06

Table 3. Maximum (pseudo)likelihood estimators in the GARCH (1,1) model
in the three datasets, and under three possible distributional assumptions for
the GARCH errors: the N(0, 1), the t distribution (with estimated degrees
of freedom), and the new f(·; a0, 1) density.

Recall that the truncation level for the quasi-normal residuals Ŵt of Sec-
tion 2 is 1/

√
â0. As Table 3 suggests, this number ranges from 3.35 to 3.86.

Since 99.7% of the mass of the N(0, 1) distribution lies within ±3 anyway,
this truncation does not practically spoil the normality of the Ŵt residuals.

5Some simple S+ functions associated with numerical MLE and Monte Carlo under
the assumption of density f(·; a0, 1) are available from: www.math.ucsd.edu/∼politis
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In order to evaluate the out-of-sample performance of different predictors
of squared returns the following procedure was implemented: the first half
of each of our three datasets was used to get estimates of the GARCH co-
efficients (including a0), while the prediction of squared returns was carried
out over the second half. Table 4a tabulates the relative performance—as
measured by the Mean Absolute Deviation (MAD)—of three predictors: the
benchmark, the simple ŝ2

t , and the optimal m2ŝ
2
t . The benchmark amounts

to the aforementioned crudest predictor, i.e., the sample variance of dataset
{Xi, 1 ≤ i ≤ t−1}. The values of m2 used in the f(·; a0, 1) case were obtained
from Table 2 based on the estimated value for a0; for the t distribution, the
m2 associated with t5 was used.

benchmark ŝ2
t m2ŝ

2
t

Yen/Dollar–N(0, 1) 0.0697 0.0646 0.0545
Yen/Dollar–t distr. ” 0.0550 0.0541
Yen/Dollar–f(·; a0, 1) ” 0.0567 0.0540

S&P500–N(0, 1) 0.3343∗ 0.1042 0.0919
S&P500–t distr. ” 0.0947 0.0920
S&P500–f(·; a0, 1) ” 0.0975 0.0918

IBM–N(0, 1) 0.1692 0.1918 0.1500
IBM–t distr. ” 0.1571 0.1455
IBM–f(·; a0, 1) ” 0.1609 0.1454

Table 4a. Entries represent the Mean Absolute Deviation (multiplied by
1,000) for the three predictors of squared returns: the benchmark, the simple
ŝ2

t , and the optimal m2ŝ
2
t ; for the last two, the GARCH(1,1) model (14) was

used. The predictions were carried out over the 2nd half of each dataset,
with coefficients estimated from the 1st half.

∗ This value is as high because the crash of 1987 is present in the 2nd half of
the S&P500 dataset.

It is apparent from Table 4a, that the simple predictor ŝ2
t seems to actu-

ally have some predictive ability, i.e., to improve upon the crude benchmark,
when a heavy-tailed distribution—t or f(·; a0, 1)—is assumed for the GARCH
residuals. Detecting the presence of this predictive ability is solely due to
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using an L1 measure to quantify the accuracy of prediction since, as men-
tioned before, the MSE of predictor ŝ2

t is generally comparable to that of the
benchmark.

Also immediate from Table 4a is that the predictor ŝ2
t is always inferior

to the optimal predictor m2ŝ
2
t . Focusing on the latter, the best performance

is achieved using the two heavy-tailed distributions, with the f(·; a0, 1) dis-
tribution having a slight edge over the t distribution in all three cases.

Note, however, that in practice the GARCH estimates would be updated
daily, i.e., to predict Xt given the past Ft−1, the GARCH coefficients would
be estimated based on the whole of Ft−1. Although it is quite feasible for
a practitioner to devote 2-3 minutes daily to update those coefficients, it is
unfeasible computationally to include this daily updating in our simulation.

The result is that the entries of Table 4a are conservative in the sense
that prediction performances would be expected to improve if the GARCH
estimates were to be updated daily. To see the effect of having better GARCH
estimates when the prediction is carried out we go to the other extreme: Table
4b shows the performances of our predictors carried out over the same 2nd
half of each dataset but using GARCH coefficients estimated from the whole
of the dataset, i.e., the coefficients from Table 3.

benchmark ŝ2
t m2ŝ

2
t

Yen/Dollar–N(0, 1) 0.0697 0.0650 0.0545
Yen/Dollar–t distr. ” 0.0554 0.0540
Yen/Dollar–f(·; a0, 1) ” 0.0574 0.0539

S&P500–N(0, 1) 0.3343 0.1135 0.0942
S&P500–t distr. ” 0.0948 0.0920
S&P500–f(·; a0, 1) ” 0.0978 0.0919

IBM–N(0, 1) 0.1692 0.1815 0.1472
IBM–t distr. ” 0.1545 0.1453
IBM–f(·; a0, 1) ” 0.1577 0.1453

Table 4b. Entries represent the Mean Absolute Deviation (multiplied by
1,000) for the three predictors of squared returns. The predictions were car-
ried out over the 2nd half of each dataset, with GARCH coefficients estimated
from the whole of the dataset.
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By contrast to the conservative entries of Table 4a, the entries of Table 4b
are over-optimistic as the GARCH coefficients used have unrealistic accuracy;
therefore, the truth should lie somewhere in-between Table 4a and Table 4b.
Nevertheless, the two tables are similar enough to suggest that the effect of
the accuracy of the GARCH coefficients is not so prominent, and Table 4b
leads to the same conclusions as those gathered from Table 4a.

7 CONCLUSIONS

A new heavy-tailed density for ARCH/GARCH residuals was proposed in
eq. (9), motivated by the development of an implicit ARCH model. The
properties of the density f(·; a0, 1) were studied, and the procedure for ob-
taining numerical MLEs was outlined.

The challenging problem of prediction of squared returns was put in a
rigorous framework, and the optimal predictor (17) was formulated. The
usefulness of the optimal predictor was demonstrated on three real datasets.

By contrast to what is widely believed, it was found that ARCH/GARCH
models do have predictive validity for the squared returns; this is particularly
true when a heavy-tailed distribution is assumed for the GARCH residuals
with the f(·; a0, 1) distribution appearing to have a slight edge over the pop-
ular t distribution. Notably, to appreciate and take advantage of this pre-
dictive ability one must: (a) use a more meaningful measure of prediction
performance such as L1 loss, and (b) use the optimal predictor which is given
by (17) in the L1 case.
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