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Abstract

We compare multinomial logit and mixed logit models for data on California households' revealed and
stated preferences for automobiles. The stated preference (SP) data elicited households' preferences among
gasoline, electric, methanol, and compressed natural gas vehicles with various attributes. The mixed logit
models provide improved ®ts over logit that are highly signi®cant, and show large heterogeneity in re-
spondents' preferences for alternative-fuel vehicles. The e�ects of including this heterogeneity are dem-
onstrated in forecasting exercises. The alternative-fuel vehicle models presented here also highlight the
advantages of merging SP and revealed preference (RP) data. RP data appear to be critical for obtaining
realistic body-type choice and scaling information, but they are plagued by multicollinearity and di�culties
with measuring vehicle attributes. SP data are critical for obtaining information about attributes not
available in the marketplace, but pure SP models with these data give implausible forecasts. Ó 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

Forecasting the demand for new products or transportation innovations requires information
about consumersÕ preferences for products or services that do not exist in the current marketplace.
Researchers have overcome this problem by designing stated preference (SP) experiments to
measure consumersÕ preferences over hypothetical alternatives including new products. SP data
have been subject to considerable criticism by economists and other researchers because of a belief
that consumers react di�erently to hypothetical experiments than they would facing the same
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alternatives in a real market. One problem is that some attributes for ``totally new products''
might be novel enough that respondents do not completely understand them. This would intro-
duce components related to both uncertainty and perceived risk that would a�ect the outcome of
choice modeling e�orts. Another problem that could be particularly severe arises when new
products incorporate ``politically correct'' public good attributes such as ``zero-pollution'' electric
vehicles. Respondents may misrepresent their choices in SP experiments to strategically signal
their preference for provision of the public good (less pollution), although in reality they would
not spend extra money on purchasing an electric vehicle (possibly because of the obvious free-
rider problem).

However, many di�culties also arise in using revealed preference (RP) data to develop fore-
casting models. There are frequently high collinearity and limited variation among attributes in
real markets. For the vehicle choices modeled in this paper there are additional problems with
de®ning choice sets and the need to link physical attributes from external databases. The resulting
data can then only approximate the actual choice situations faced by vehicle purchasers. Since the
number of vehicle make/model/year combinations in the US vehicle market is huge, some sam-
pling of alternatives is necessary to use discrete choice models. This sampling to produce choice
sets introduces additional noise into the resulting models, and may bias estimates in more ¯exible
alternatives to the standard multinomial logit model (MNL). Under these di�cult conditions RP
model estimates are often unstable, and can have theoretically incorrect signs.

One potential solution to these problems is to develop and estimate joint models to exploit the
advantages of each type of data while mitigating the weaknesses. This paper describes models
combining SP and RP vehicle choice data where the SP alternatives include electric, compressed
natural gas (CNG), and methanol fueled vehicles that are not yet widely available in the mar-
ketplace. These data were collected as part of a larger project to build a microsimulation model of
the California vehicle market. The SP data come from the ®rst wave of a panel study initiated in
mid-1993. The second wave occurred approximately 15 months later, at which time households
were re-interviewed, allowing the collection of RP data on vehicle transaction behavior. The data
set is discussed in more detail in Section 2.

The Wave 1 SP data used in this paper have already been used to build a large multinomial logit
(MNL) model of alternative-fuel vehicle choice (Brownstone et al., 1996) which is incorporated in
a microsimulation model of the vehicle market for the greater Los Angeles area (roughly 10% of
the US vehicle market). For a discussion of this microsimulation forecasting system, see Bunch et
al. (1996). More recently, Brownstone and Train (1998) used these SP data to compare MNL and
``mixed logit'' models where random error components are added to the MNL speci®cation. They
found strong evidence that the MNL speci®cation is not appropriate for these data, and they
demonstrated that there are large di�erences between forecasts based on the di�erent speci®ca-
tions.

This paper extends the analysis in Brownstone and Train (1998) to jointly model SP and RP
vehicle choices. Previous methodological work on combining SP and RP data have focused on the
problems caused by scaling di�erences and the correlation in unobserved attributes across re-
peated choices by the same decision makers. We develop simple mixed logit speci®cations that
easily incorporate unobserved correlation and scaling di�erences, although there is no evidence of
unobserved correlation between SP and RP choices in our models. These mixed logit speci®ca-
tions are statistically superior to the ``standard'' joint scaled logit models previously used for these
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applications. The mixed logit models also yield very di�erent forecasts for a policy experiment
designed to simulate the early stages of alternative-fuel vehicle availability. These policy simu-
lations show even larger di�erences between the pure SP and joint RP/SP models, which highlights
the importance of jointly modeling SP and RP choices to exploit the strengths and avoid the
weaknesses of each type of data.

Section 2 reviews the data sources. Section 3 reviews the general mixed logit model and joint
RP/SP estimation. Section 4 gives estimation results for SP, RP and joint mixed logit models for
vehicle choice. We then give results of some forecasting experiments in Section 5 that highlight the
di�erent substitution patterns between the MNL and mixed logit speci®cations.

2. Data

The SP and RP choice data used in the next sections were collected as part of a multi-wave
panel survey carried out in California, starting in June 1993. The initial household sample was
identi®ed using pure random digit dialing and was geographically strati®ed into 79 areas covering
most of urbanized California. An initial computer-aided telephone interview (CATI) was com-
pleted for each of 7387 households. This initial CATI collected information on: household
structure, vehicle inventory, housing characteristics, basic employment, and commuting for all
adults. The survey also asked for information about the householdÕs most-likely next vehicle
transaction. If the next transaction were likely to involve a purchase, the survey asked for the
body type, size, and approximate purchase price (including whether new or used). These data were
used to produce a more detailed, customized mail-out questionnaire that was then sent by express
delivery, along with an incentive (®ve dollars).

The customized mail-out questionnaire asked more detailed questions about each household
memberÕs commuting and vehicle usage, including information about sharing vehicles in multiple-
vehicle and multiple-driver households. The information on the next intended vehicle transaction
was used to create two customized SP vehicle-choice questions (discussed below) that contained
hypothetical alternative-fuel and gasoline vehicles. After the households received the mail-out
questionnaires, they were again contacted for a ®nal CATI. This interview collected all the re-
sponses to the mail-out questions. Additional questions about the householdÕs attitudes towards
alternative-fuel vehicles were also included at the end of this interview. Taken together, questions
from both CATIs comprise the Wave 1 survey of the panel study.

The 4747 households that successfully completed the mail-out portion of the Wave 1 survey in
1993 represent a 66% response rate among the households that completed the initial CATI. A
comparison with Census data reveals that the sample is slightly biased toward home-owning
larger households with higher incomes. Eighty percent of the households in the sample had exactly
one driver per vehicle, showing that, in California, the number of drivers is the most important
determinant of the vehicle ownership level. For two-vehicle households, a little over one-third of
the vehicles are driven 10 000 miles per year or less, a third are driven 10 000±15 000 miles per year,
and almost a third are driven more than 15 000 miles per year.

Models estimated in this paper use data from the Wave 1 SP vehicle-choice experiment, which
we now describe. Each vehicle-choice question used the format given in Fig. 1. It is important to
note that Fig. 1 gives a speci®c example that is only one of many possibilities: experimental design
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Fig. 1. SP Vehicle choice survey question.
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methods combined with household-speci®c customization ensured that, quite literally, no two
vehicle choice questions in the survey were alike. Given the potential complexity of the choice task
(and the length of the overall survey), each household was only asked to complete two questions
of the type shown in Fig. 1.

The purpose of the experiment was to estimate preferences for vehicle attributes related to four
possible fuel types: gasoline, compressed natural gas (CNG), methanol, and electric (EV). In the
Fig. 1 format there are three vehicle columns available, each corresponding to a di�erent fuel type.
In our experiment three of the four fuel types appear in each SP question, giving six possible fuel-
type format combinations (e.g., in Fig. 1 the combination is electric, CNG, and methanol). Each
household was assigned two of the possible six combinations at random (ordering was also
randomized). In addition, as part of the design process (described below) each column was as-
signed two possible body types, giving a total of six vehicle types (de®ned by the combination of
fuel and body type).

Producing vehicle ``pro®les'' requires assigning attribute descriptions to all the appropriate cells
in the Fig. 1 format. However, note that attributes and their levels are clearly a function of fuel
type, due to expected di�erences in technologies. Attributes may exist for some vehicles and not
for others. For example, all electric vehicles were assumed to have home recharging whereas all
gasoline vehicles were assumed to refuel exclusively at gas stations; hence, electric vehicles require
home refueling times and costs, but these attributes do not exist for gasoline vehicles. In addition,
attribute ranges might be expected to di�er by fuel type. For example, refueling/recharging ranges
are expected to be lower for electric vehicles than for gasoline vehicles.

To address these issues, we established ``design translator'' tables to de®ne candidate attribute
levels as a function of fuel type and also customization requirements (e.g., purchase price ranges,
body type requirements). (The size of these tables precludes including them here.) In general, we
used up to four attribute levels to cover the range of possibilities, allowing estimation of possible
non-linear e�ects for quantitative attributes. The vehicle pro®les for a speci®c question were
constructed by combining the appropriate design translators with a randomly chosen row from an
experimental design matrix. Respondents were speci®cally instructed to treat all non-listed at-
tributes (e.g., maintenance costs and safety) as identical for all vehicles in the choice set.

In this paper we use only one SP choice per household, corresponding to the ®rst SP question in
each survey. The primary reason for this was that resource constraints precluded cleaning and
coding the second SP choice question. However, if both SP choices were included in the data, the
issue of unobserved error correlation across repeated choices would become relevant. We note
that mixed logit speci®cations can easily accommodate repeated choices. See, e.g., Revelt and
Train (1998).

Approximately 15 months after the Wave 1 survey, a geographically strati®ed sample of the
approximately 7300 households who completed the ®rst telephone interview was used for a second
wave (``Wave 2'') of interviewing. After excluding motor homes, motorcycles, and heavy trucks,
874 out of the 2857 households surveyed for this reinterview reported at least one vehicle purchase
since the ®rst interview. An RP data set was constructed using these purchases, as we now
describe.

Households were asked for detailed information about each vehicle transaction that occurred
between the Wave 1 and Wave 2 interviews. In this paper we focus on the choice of vehicle
purchased to investigate aspects of using mixed logit models for SP/RP estimation. Models are
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developed using a classi®cation scheme similar to that described in Brownstone et al. (1996). For
each model year beginning usually in 1974, all vehicles are classi®ed according to 13 body type/
size categories (see Table 5 for de®nitions), and each of these categories are further subdivided
into a high and low purchase price group and ®nally subdivided into a domestic and import
group. We therefore have 689 categories approximating the universe of new and used vehicles
from which respondents made their RP choices. For each of these categories we have: new and
current used price, fuel economy, range, top speed, acceleration time (0±30 miles per hour),
number of models in the class, luggage volume, emissions index (proportion relative to new 1996
gasoline vehicles of same body/size class), and maintenance costs. Due to missing and erroneous
vehicle type data in our survey, we are able to match these attribute data for 607 of the 874 re-
spondents who reported a vehicle transaction between the survey waves.

In addition to the data described above, additional SP tasks were given to the 2857 Wave 2
respondents. These tasks have more attributes than the Wave 1 SP design analyzed in this paper,
and they have 17 vehicles per experiment instead of 6 in the Wave 1 design. Future work will add
these data to the models described in the following sections.

The data used in this paper represent an extension and improvement over the more preliminary
versions of the data used in Brownstone and Train (1998), which were limited models for the
Wave 1 SP. The improvements come from implementing editing and consistency checks across the
Wave 1 and Wave 2 data for, e.g., demographic variables, and the extensions are possible due to
the availability of RP choices from the Wave 2 survey.

3. Mixed logit models and RP/SP joint estimation

A person faces a choice among J alternatives, which will be modeled using a random utility
framework. For purposes of this paper we assume without loss of generality that the person's
utility from any alternative can be decomposed into a nonstochastic, linear-in-parameters part
that depends on observed data, a stochastic part that is perhaps correlated over alternatives and
heteroskedastic, and another stochastic part that is independently, identically distributed over
alternatives and people. In particular, the utility to person n from alternative i is denoted

Uin � b0xin � �gin � ein�;
where xin is a vector of observed variables relating to alternative i and person n; b is a vector of
structural parameters which characterizes choices by the overall population; gin is a random term
with zero mean whose distribution over people and alternatives depends in general on underlying
parameters and observed data relating to alternative i and person n; and ein is a random term with
zero mean that is iid over alternatives and does not depend on underlying parameters or data. For
any speci®c modeling context, the variance of ein may not be identi®ed separately from b, so it is
normalized to set the scale of utility.

Stacking the utilities, we have: U � b0X � �g� e� where V �e� � aI with known (i.e., normalized)
a and V(g) is general and can depend on underlying parameters and data. For standard logit, each
element of e is iid extreme value, and, more importantly, g is zero, such that the unobserved
portion of utility (i.e., the term in brackets) is independent over alternatives. Taken together, these
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assumptions give rise to the Independence from Irrelevant Alternatives (IIA) property and its
restrictive substitution patterns.

The Mixed Logit class of models assumes a general distribution for g and an iid extreme value
distribution for e. Denote the density of g by f(g|X) where X are the ®xed parameters of the
distribution. (The density f may also depend upon explanatory data for people and alternatives,
but in what follows this is suppressed for notational convenience.) For a given value of g, the
conditional choice probability is simply logit, since the remaining error term is iid extreme value

Li�g� � exp�b0xi � gi�=
X

j

exp�b0xj � gj�:

Since g is not given, the (unconditional) choice probability is this logit formula integrated over all
values of g weighted by the density of g

Pi �
Z

Li�g�f �gjX� dg:

Models of this form are called ``mixed logit'' because the choice probability is a mixture of logits
with f as the mixing distribution. The probabilities do not exhibit IIA, and di�erent substitution
patterns are attained by appropriate speci®cation of f.

The choice probability cannot be calculated exactly because the integral does not have a closed
form in general. The integral is approximated through simulation. For a given value of the pa-
rameters X, a value of g is drawn from its distribution. Using this draw, the logit formula Li�g� is
calculated. This process is repeated for many draws, and the average of the resulting Li�g�'s is
taken as the approximate choice probability

SPi � �1=R�
X

r�1;...;R

Li�gr�;

where R is the number of replications (i.e., draws of g), gr is the rth draw, and SPi is the simulated
probability that the person chooses alternative i. By construction, SPi is an unbiased estimate of Pi

for any R; its variance decreases as R increases. It is strictly positive for any R, so that ln�SPi� is
always de®ned, which is important when using SPi in a log-likelihood function (as below). It is
smooth (i.e., twice di�erentiable) in parameters and variables, which helps in the calculation of
elasticities and especially in the numerical search for the maximum of the likelihood function. The
simulated probabilities sum to one over alternatives, which is useful in forecasting.

The choice probabilities depend on parameters b and X, which are to be estimated. Using the
subscript n to index sampled individuals, and denoting the chosen alternative for each person by i,
the log-likelihood function

P
n ln�Pin� is approximated by the simulated log-likelihood functionP

n ln�SPin� and the estimated parameters are those that maximize the simulated log-likelihood
function. Lee (1992) derives the asymptotic distribution of the maximum simulated likelihood
estimator based on smooth probability simulators with the number of replications increasing with
sample size. Under regularity conditions, the estimator is consistent and asymptotically normal.
When the number of replications rises faster than the square root of the number of observations,
the estimator is asymptotically equivalent to the maximum likelihood estimator.

The gradient of the simulated log-likelihood function is simple to calculate, which is convenient
for implementing the search for the maximum:
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X

n

�1=SPni��1=R�
X
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#
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X

n

ln�SPni�=oX �
X

n

�1=SPni��1=R�
X

r

Lni�gr
n�
X

j

�dnj

"
ÿ Lnj�gr

n��ogr
n=oX�

#
;

where dnj � 1 for j � i and zero otherwise. The derivative ogr
n=oX depends on the speci®cation of g

and f. Also, if the same parameters enter b and X (as in the third model in Section 4), the gradient
is adjusted accordingly.

Analytic second derivatives can also be calculated. However, in contrast to the standard MNL
model with its globally concave log-likelihood function, the inclusion of the X structural pa-
rameters removes the guarantee of global concavity, and the Hessian matrix is not guaranteed to
be positive de®nite. This creates a more complicated situation for the iterative search, e.g., Revelt
and Train (1998) found that calculating the Hessian from formulas for the second derivatives
resulted in computationally slower estimation than using the BHHH or other approximate-
Hessian procedures. To address this problem, we implemented specialized estimation code using
the Bunch et al. (1993) optimization software. These methods are more robust, and generally
converge in many fewer iterations than the more standard numerical procedures (see Bunch,
1988). Although the number of iterations makes little practical di�erence when estimating MNL
models, this is not longer true when using computationally intensive simulation approaches for
calculating choice probabilities and gradients.

Di�erent types of mixed logit models have been used in empirical work; they di�er in the type of
structure that is placed on the model, or, more precisely, in the speci®cation of f. In Section 4, as
in Train (1995) and Ben-Akiva and Bolduc (1996), we specify an error-components structure:
Ui � b0xi � l0zi � ei where l is a random vector with zero mean that does not vary over alter-
natives and has density g(l|X) with parameters X; zi is a vector of observed data related to al-
ternative i; and ei is iid extreme value. This is a mixed logit with a particular structure for g,
namely, gi � l0zi. The terms in l0zi are interpreted as error components that induce heteroske-
dasticity and correlation over alternatives in the unobserved portion of utility:
E��l0zi � ei�0�l0zj � ej�� � z0iV �l�zj. Even if the elements of l are uncorrelated such that V(l) is
diagonal, the unobserved portion of utility is still correlated over alternatives.

In this speci®cation, the choice probabilities are simulated by drawing values of l from its
distribution and calculating gi � l0xi. Insofar as the number of error components (i.e., the di-
mension of l) is smaller than the number of alternatives (the dimension of g), placing an error-
components structure on a mixed logit reduces the dimension of integration and hence simulation
that is required for calculating the choice probabilities.

Di�erent patterns of correlation, and hence di�erent substitution patterns, are obtained
through appropriate speci®cation of zi and g. For example, an analog to nested logit is obtained
by specifying zi as a vector of dummy variables ± one for each nest taking the value of 1 if i is in
the nest and zero otherwise ± with V(l) being diagonal (thereby providing an independent error
component associated with each nest, such that there is correlation in unobserved utility within
each nest but not across nests). Restricting V �l� � rI is analogous to restricting the log-sum
coe�cients in a nested logit model to be the same for all nests. Importantly, McFadden and Train
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(1997) have shown that any random utility model can be approximated by a mixed logit with an
error-components structure and appropriate choice of the zi's and g. McFadden and Train (1997)
also gives Lagrange Multiplier tests for the presence of signi®cant random error components in
MNL models. Our experience with these tests for the speci®cations in Section 4 shows that they
are easy to calculate and appear to be quite powerful omnibus tests. However, they are not as
good for identifying which error components to include in a more general mixed logit speci®ca-
tion.

Most recent empirical work with mixed logits has been motivated by a random-parameters, or
random-coe�cients, speci®cation (Bhat, 1996a,b; Mehndiratti, 1996; Revelt and Train, 1998;
Train, 1998). The di�erence between a random-parameters and an error-components speci®cation
is entirely interpretation. In the random-parameters speci®cation, the utility from alternative i is
Ui � b0xi � ei where coe�cients b are random with mean b and deviations l. Then
Ui � b0xi � �l0xi � ei�, which is an error-components structure with z � x. Elements of x that do
not enter z can be considered variables whose coe�cients do not vary in the population. And
elements of z that do not enter x can be considered variables whose coe�cients vary in the
population but with zero means. In di�erent contexts one or the other interpretation will seem
more natural.

The random-coe�cients interpretation is useful when considering models of repeated choices
by the same decision maker. The most straightforward version is a model for which the same
draws of the random coe�cient vectors are used for all repeated choices. This speci®cation does
not lead to perfect error correlations because the independent extreme value term ei still enters the
utilities for each choice. The error correlation across repeated choices therefore increases as the
variance of the random coe�cients increases. A feasible (but computationally more demanding)
model that might be more appropriate for panel data would be to specify a ®rst-order autore-
gressive process for the random coe�cients. This more general model would permit the error
correlation to decrease over time.

In our survey data we have two SP observations and one RP observation for some households,
and the error correlation due to ``repeated choices'' and preference heterogeneity could be ad-
dressed as just described. However, an additional issue must be considered when jointly estimating
a model containing both RP and SP choices. Although the error generation process for a col-
lection of (repeated) SP choices in a controlled experiment might be expected to be the same, it is
likely to be di�erent from the process producing the RP choice data. In particular, the e�ect of
unobserved variables is likely to produce di�erent variances for the ein terms in the two data sets.
In this case the variance of one data set must still be normalized to unity, but the relative variance
(or ``scale'') for the remaining data set is identi®ed and can be estimated. By convention, the RP
data are assumed to re¯ect the ``correct'' scale associated with the ``real market''. An ``SP scale''
coe�cient is then de®ned as the multiplicative factor applied to all of the SP data to equalize the
variances of the stochastic portion of the utility functions. Because scale and variance have a
reciprocal relationship, values less than one imply that the SP stochastic variance is larger than the
RP stochastic variance component.

Various approaches to estimating the scale have been discussed in the literature. The ``low-
tech'' solution is to simply rescale the SP data so that the magnitude of key coe�cients is similar
before ®tting joint MNL models. With a bit more e�ort, the SP data could be iteratively rescaled
until the joint likelihood is maximized (see, e.g., Swait and Louviere, 1993). More recent work (see
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Ben-Akiva and Morikawa, 1997; Hensher and Bradley, 1993) estimates the scaling parameter
jointly with the model coe�cients. This may be done directly, or by using a speci®cation ``trick'' in
a nested MNL estimation routine. Our estimation code directly implements the case of multiple
data sets with di�erent scales so that all parameters are estimated simultaneously in the FIML
search. 1

Once scale di�erences are taken into account, the most ideal circumstances would yield a
speci®cation where the remaining structural parameters are the same for the two data sets. Un-
fortunately this is unlikely in a complex joint RP/SP estimation (see the discussion in Section 4),
and analysis will generally be required to identify which parameters can be ``pooled'' across the
two data sets, and which parameters must be estimated in a data-set-speci®c manner. We iden-
ti®ed our speci®cations in the next section using standard likelihood ratio tests against a model
with no pooled coe�cients.

4. Model speci®cations

This section gives estimates for various MNL and mixed logit speci®cations of RP, SP and joint
RP/SP models of vehicle choice. All of the speci®cations use subsets of the variables de®ned in
Table 1. One notable feature of our problem is that preferences for certain attributes are only
identi®ed by one of the two data sets. Speci®cally, preferences for Station Availability, Station
Wagon, EV, CNG, and Methanol are only identi®ed in the SP data; preferences for Import,
number of models, and Used/Vintage are only identi®ed in the RP data. The remaining attributes
(in various forms) appear in both data sets.

In addition to the models presented in this section, we examined a number of other speci®cations
to ®nd the most consistent framework for joint RP/SP modeling. One important issue was the level
of detail at which to de®ne vehicle body-types and classes. In the ®nal speci®cation we pool to-
gether certain combinations body-type-and-size classes (e.g., Van�Minivan + Standard Van,
SmallCar�Mini + Subcompact + Compact). Final variable de®nitions are re¯ected in Table 1.

4.1. Stated preference models

The Multinomial Logit SP model in the ®rst three columns of Table 2 was estimated using one
SP response from each household that completed the 1993 (Wave 1) mail-out survey for which
clean data were available, giving a total of 4656 responses. The starting point for this analysis was
a model in a previous paper by Brownstone and Train (1998). The ®nal speci®cation in this paper
requires a slightly di�erent set of body type de®nitions to provide a consistent basis for joint

1 For code that has been designed to estimate mixed logit models for a single data set, the scale for a second data set

can be estimated through a computational ``trick'' if the code allows parameter restrictions to be imposed. A set of

alternative-speci®c constants is added to each SP alternative, and the mean coe�cients of these constants are

constrained to equal zero while their standard deviations are constrained to be equal. Of course, this ``trick'' constrains

the variance of the SP extreme value errors to be larger than the RP alternatives. If the RP variance is larger, then

alternative-speci®c constants could be added to the RP alternatives instead of the SP alternatives. Our experience with

this ``trick'' shows that it is computationally much slower than customized maximum likelihood code.
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RP/SP modeling. The ``base'' vehicle class was ``midsize/large'' car, and gasoline was the ``base''
fuel type.

The MNL coe�cients for the generic attributes (price, operating cost, range, acceleration, and
top speed) are all signi®cant with the expected signs. Range enters in a quadratic speci®cation,
showing that respondents value an increase in range more highly when starting from a lower base.
The MNL fuel type coe�cients show that respondents prefer CNG and Methanol to gasoline (all
else equal), but only college-educated respondents prefer electric vehicles. However, respondents

Table 1

Variable de®nitions

Variable names De®nitions

Price/ln (income) Purchase price in thousands of dollars, divided by the natural log of household income in

thousands. Mean household income is $38 000. Range: 0.1±45, Mean: 4

Operating cost Fuel cost per mile of travel, in cents per mile. For electric vehicles, cost is for home

recharging. For other vehicles, cost is for station refueling. Range: 1±12, Mean: 5.3

Range Hundreds of miles that the vehicle can travel between refuelings/rechargings. Range:

0.5±5.7, Mean: 3

Range squared Range ´ Range

Acceleration Seconds required to reach 30 mph from stop. Range: 2±6.2, Mean: 3.9

Top speed Highest speed that the vehicle can attain, in hundreds of miles per hour (e.g., 80 mph is

entered as 0.80). Range: 0.55±1.55, Mean: 1.0

Luxury 1 if vehicle is a ``luxury'' model, zero otherwise

Import 1 if vehicle has an import nameplate, zero otherwise

Log (models) Natural logarithm of number of vehicles in class. Range 0±3.6, Mean 0.72

New 1 if vehicle is new; zero otherwise

Used 1 1 if vehicle is one year old, zero otherwise

Log (age) Natural logarithm of vehicle age for used vehicles

Pollution Tailpipe emissions as fraction of comparable 1995 new gas vehicle. Range: 0±6.1, Mean

1.5

Station availability Fraction of stations capable of refueling/recharging the vehicle. Range: 0.1±1.0, Mean:

0.85

Small car 1 for compact, subcompact, and mini cars, zero otherwise

Sports utility vehicle 1 for compact and full size sports utility vehicle, zero otherwise

Mini sports utility 1 for mini sports utility vehicle, zero otherwise

Sports car 1 for sports car, zero otherwise

Sports car ´ HHG3 1 for sports car if household size is greater than or equal three, zero otherwise (23% of

sample have household size greater than or equal to 3)

Station wagon 1 for station wagon, zero otherwise

Truck 1 for compact or standard pickup trucks, zero otherwise

Van 1 for mini or standard van, zero otherwise

Minivan ´ HHG3 1 for minivan if household size is greater than or equal three, zero otherwise

Constant for EV 1 for electric vehicle, zero otherwise

College ´ EV 1 if respondent had some college education and vehicle is electric; zero otherwise. 41% of

sample have some college education

Electric truck 1 if electric powered truck, zero otherwise

Electric sports car 1 if electric powered sports car, zero otherwise

Constant for CNG 1 for compressed natural gas vehicle, zero otherwise

Constant for methanol 1 for methanol vehicle, zero otherwise
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did not like electric pickup trucks or sports cars. It is interesting to note that vehicle manufac-
turers are currently trying to sell these electric vehicle types.

The last three columns of Table 2 give the estimates for the best ®tting SP mixed logit speci-
®cation. The normally distributed random coe�cients were initially detected using the Lagrange
multiplier test from McFadden and Train (1997). This test indicated that there were signi®cant
random components for the fuel types, price, operating cost, and a few body types. After ®tting
the indicated mixed logit model, we only found signi®cant error components for the operating
cost, gasoline, EV, CNG, and Methanol variables.

To be precise, the stochastic portion of a householdÕs utility for alternative i is de®ned as
�Pk�1ÿ5 rk�fkzki�� � ei where fk is iid standard normal, zki are the ®ve variables described above,
and ei is iid extreme value. The parameters rk for k� 1±5 are estimated (see the rows beginning
with ``Std. Dev.'' at the bottom of Table 2); each denotes the standard deviation of the normal
deviate that generates that error component. In simulating the choice probability for a respon-

Table 2

Stated preference models

Variable Multimomial logit log

likelihood�)7343.28

Normalized

coe�cients

Mixed logit log

likelihood�)7302.24

Coe�-

cient

Std. error t-stat MNL ML Coe�-

cient

Std. error t-stat

Price/ln(income) )0.184 0.027 )6.9 )3.65 )3.65 )0.503 0.120 )4.2

Operating cost )0.076 0.007 )10.4 )1.51 )1.71 )0.236 0.052 )4.5

Range 0.493 0.110 4.5 9.80 12.89 1.779 0.500 3.6

Range squared )0.034 0.025 )1.4 )0.67 )1.29 )0.178 0.079 )2.2

Acceleration )0.064 0.011 )5.8 )1.27 )1.10 )0.151 0.041 )3.7

Top speed 0.262 0.080 3.3 5.19 4.58 0.632 0.244 2.6

Pollution )0.302 0.092 )3.3 )5.99 )4.99 )0.689 0.254 )2.7

Station availability 0.309 0.084 3.7 6.13 6.63 0.914 0.298 3.1

Small car )0.084 0.044 )1.9 )1.67 )0.48 )0.066 0.073 )0.9

Sports utility vehicle 0.874 0.146 6.0 17.36 6.84 0.944 0.152 6.2

Mini sports utility )0.037 0.353 )0.1 )0.73 2.66 0.367 0.417 0.9

Sports car 0.925 0.185 5.0 18.36 7.89 1.088 0.205 5.3

Sports car ´ HHG3 )0.845 0.378 )2.2 )16.77 )7.77 )1.072 0.389 )2.8

Station wagon )1.430 0.066 )21.8 )28.40 )11.07 )1.527 0.068 )22.3

Truck )0.999 0.061 )16.4 )19.85 )8.12 )1.120 0.068 )16.5

Van )1.150 0.070 )16.5 )22.85 )8.76 )1.209 0.076 )15.9

Minivan ´ HHG3 0.994 0.107 9.3 19.74 8.57 1.183 0.120 9.9

Constant for EV )0.007 0.116 )0.1 )0.14 )10.01 )1.382 0.660 )2.1

College ´ EV 0.272 0.083 3.3 5.41 6.65 0.917 0.350 2.6

Electric truck )0.259 0.128 )2.0 )5.15 )2.18 )0.300 0.139 )2.2

Electric sports car )0.461 0.234 )2.0 )9.15 )2.97 )0.409 0.383 )1.1

Constant for CNG 0.237 0.079 3.0 4.72 3.06 0.422 0.260 1.6

Constant for methanol 0.412 0.071 5.8 8.19 8.53 1.177 0.319 3.7

Std. dev. Gasoline 2.156 0.729 3.0

Std. dev. EV 5.157 1.294 4.0

Std. dev. CNG 3.663 0.982 3.7

Std. dev. methanol 1.333 0.918 1.5

Std. dev. fuelcost 0.579 0.145 4.0
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dent, ®ve numbers are drawn from a random-number generator for the standard normal distri-
bution; the ®ve ``variables'' f1z1i ÿ f5z5i are created; and the conditional probability is evaluated
with coe�cients rk k �1±5 for the ®ve ``variables''. This process is repeated for numerous draws
and the conditional probabilities are averaged to obtain the simulated probability. We used 1000
draws to estimate the mixed logit models in this paper. Experimentation with 250 and 500 draw
showed that more draws were needed to obtain numerically reliable estimates and likelihood
values with these data.

In previous unpublished work with these SP data, nested multinomial logit models were esti-
mated in which signi®cant nesting for EV, CNG, and Methanol fuel-types (versus gasoline) was
observed. This illustrates how mixed logit models with variance components may model substi-
tution patterns similar to those from nested logit models, as discussed in Section 3. Brownstone
and Train (1998) used a di�erent speci®cation, with components for Size, Luggage Space, Non-
EV and Non-CNG. The latter two components carry similar information to those captured by
EV, CNG and Methanol, but the goodness of ®t using the current speci®cation is much better.

In addition to the more ``traditional'' fuel-type error components, the mixed logit speci®cation
can also capture the importance of preference heterogeneity on operating cost sensitivity: this
would not be possible with standard nested logit models. Unfortunately, the relatively large error
component for operating cost implies that the model will generate an (implausible) positive price
e�ect for one third of the respondents. This problem might be circumvented by specifying a log-
normal distribution for this random component, but such a restriction might also reduce the
goodness of ®t. Better approaches to dealing with these sorts of variance-component speci®cation
issues will no doubt be developed in the near future, as researchers start to gain experience using
mixed logit models.

The mixed logit coe�cient estimates in Table 2 show that the error components are both
statistically and practically important. The standard deviations for the fuel type coe�cients are
quite large and indicate a wide range of negative and positive preferences for these alternative
fuels. This large heterogeneity in taste for alternative-fuel vehicles suggests that models with more
interactions between demographics and the alternative-fuel dummy variables might perform
better. However, our preliminary investigations on those demographic variables that can be
readily forecasted (e.g., income, age, household size) did not ®nd additional signi®cant interaction
terms, which suggests that a substantial portion of the observed heterogeneity is due to other
factors, such as behavioral di�erences in anticipated vehicle usage, respondentsÕ uncertainty and
di�erent information about alternative-fuel vehicles.

A useful feature of the mixed logit speci®cation is that MNL is a nested special case, allowing
formal comparison of the models on the basis of likelihood ratio statistics. The likelihood ratio
statistic for mixed logit versus MNL is 82.08 with ®ve degrees of freedom, which is highly sig-
ni®cant. Since the stochastic portion of utility has di�erent variances in the MNL and mixed logit
speci®cations, the coe�cients must be normalized before they can be meaningfully compared. The
``Normalized Coe�cients'' column normalizes the coe�cients by dividing by the price coe�cient
divided by the natural log of median income in thousands (which is approximately $38 000 in this
sample). These normalized coe�cients can be conveniently interpreted as the average amount that
a respondent with median income would be willing to pay for an additional unit of a particular
attribute. For example, the MNL estimates in Table 2 imply that the sample households with
$38 000 incomes are willing to pay $600 to reduce tailpipe pollution by 10 percent, whereas the
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comparable ®gure for mixed logit is $500. Note that some of the MNL body type coe�cients are
implausibly large, but mixed logit estimates give lower and more plausible body-type tradeo�s.
The mixed logit estimates also show an average negative view of electric vehicles, which di�ers
from the MNL results.

4.2. Revealed preference models

Table 3 gives estimates for the best MNL model using actual vehicle purchases reported by
households that participated in the Wave 2 survey, i.e., observed vehicle purchases occurring
between the ®rst and second panel waves. For those households that made multiple purchases
during this period, only the ®rst purchase was used for modeling. Although the Lagrange mul-
tiplier test found signi®cant error components for price and operating cost, we were unable to
estimate any mixed logit models with log likelihood values signi®cantly better than the MNL
model in Table 3. It is likely that a larger sample size would reveal signi®cant error components,
but currently we are limited to the 607 observations with complete data.

The number of vehicle types potentially available for purchase in real markets is very large,
containing thousands of make and models and many vintages. Even using a vehicle classi®cation
scheme produces a very large ``universal choice set''. In this application, we have adopted a 689-
level classi®cation scheme according to vintage, body type, size, import/domestic, and price level.

Table 3

Revealed preference models

Multinomial logit Log likelihood�)1788.46 (607 observations)

Variable Coe�cient Std. error t-stat Normalized coe�cients

Price/ln(income) )0.337 0.064 )5.3 )3.90

Operating cost )0.193 0.068 )2.8 )2.24

Range 2.482 1.605 1.5 28.76

Range squared )0.254 0.180 )1.4 )2.94

Acceleration )0.329 0.381 )0.9 )3.82

Top speed 1.249 2.629 0.5 14.47

Luxury )0.280 0.207 )1.4 )3.24

Import )0.261 0.129 )2.0 )3.02

Log (models) 0.694 0.081 8.6 8.04

New 1.073 0.251 4.3 12.43

Used 1 0.466 0.250 1.9 5.40

Log (age) )0.261 0.167 )1.6 )3.02

Pollution 0.399 0.099 4.1 4.63

Small Car )0.454 0.152 )3.0 )5.26

Sports utility vehicle 0.390 0.390 1.0 4.52

Mini sports utility )1.184 0.792 )1.5 )13.71

Sports car )0.733 0.271 )2.7 )8.49

Sports car ´ HHG3 0.845 0.306 2.8 9.78

Truck )0.392 0.406 )1.0 )4.55

Van )0.358 0.435 )0.8 )4.14

Minivan ´ HHG3 0.883 0.270 3.3 10.24
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The speci®c vehicle purchased by each household was matched to this classi®cation scheme to
identify a chosen alternative. Therefore each respondentÕs RP choice is modeled as a discrete
choice from among 689 alternatives. Unfortunately, estimating models with choice sets of this
size creates a host of computational di�culties. One solution, which works well for the MNL
model, is to randomly sample from the full choice set and treat the respondentÕs choice as
having come from the reduced choice set. The IIA property of the MNL model allows con-
sistent estimation using such a sampling approach. However, much less is understood about
the e�ects of a sampling approach for non-IIA models, and this is an area requiring further
study.

Despite the theoretical consistency of MNL estimates, we found serious problems with at-
tempts to use simple random samples for this RP application. The problem is that 46% of the 607
respondents chose new vehicles, but new vehicles comprise only 52 of the 689 alternatives. It is
therefore likely that any sample of size 30 would only contain one or two new vehicles, and this
leads to implausibly high estimates for the new vehicle dummy variable. Our solution is to use a
type of ``importance sampling.'' We strati®ed the sample according to vintage so that each
sampled choice set contains 7 new vehicles, 7 1±2 yr old vehicles, 7 3±10 yr old vehicles, and 7
more than 10-yr old vehicles. The resulting 28 alternative choice sets yields reasonable estimates
for the vintage coe�cients. For example, the ``Normalized Coe�cients'' Table 3 show that a new
car for households with $38 000 annual income is equivalent to an identical one-year old car with
a purchase price reduced by $7000.

The MNL coe�cient estimates in Table 3 give generally reasonable signs for the generic at-
tributes, but only the price and operating cost coe�cients are estimated with any accuracy due to
high multicollinearity between range, top speed, and acceleration. The coe�cients are larger in
magnitude than the MNL estimates for the SP data given in Table 2. This indicates that the
variance of the stochastic portion of utility is lower for the RP data. The normalized coe�cients
show that the di�erent body types have lower values than the SP MNL model.

A comparison of the SP MNL coe�cients in Table 2 with the corresponding RP MNL coef-
®cients in Table 2 demonstrates some of the issues associated with attempts to combine discrete
choice data from two data sources. First, we would expect there to be major agreement between
the two models with respect to the signs of the coe�cient estimates. There is indeed substantial
agreement; however, there are some di�erences. The sign for SportsCar is negative in the RP
model, whereas it is positive in the SP model. (And, both are statistically signi®cant.) In addition,
the interaction e�ects between SportsCar and Household-size-greater-than-three also have dif-
ferent signs. The SP model gives much more positive weight to sport utility vehicles. Finally, the
sign for emissions is di�erent between the RP and SP models.

The coe�cients related to sports car are readily interpreted. Sports cars have a very small
percentage of the actual vehicle market, even taking into account the objectively measured
physical attributes and prices for these vehicles. This yields a negative coe�cient for this body-
type in the RP model. And, because the models in this paper are for vehicle purchases only, it
would seem more likely for a larger household to purchase a sports car, ceteris paribus, since they
are more likely to hold multiple vehicles.

With respect to the SP coe�cients, it is possible to tell an ``SP bias story'' in which respondents
are ``tempted'' to choose a sports car while in their ``SP fantasy land'', when in fact they might not
do so in reality. Further, this e�ect is evidently mitigated for those respondents in larger house-
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holds (a ``guilt'' e�ect?). This is a plausible interpretation due to the customization scheme de-
scribed in Section 2, because only six vehicles are generated for each choice set. A relatively small
number of households indicated in the telephone interview that their next purchase would be a
sports car. Those households received choice sets containing sports cars. However, many other
households also received choice sets that included sports cars, giving them a chance to consider
and switch to such a vehicle in a manner that would perhaps be inconsistent with a more realistic
choice process. We would expect this e�ect to potentially create bias for other body types as well,
but not to the degree that might be expected for a specialized vehicle like a sports car. This
discussion highlights the fact that, later on, we might expect to use body-type estimates derived
from the RP choices to correct for these e�ects.

The sign di�erence for emissions is more problematic. The negative sign of the SP estimate is
entirely expected, given the nature of the experiment. Even if one chooses to discount the result as
due to some sort of public-good bias e�ect, the interpretation of the RP coe�cient is equally
problematic. Do people actually prefer dirtier vehicles to cleaner ones, all else equal? The high
degree of collinearity between vehicle age and many of the other attributes (e.g., price, perfor-
mance, size, emissions) creates a host of di�culties when estimating RP models. In particular, the
emissions variable is almost completely correlated with vehicle age in the RP data, primarily due
to the historical trend in government clean-air regulations.

For those remaining coe�cients that are consistent in sign, it would be fortuitous if a very
simple scaling e�ect would explain the di�erences between the RP and SP coe�cients, so that the
attribute trade-o�s from the two models could be regarded as essentially the same (within the
bounds of statistical error). For example, many of the attributes of major interest (price/log(in-
come), fuel cost, range, acceleration, top speed) have smaller coe�cients in the SP model than in
the RP model. If this pattern were consistent throughout, it would correspond to greater error
variability in the SP model. Unfortunately, it is clear that the coe�cient di�erences are unlikely to
be completely explained by a simple scaling e�ect, as will be addressed in more detail in the next
section.

A ®nal issue is the possibility of di�erences between the RP and SP models due to heterogeneity
of the samples. The RP model is estimated using actual purchases from 607 households, whereas
the SP model is based on hypothetical choices from a much larger sample. As part of our testing
procedures, we divided the SP sample into two segments: One segment contained those house-
holds who made RP purchases, and the second contained those who did not. Based on likelihood
ratio tests, there were no statistical di�erences between model estimates obtained from the two
samples. In subsequent analyses we determined that it was ine�cient to throw away a huge
portion of our SP sample, especially for purposes of mixed logit model estimation.

4.3. Joint RP/SP models

The ®rst block of columns in Table 4 contain estimates from the ``best'' joint RP/SP scaled
MNL model. The coe�cient estimates fall into one of three categories: (1) coe�cients that are
uniquely determined by either the RP or the SP data, (2) coe�cients that are the same in the two
data sets (except for a scale e�ect), (3) coe�cients that di�erent in the two data sets.

Even though joint estimation of RP/SP models is becoming increasingly common, there is still a
limited amount of experience on the issue of which coe�cients would be expected to ``pool'' and
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which ones would not. However, it is generally accepted that coe�cients acting as ``alternative
speci®c constants'' (``ASCÕs'') in the MNL model might be much less likely to ``pool'' than co-
e�cients associated ``generic attributes''. An ASC represents the mean of a collection of random
e�ects due to, e.g., unobserved variables, once e�ects associated with all the other variables have
been taken into account. The body-type coe�cients in our vehicle choice models would be ex-
pected to behave in this fashion, and the di�erences in the data generation processes producing the
SP and RP choices in our survey could easily produce di�erent coe�cient values for these vari-
ables. Indeed we found that it was necessary to estimate data-set-speci®c coe�cients for all the
body-type variables in our models.

It would be ideal if all generic attribute coe�cients could be estimated ``in common'' across
both data sets (controlling for scale). We have already noted that the emissions coe�cients for the
RP and SP models had opposite signs. In our joint RP/SP model we found that we could pool all
the remaining generic attributes. This was possible in part because the statistical signi®cance for
some attributes was relatively weak in the RP data. However, this serves to illustrate the manner
in which SP and RP data can complement one another. Designed SP experiments have more
statistical power for estimating trade-o�s among generic attributes than do RP data with high
levels of multicollinearity.

The middle block of columns in Table 4 gives the mixed logit model estimates with the best ®t
for the joint data. We use the same error components as in the SP mixed logit model in Table 2.
Some experimentation with adding other error components to the model did not yield any sig-
ni®cant improvement in the log likelihood. Similar to the SP case, the addition of the ®ve error
components given at the bottom of Table 4 signi®cantly improves the log likelihood of the re-
sulting model. The likelihood ratio statistic is 64.38. Furthermore, the presence of the EV, CNG,
and Methanol error components (which are unique to the SP data) has a noticeable e�ect on the
SP scale factor as compared to the corresponding scale factor from the joint MNL model. The
MNL scale factor is smaller than one, indicating that the stochastic error term for the SP data set
has a larger variance than the RP data set. However, the scale in the joint MNL speci®cation is
forced to capture all sources of random error, including preference heterogeneity. However, in the
mixed logit model SP scale is larger than one (variance is less than one) once preference heter-
ogeneity has been captured by the fuel-type error components.

One potential problem with these mixed logit estimates is that they are using the sampled RP
choice sets described in Section 4.2. While sampling yields consistent estimates for the MNL
model, the e�ect for non-IIA models such as mixed logit is unclear, as previously noted. We
performed experiments to evaluate the e�ect of increasing the size of the sampled choice sets, and
found no e�ects that would suggest systematic bias in the coe�cient estimates; however, this is an
issue that deserves further study.

Both the MNL and mixed logit models in Table 4 are estimated assuming that the unobserved
error terms are independent across RP and SP choices made by the same households. We tried
estimating some joint mixed logit models using the same random error components for both
choices in the probability simulation calculations. This induces some correlation between choices
for the same household, but it yields identical results to those in Table 4. It is likely that there
would be more di�erences between these speci®cations in situations with many more repetitions
per decision maker such as is commonly found in repeated SP tasks. Ben-Akiva and Morikawa
(1997), and Morikawa (1994) specify models with state dependence (between the SP and RP
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choices) and serial correlation in the stochastic terms. Mixed logit versions of their models would
be easy to specify and estimate, but they are not needed for our speci®cations.

The ®nal set of columns in Table 4 give the ``Normalized Coe�cients'' for the MNL and mixed
logit speci®cations. We only give these normalized coe�cients for those coe�cients used in the
forecasting experiments in the next section. Since the RP model is expected to give more accurate
estimates of the body-type coe�cients, we use the ``RP-Speci®c'' coe�cients for these variables.
However, we use the ``SP-Speci®c'' coe�cient for emissions because of the problems with the RP
model discussed in Section 4.2. Comparisons between these normalized coe�cients show that the
biggest di�erences between the joint scaled logit and mixed logit models are for the ``SP-Unique''
coe�cients. This is not surprising since three of the error components only a�ect the SP data, and
the di�erences are similar to those found just using the SP data in Section 4.1. However, there are
substantial di�erences between the SP mixed logit model in Table 2 and the joint RP/SP mixed
logit model we use for forecasting in the next section. These di�erences are primarily due to the
use of RP body-type coe�cients in the forecasting model, which highlights the importance of joint
RP/SP modeling to capture the strengths and avoid the weaknesses of each type of data.

5. Scenario forecasts

Although there are some di�erences in the normalized coe�cients between the MNL and mixed
logit models described in Sections 4.1 and 4.3, the main di�erences between these models are due
to the di�erent substitution patterns caused by the di�erent error speci®cations. The easiest way to
see these di�erences is to compare forecasts for new alternatives for the various models. This
sections presents the results of some forecasting experiments using a more realistic description of
available vehicles than in Brownstone and Train (1998). The full set of vehicles we consider is
given in Table 5, and is taken from a comprehensive set of vehicle technology forecasts prepared
by the California Energy Commission as an input to the microsimulation model described in
Bunch et al. (1996). We chose the year 1998 since that was originally the year that California
would begin to mandate the sale of a substantial number of alternative-fuel vehicles. The oper-
ating fuel costs are derived assuming that gasoline costs $1.20/gallon and electricity costs 6 cents/
KWH, and all prices are in 1995 dollars. The ``MPG'' column in Table 5 gives mileage in gasoline
equivalents for CNG and methanol. The scenario presented in Table 5 is still unrealistic since it
excludes used vehicles. The forecasts will therefore overstate the survey respondents actual de-
mand for alternative-fuel vehicles.

The vehicle classes described in Table 5 present a very optimistic view of electric vehicle
technology since they exclude battery replacement costs. Some estimates of these costs indicate
that they might exceed the fuel costs (listed in the ``cents/mile'' column) if averaged over 10 000
annual miles per year. Measuring acceleration as time to reach 30 miles per hour also paints a rosy
picture of electric vehicles, since their acceleration capabilities dramatically reduce as speed in-
creases. Of course, this bias towards electric vehicles should not a�ect the comparison between the
di�erent modelsÕ forecasts since they are all based on the same data given in Table 5.

Table 6 gives the results of some forecasting experiments for the SP MNL and mixed logit
models in Table 2. Table 7 gives the same forecasts for the joint RP/SP MNL and mixed logit
models in Table 4. Note that these are unweighted forecasts over the 4656 respondents with
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complete SP data, so they do not represent overall population or vehicle market forecasts. 2 The
``Gas'' columns of Table 6 give the market share forecasts for a scenario only including the
gasoline vehicles in Table 5. The ``Non-EV'' columns show the forecasts when the non-electric

Table 6

SP model scenario forecast market shares (%)

Alt. No. Body type Fuel SP MNL SP mixed logit

Gas Non-EV Full Gas Non-EV Full

1 Mini Electric 2.28 7.38

2 Mini Gasoline 4.35 3.77 3.48 4.10 2.79 2.24

3 Sub compact Electric 2.10 5.53

4 Sub compact Gasoline 7.15 6.20 5.72 16.81 11.45 9.03

5 Sub compact Gasoline 2.29 1.98 1.83 0.68 0.46 0.38

6 Compact Gasoline 7.45 6.46 5.96 16.61 11.31 8.96

7 Compact Gasoline 1.96 1.69 1.56 0.43 0.29 0.25

8 Compact cng 2.35 2.17 9.66 7.75

9 Midsize Gasoline 5.51 4.78 4.41 5.51 3.77 3.16

10 Midsize Methanol 4.76 4.39 11.61 8.70

11 Midsize Gasoline 2.12 1.84 1.70 0.45 0.31 0.27

12 Midsize Gasoline 1.93 1.68 1.55 0.35 0.24 0.20

13 Midsize Methanol 1.86 1.72 0.88 0.69

14 Large cng 1.86 1.72 3.78 3.20

15 Large Gasoline 5.01 4.34 4.01 3.81 2.61 2.19

16 Large Gasoline 1.21 1.05 0.97 0.10 0.07 0.06

17 Sports Electric 2.25 3.38

18 Sports Gasoline 12.05 10.46 9.64 14.25 9.75 8.03

19 Sports Gasoline 3.46 3.00 2.77 0.55 0.38 0.33

20 Sports Gasoline 1.73 1.51 1.39 0.09 0.06 0.05

21 Compact p.u. Electric 0.55 0.77

22 Compact p.u. Gasoline 2.49 2.16 1.99 3.12 2.14 1.78

23 Compact p.u. Gasoline 1.40 1.22 1.12 0.82 0.57 0.51

24 Standard p.u. Gasoline 1.48 1.28 1.18 1.40 1.00 0.91

25 Standard p.u. Methanol 1.31 1.21 2.48 2.14

26 Standard p.u. Gasoline 1.07 0.93 0.86 0.50 0.36 0.32

27 Mini van Electric 0.55 0.43

28 Mini van Gasoline 1.97 1.70 1.57 1.38 0.95 0.82

29 Mini van Gasoline 1.36 1.18 1.09 0.57 0.39 0.35

30 Mini van Gasoline 1.32 1.14 1.05 1.38 0.98 0.90

31 Mini van Methanol 1.15 1.06 2.49 2.15

32 Mini van Gasoline 0.84 0.73 0.67 0.77 0.56 0.53

33 Compact SUV Gasoline 8.69 7.53 6.95 5.39 3.75 3.31

34 Compact SUV Gasoline 5.11 4.43 4.08 1.99 1.41 1.29

35 Standard SUV Gasoline 7.20 6.24 5.76 6.71 4.86 4.51

36 Standard SUV Gasoline 6.14 5.32 4.91 5.55 4.05 3.79

37 Mini SUV Gasoline 4.71 4.09 3.77 6.68 4.56 3.74

2 The mixed logit forecasts in Tables 6 and 7 are computed using 100 repetitions for each household. Experimentation

with more repetitions showed that 100 repetitions is more than su�cient for 2 digit accuracy.
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(CNG and methanol) vehicles are added, and the ``Full'' column show the forecasts when all
vehicles in Table 5 are available.

Generally the mixed logit models show much higher market shares for the alternative-fuel
vehicles than the independent logit models. This is due to the large error components associated
with the fuel constants in the mixed logit models. These error components imply some fraction of
the sample will have a large enough fuel type constant to counteract the negative observed utilities

Table 7

Joint model scenario forecast market shares (%)

Alt. No. Body type Fuel Joint MNL Joint mixed logit

Gas Non-EV Full Gas Non-EV Full

1 Mini Electric 0.18 1.89

2 Mini Gasoline 1.34 1.27 1.26 1.31 1.14 1.05

3 Sub compact Electric 0.21 2.16

4 Sub compact Gasoline 12.36 11.71 11.64 11.51 10.05 9.22

5 Sub compact Gasoline 1.11 1.05 1.05 1.32 1.15 1.07

6 Compact Gasoline 17.88 16.93 16.82 15.39 13.44 12.35

7 Compact Gasoline 1.25 1.18 1.17 1.52 1.33 1.23

8 Compact cng 0.24 0.24 1.99 1.80

9 Midsize Gasoline 15.36 14.54 14.45 14.59 12.76 11.86

10 Midsize Methanol 3.45 3.43 5.77 5.16

11 Midsize Gasoline 1.35 1.28 1.27 1.59 1.39 1.30

12 Midsize Gasoline 0.72 0.68 0.68 0.86 0.75 0.70

13 Midsize Methanol 0.23 0.23 0.46 0.42

14 Large cng 0.22 0.21 1.79 1.64

15 Large Gasoline 7.22 6.84 6.80 6.91 6.05 5.62

16 Large Gasoline 0.38 0.36 0.36 0.53 0.47 0.44

17 Sports Electric 0.05 1.04

18 Sports Gasoline 5.12 4.86 4.83 5.01 4.39 4.06

19 Sports Gasoline 0.17 0.16 0.16 0.22 0.19 0.18

20 Sports Gasoline 0.24 0.22 0.22 0.40 0.35 0.33

21 Compact p.u. Electric 0.09 1.38

22 Compact p.u. Gasoline 6.52 6.18 6.14 6.00 5.25 4.87

23 Compact p.u. Gasoline 1.25 1.19 1.18 1.33 1.17 1.10

24 Standard p.u. Gasoline 3.89 3.69 3.66 5.20 4.57 4.34

25 Standard p.u. Methanol 0.56 0.56 1.22 1.12

26 Standard p.u. Gasoline 0.69 0.66 0.65 0.92 0.81 0.77

27 Minin van Electric 0.07 0.76

28 Mini van Gasoline 7.00 6.64 6.60 7.09 6.23 5.82

29 Mini van Gasoline 0.64 0.60 0.60 0.70 0.61 0.58

30 Mini van Gasoline 4.82 4.56 4.53 5.72 5.03 4.78

31 Mini van Methanol 0.61 0.61 1.19 1.10

32 Mini van Gasoline 0.36 0.34 0.34 0.56 0.49 0.47

33 Compact SUV Gasoline 6.07 5.74 5.71 5.93 5.20 4.89

34 Compact SUV Gasoline 0.55 0.52 0.52 0.68 0.60 0.57

35 Standard SUV Gasoline 1.48 1.40 1.39 2.04 1.80 1.72

36 Standard SUV Gasoline 1.22 1.16 1.15 1.66 1.46 1.40

37 Mini SUV Gasoline 1.00 0.95 0.94 1.02 0.89 0.83
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associated with alternative-fuel vehicles. The IIA property of the independent logit models
guarantees that a proportionate share of each new vehicleÕs market share must come from all
other vehicles. Thus the market share for the mini electric vehicle (alternative number 1) draws a
proportionate share from all vehicles in the Non-EV scenario. The mixed logit speci®cations
generate the more reasonable prediction that the market share for the mini electric vehicle comes
disproportionately from other mini and subcompact vehicles.

Tables 6 and 7 show that the joint models give quite di�erent forecasts from the pure SP
models. The SP models give high forecasts for non-gasoline vehicles- their total share for the full
scenario is 20% for the MNL speci®cation and 42% for the mixed logit speci®cation. In contrast,
the joint models give a non-gasoline share of 6% for the MNL speci®cation and 18% for the mixed
logit speci®cation. The pure SP models also give very high forecasts for sports cars (12±16%) and
sport utility vehicles (26±31%), while the joint models give more reasonable forecasts of ap-
proximately 6% for sports cars and 10% for sport utility vehicles. These di�erences are due to the
use of RP body-type coe�cients in the joint forecasting models.

6. Conclusions

Mixed logit models are a general and feasible class of models for joint RP/SP choice data.
They can easily account for the scaling and unobserved error correlations typically found in
these applications. The mixed logit speci®cations used here are particularly helpful when pref-
erence heterogeneity can be captured by a relatively small number of error components, since
the order of integration or simulation is given by the number of these components rather than
the number of discrete alternatives (as in, e.g., multinomial probit). However, modeling RP
vehicle choices with any discrete choice model can be di�cult due to the extremely large number
of choices in the marketplace, and more work is needed to address this issue. In particular,
procedures that rely on sampled choice sets for estimating non-IIA models require more
investigation.

The alternative-fuel vehicle models presented here also highlight the advantages in merging SP
and RP data. Even if we had a much larger RP sample size, RP data would still be plagued by
multicollinearity and di�culties with measuring vehicle attributes. Nevertheless, RP data appear
to be critical for obtaining realistic body-type choice information, and for scaling purposes. SP
data are critical for obtaining information about attributes not available in the marketplace.
Although SP data are subject to their own limitations, these can be overcome by careful joint
modeling.

The models presented in this paper show large heterogeneity in preference for fuel types. Al-
though some of this is could be due to respondentsÕ di�erent information sets and fundamental
uncertainty, it is also likely that some preference heterogeneity could be explained by adding much
more detailed demographic interactions to the models. (However, adding such variables makes
producing forecasts much more complicated.) Our future research will examine a richer set of
possible interactions as well as incorporating a very di�erent SP experiment given to the Wave 2
respondents in our panel survey. We expect that the mixed logit model class will be useful in the
search for these better models.
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