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Abstract. Maximal Covering Location Problem (MCLP) is a classical
spatial optimization problem that plays a significant role in urban spa-
tial computing. Due to its NP-hard, finding an exact solution for this
problem is computationally challenging. This study proposes a deep re-
inforcement learning-based approach called DeepMCLP to address the
MCLP problem. We model MCLP as a Markov Decision Process. The
encoder with attention mechanisms learns the interaction between de-
mand points and facility points and the decoder outputs a probability
distribution over candidate facility points, and a greedy policy is em-
ployed to select facility points, resulting in a feasible solution. We utilize
the trained DeepMCLP model to solve both artificially synthesized data
and real-world scenarios. Experimental results demonstrate that our al-
gorithm effectively solves the MCLP problem, achieving faster solving
times compared to mature solvers and smaller optimality gaps compared
to the genetic algorithm. Our algorithm offers a novel perspective on
solving spatial optimization problems, and future research can explore
its application to other spatial optimization problems, providing scientific
and effective guidance for urban planning and urban spatial analysis.

Keywords: Urban Spatial Computing · Spatial Optimization Problem
· Maximum Covering Location Problem · Attention Mechanism · Deep
Reinforcement Learning.
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1 Introduction

Urban spatial computing is a methodological approach that investigates the char-
acteristics, patterns, and challenges of urban spaces. It involves the quantitative
analysis and evaluation of spatial attributes in cities using techniques such as
geographic information systems (GIS), statistics, and spatial data analysis. Ur-
ban spatial optimization is a vital component of urban spatial computing, where
varying constraint conditions are applied to achieve optimized layouts and mini-
mize costs or maximize objective functions based on real-world scenarios. Spatial
optimization provides decision-makers with scientifically sound solutions, play-
ing a crucial and positive role in urban planning, transportation optimization,
and sustainable urban development [9, 11,12,18].

The discrete facility location problem is a well-known NP-hard problem in
operations research and is one of the most representative spatial optimization
problems. Among them, the MCLP stands out as a fundamental problem. It
was originally proposed by Church [4] and has found extensive applications in
logistics management, urban planning, and other related domains [5, 19–21]. In
the context of the maximum coverage problem, given a set of demand points and
candidate facility points, the objective is to select a certain number of facilities
from the candidates to maximize the coverage of the demand points. Typically,
each facility has a maximum service distance that defines the reachability be-
tween demand points and facility points.

Research on the MCLP has yielded numerous approaches for solving it, in-
cluding exact algorithms [7], approximation algorithms [6], and heuristic algo-
rithms [1, 8, 10]. Exact algorithms provide optimal solutions for small-scale in-
stances but are impractical for large-scale problems. Approximation algorithms
offer suboptimal solutions, with a theoretical bound on the gap between the
suboptimal and optimal solutions known as the approximation ratio α. Heuris-
tic methods provide fast solutions for MCLP but do not guarantee optimality.
MCLPs are commonly formulated as mixed-integer linear programming (MILP),
making solver-based approaches viable. Prominent solvers, such as Gurobi, Cplex,
OR-tools, SCIP, COPT, are available, with SCIP being an open-source option.
These solvers employ specialized algorithms and heuristics to rapidly and accu-
rately solve MCLP within certain problem sizes.

Despite the existence of numerous algorithms for solving the MCLP, the
problem’s NP-hard nature precludes finding exact solutions. In recent years,
deep learning models have demonstrated their ability to extract meaningful fea-
tures [13–15,17]. Consequently, we propose a novel algorithm for efficiently solv-
ing the MCLP problem using deep reinforcement learning. By leveraging atten-
tion mechanisms to capture the interactions between demand points and facility
points, our algorithm trains a deep learning model that directly solves the MCLP
problem. Our approach outperforms genetic algorithms in terms of solution ac-
curacy while maintaining computational efficiency. To evaluate the algorithm’s
reliability, we conduct experiments on both synthetic and real-world datasets.
The experimental results validate the effectiveness of our algorithm in solving
MCLP and highlight its significant contributions to urban spatial optimization,
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facility layout, and sustainable urban development. The main contributions of
this paper include:

– Introduction of a novel algorithm based on deep reinforcement learning and
attention mechanisms for MCLP solving.

– Evaluation of the algorithm’s performance on both synthetic and real-world
datasets.

– Comparative analysis demonstrating the superiority of our proposed algo-
rithm over genetic algorithms.

– Provision of valuable insights and guidance for urban spatial optimization,
facility layout, and sustainable urban development.

This research comprises six major sections. The second section introduces the
preliminary works of the study area and problem definition. The third section
outlines the research methodology and algorithm design. In the fourth section,
experiments are conducted using both artificially synthesized data and real-world
scenarios. The fifth section discusses the results and findings obtained from the
experiments. Finally, the last section presents the conclusion of the study and
outlines potential avenues for future research.

2 Preliminaries

2.1 Study Area

Seattle, situated in the state of Washington, is a city that holds significant impor-
tance as the largest urban center in the state and a vital economic, cultural, and
technological hub in the Pacific Northwest region. Renowned for its dynamic at-
mosphere and spirit of innovation, Seattle is home to a flourishing tech industry,
a wealth of cultural activities, and awe-inspiring natural landscapes, attracting
individuals from diverse backgrounds worldwide. Given its high population den-
sity, diverse demographics, and bustling transportation networks, Seattle serves
as an optimal research area.

Figure 1 depicts the visual representation of population data and the spatial
distribution of candidate facility points in Seattle. The primary objective is to se-
lect a predetermined number of billboards from the candidate billboards in order
to maximize advertisement exposure or optimize the profitability for advertisers.
This problem can be described as a maximum covering location problem.

2.2 Problem Definition

The MCLP involves two types of nodes: demand points and facility points. The
goal is to select a specific number of facilities from the candidate facility points
to maximize the coverage of demand points. This problem is commonly repre-
sented using a bipartite graph, denoted as G = (U,F,E). Here, U = {1, 2, ..., N}
represents the set of all demand points, F = {1, 2, ...,M} represents the set of all
candidate facility points, and E = {(i, j) : i ∈ U, j ∈ F} represents the set of all
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Fig. 1. The spatial units of Seattle City. The blue dots represent population points,
with the intensity of color varying based on the quantity of demand (or flow) – the
greater the demand, the deeper the color. The orange dots indicate candidate locations
for billboards, and these candidate points’ positions are determined by POI data.
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edges. The demand quantity or population is denoted as d, while vij represents
the distance between demand point i and facility j. Additionally, a constant
value S is introduced to represent the coverage radius of the nodes. If vij < S,
it signifies that demand point i is covered by facility j. To express the coverage
status of demand points, a binary variable b is introduced.

bi =

{
1, if demand point i is covered,

0, otherwise.

a is also a binary variable used to indicate whether the facility is selected.

aj =

{
1, if facilities j is selected,

0, otherwise.

The objective function of the MCLP can be expressed as follows:

max

N∑
i=1

dibi

In general, the MCLP can be formulated as a MILP problem, which can be
represented as follows [4]:

Maximize z =

N∑
i=1

dibi (1)

s.t.
∑
j∈Ni

aj ≥ bi, i ∈ U (2)

M∑
j=1

aj = p (3)

bi ∈ {0, 1}, i ∈ U (4)

aj ∈ {0, 1}, j ∈ F. (5)

– U : Set of demand points
– F : Set of candidate facilities
– S: Maximum service distance for candidate facilities
– vij : Distance from node i to node j
– Ni = {j ∈ F |vij ≤ S}
– di: Population quantity of demand point i
– p: Number of facilities to be located

3 Methodology

3.1 Workflow

This study introduces a novel approach for solving the MCLP. Leveraging the
inherent characteristics of the problem, we utilize deep learning models to un-
cover the intricate interactions between demand points and facility points. The
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models are trained using deep reinforcement learning algorithms. The workflow
of our proposed solution framework is depicted in Figure 2.

Fig. 2. The workflow of our proposed solution framework.

The fundamental challenge in the MCLP is determining the optimal strat-
egy to select p facility points in order to maximize the coverage of demand
points. To address this, we adopt a constructive approach for generating so-
lutions. We formulate the problem as a Markov Decision Process (MDP) and
leverage deep reinforcement learning algorithms to train the deep learning mod-
els. These trained models guide decision-makers in the selection of facility points
at each step, ultimately leading to the generation of the final solution. The deep
learning model consists of an Encoder-Decoder structure, where the encoder and
decoder incorporate multi-head attention layers.

Section 3.2 provides a comprehensive explanation of how the MCLP can
be modeled as an MDP process. In Section 3.3, we delve into the prominent
attention mechanisms utilized in the Encoder and Decoder. Furthermore, Section
3.4 elucidates the training process of deep reinforcement learning.

3.2 Markov Decision Process

MDP is a mathematical model used to describe a stochastic process for decision
problems. In an MDP, a decision problem is modeled as a process consisting of
states, actions, rewards, and transition probabilities. By defining states, actions,
rewards, and transition probabilities, an MDP can be formalized as a quintuple
(S,A, P,R, γ), where

– S represents the current state of demand points and facility points.
– A represents the current selected facility point.
– P (s′|s, a) is the transition probability of the system moving from state S to

state S′ when action A is taken.
– R(s, a, s′) is the reward obtained when transitioning from state S to state

S′ by taking action A.
– γ is the discount factor, which balances the importance of immediate rewards

and future rewards.
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3.3 Attention Mechanism

The attention mechanism [22] is one of the most widely used techniques in deep
learning, which aims to emulate human attention behavior and capture deep-
level features between nodes. It typically involves three essential components:
query Q, key K, and value V . By computing the similarity between the query
and key, attention weights are assigned to each key. These weights are then nor-
malized to ensure their sum equals 1. Finally, the values are weighted by the
attention weights and aggregated. The attention mechanism effectively handles
complex relationships between demand points and facility points, capturing cru-
cial information from input sequences and significantly enhancing the model’s
performance. The basic formula for calculating attention is as follows:

Att(Q,K, V ) = softmax(
QKT

√
dk

)V

The scaling factor, denoted as dk, is related to the dimension of the query Q.
In our DeepMCLP model, we employ the attention mechanism to facilitate

the interaction learning among nodes. The encoder encodes the complex rela-
tionships between nodes, and its output is fed into the decoder. The decoder
generates a probability distribution over all candidate facility points. To select
the central point, a greedy strategy is employed, choosing the node with the
highest probability. This approach enables the model to effectively capture the
interplay between nodes and make informed decisions regarding the selection of
facility points.

3.4 Deep Reinforcement Learning

Unlike supervised learning, reinforcement learning [3] does not require labeled
data during the training process. Instead, it involves the interaction between
an agent and its environment, where the agent learns an optimal policy based
on the rewards or feedback received from the environment. In the context of
MCLP, we utilize the objective function of the problem as the feedback signal.
Specifically, we aim to train our model to select p facility points in p steps
that maximize the number of serviced demand points. We primarily employ the
REINFORCE [16] algorithm to train the DeepMCLP model, enabling it to learn
the optimal policy and achieve the highest cumulative reward. The pseudo code
for the training process is shown in Algorithm 1.

4 Experiments and Results

In our study, we have presented the main methodology for solving the MCLP
problem. As deep learning models are often considered as black-box models with
limited interpretability, we conducted experiments using synthetic data and real-
world scenarios to assess the effectiveness of our algorithm. In addition to our
proposed DeepMCLP approach, we also implemented Gurobi solver [16] and a
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Algorithm 1 Training the Deep Models for MCLP by Reinforcement Learning

Input: Training data S, Number of epochs E, Number of training steps P , Batch size
B

1: Initialize the network parameters θ
2: for epoch = 1: E do
3: for step = 1: P do
4: si ← SampleInput(S) for i ∈ {1, ..., B}
5: πi ← pθ(si). The policy by sampling
6: Calculate the objective function L(πi)
7: Calculate the gradient, ∇L ←

∑B
i=1(L(πi))∇θlogpθ(πi)

8: Update the parameters, θ ← θ +∇L(θ)
9: end for

10: end for

genetic algorithm [2] to solve the MCLP problem. Through extensive analysis
of the experimental results, we were able to gain insights and make comparisons
among these different approaches.

4.1 Synthetic Data

The DeepMCLP model requires a certain amount of time for training. Once the
model training is completed, it enables rapid solving of MCLP instances of var-
ious sizes. Therefore, we conducted experiments using a dataset generated on a
1x1 plane, consisting of a large number of 200 demand points and 100 facility
points. Subsequently, we tested the performance of the Gurobi solver, DeepM-
CLP, and genetic algorithm on different MCLP instances. Table 1 presents the
results, including the objective function value, the gap between the obtained
solution and the optimal solution, and the solution time.

Table 1. The results of Gurobi, GA, and DeepMCLP for solving MCLP in synthetic
data

Algorithm
N=50, M=20, p=8,

R=0.2
N=100, M=50, p=15,

R=0.15
N=200, M=100, p=25,

R=0.1
Obj. Gap Time/s Obj. Gap Time/s Obj. Gap Time/s

Gurobi 248 0.00% 0.0715 537 0.00% 0.1880 926 0.00% 0.9670
GA 152 38.71% 0.0609 437 18.62% 0.0866 707 23.65% 0.2059

DeepMCLP 222 10.48% 0.0052 518 3.53% 0.0121 810 12.53% 0.0214

4.2 Real Scenario

To validate the practical applicability of our model, we conducted experiments in
the Seattle area. We employed a grid-based approach to discretize the population
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data, resulting in 428 demand points. Combining this with POI data, we obtained
417 locations for commercial billboards. The objective was to select 15 and 25
nodes from the pool of 417 billboards to maximize the coverage of demand
points. Table 2 presents the results obtained using three different algorithms:
the Gurobi solver, the genetic algorithm and DeepMCLP. The table showcases
the objective function values, the gap between the obtained solutions and the
optimal solutions, and the solution times. Furthermore, we provide visualizations
of the results for the three algorithms. Figure 3 depicts the visual representation
of the solutions obtained by each algorithm when selecting 15 nodes, while Figure
4 showcases the solutions for selecting 25 nodes.

Table 2. The results of Gurobi, GA and DeepMCLP for solving MCLP with p=15 in
real scenario

Algorithm
N=428,M=417, p=15,

R=1000
N=428,M=417, p=15,

R=2000
N=428,M=417, p=15,

R=3000
Obj. Gap Time/s Obj. Gap Time/s Obj. Gap Time/s

Gurobi 1358 0.00% 3.7458 3683 0.00% 3.8135 6529 0.00% 3.6023
GA 1135 16.42% 0.1264 3463 5.97% 0.1228 5886 9.85% 0.1288

DeepMCLP 1280 5.74% 0.1023 3612 1.93% 0.101 6473 0.86% 0.1023

Table 3. The results of Gurobi, GA and DeepMCLP for solving MCLP with p=25 in
real scenario

Algorithm
N=428, M=417, p=25,

R=1000
N=428, M=417, p=25,

R=2000
N=428, M=417, p=25,

R=3000
Obj. Gap Time/s Obj. Gap Time/s Obj. Gap Time/s

Gurobi 2049 0.00% 3.5055 5289 0.00% 3.6193 7615 0.00% 3.7743
GA 1722 15.96% 0.1826 4838 8.53% 0.2424 7127 6.41% 0.1856

DeepMCLP 1832 10.60% 0.1816 5241 0.91% 0.1596 7554 0.80% 0.1473

5 Discussion

In this section, we further discuss the main results from three perspectives: the
performance of different algorithms, synthetic data and real-world scenarios, and
the limitations of DeepMCLP.

5.1 Performance of Different Algorithms

We conducted comparative experiments between DeepMCLP, Gurobi solver, and
GA to solve MCLP instances with different scales, represented by (N,M, p,R)
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Fig. 3. (a) represents the solution obtained by the Gurobi solver for the MCLP prob-
lem with P=15 and R=2000; (b) represents the solution obtained by the GA for the
MCLP problem with P=15 and R=2000;(c) represents the solution obtained by the
DeepMCLP for the MCLP problem with P=15 and R=2000.

values of (50, 20, 8, 0.2), (100, 50, 15, 0.15), and (200, 100, 25, 0.1). Here, N repre-
sents the number of demand points, M represents the number of facility points,
p represents the number of selected facility points, and R denotes the coverage
radius of the facilities.

For these problem instances, the Gurobi solver consistently provided fast and
accurate solutions, which were considered as the optimal solutions for calculating
the optimality gaps of the genetic algorithm and our proposed algorithm. Our
algorithm consistently outperformed both the Gurobi solver and the genetic
algorithm in terms of solution time. It demonstrated faster computation, offering
significant time savings. In terms of the optimality gaps compared to the optimal
solutions, DeepMCLP outperformed the genetic algorithm, achieving smaller
gaps.

5.2 Synthetic Data and Real-World Scenarios

Our model was trained on synthesized data, which resulted in better performance
on synthetic data. However, we also applied our model to real-world scenarios
and compared it with the Gurobi solver and genetic algorithm. Although the
genetic algorithm provided a quick solution, there still existed a significant gap
between its solution and the optimal solution. In contrast, the Gurobi solver
performed exceptionally well on these small-scale cases.
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Fig. 4. (a) represents the solution obtained by the Gurobi solver for the MCLP prob-
lem with P=25 and R=2000; (b) represents the solution obtained by the GA for the
MCLP problem with P=25 and R=2000;(c) represents the solution obtained by the
DeepMCLP for the MCLP problem with P=25 and R=2000.

5.3 Limitation of DeepMCLP

Although our model demonstrates excellent performance on synthetic data, ap-
plying it to real-world problem solving still presents certain challenges. This is
primarily due to the inherent differences in data distribution between actual
scenarios and the training data used for the model. Consequently, for a specific
real-world context, it would be advantageous to train a model using histori-
cal data specifically tailored to that particular scenario. This approach would
enhance the accuracy and precision of the solutions obtained.

6 Conclusions and Future Works

The MCLP is a crucial spatial optimization problem with wide applications
in selecting public facilities like parks and hospitals. It also plays a significant
role in emergency facility placement, providing valuable insights for urban plan-
ning and sustainable development. However, due to its NP-hard nature, there
is no algorithm capable of solving MCLP optimally. In this study, we propose
a novel deep learning-based algorithm to address this challenge. Our approach
leverages attention mechanisms to capture the complex interactions between de-
mand points and facility points. By employing deep reinforcement learning, we
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train the model to learn the optimal policy for selecting facility points to maxi-
mize coverage. Once the model is trained, it enables efficient and fast solutions
for MCLP across various problem sizes. Experimental evaluations conducted on
synthetic data and real-world scenarios demonstrate the effectiveness of our al-
gorithm. Compared to the Gurobi solver, our approach achieves faster solution
times, and when compared to the genetic algorithm, it exhibits smaller gaps with
the optimal solutions. For future work, there are several potential directions to
explore. Firstly, incorporating additional constraints such as facility capacity
and budget limitations can enhance the algorithm’s applicability. Secondly, in-
vestigating scalability to handle larger-scale MCLP instances would be valuable.
Lastly, conducting extensive case studies in diverse real-world applications will
further validate the algorithm’s robustness and performance.
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