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Abstract

We introduce the notions of elementary reducing subspaces and elementary irreducible-invariant subspaces—
generated from wandering vectors—of a shift operator of countably infinite multiplicity, defined on a separable
Hilbert spaceH. Necessary and sufficient conditions for a set of shift wandering vectors to span a wandering
subspace are obtained. These lead to characterizations of shift reducing subspaces and shift irreducible-invariant
subspaces, as well as a new decomposition ofH into orthogonal sum of elementary reducing subspaces. Applications
of elementary reducing subspaces to wavelet expansion, and of elementary irreducible-invariant subspaces to wavelet
multiresolution analysis (MRA) will be discussed.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.

MSC:42C05; 47A15

Keywords:Wavelet; Scale and time-shift details; Shift-wandering subspace decomposition; Shift reducing subspaces
decomposition

1. Introduction

LetU : H→ H be a linear bounded operator on a separable Hilbert spaceH—with inner product〈·, ·〉
and norm‖ · ‖. A closed subspaceW ofH is calledwandering subspacefor U, or simply,U-wandering,
if [4,12],

W ⊥ UmW, m > 0. (1.1)

If the operatorU is unitary, then(1.1) is equivalent to,

UmW ⊥ Um
′
W, ∀m,m′ ∈ Z wheneverm �= m′. (1.2)

Similarly,w ∈ H is aU-wandering vectorif it spans aU-wandering subspace[11].
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We now recall the “wandering subspace” definition of Hilbert space shift operators[4,12]. Note: by a
“shift” we mean a “bilateral shift”.

Definition 1. A shift U : H→ H is a unitary operator for which there is a wandering subspaceW such
thatH admits the “wandering subspace decomposition”

H = ⊕m∈ZUmW. (1.3)

The wandering subspaceW is then calledgeneratingand its dimension is themultiplicity of U.

In the following we will be dealing with shifts of countably infinite multiplicity. What is interesting is
the fact that the mutually orthogonal subspaces{UmW}m∈Z are neitherU-invariant norU∗-invariant.
Moreover, they do not even include anyU-invariant orU∗-invariant subspace. Hence, they can serve as
building blocks for shift reducing subspaces, as well as for shift irreducible-invariant subspaces. Also,
it is worth noting that a shift wandering subspace cannot be reducing, while a shift reducing subspace
cannot be wandering.

An invariant subspace can be uniquely decomposed into direct sum of an irreducible invariant subspace
and a reducing subspace[4]. In this paper we present an “elementary” characterization of shift reducing
subspaces, as well as that of shift irreducible-invariant subspaces. Our characterizations are elementary
in the sense that they neither rely on the functional calculus of normal operators[5], nor on the functional
representation of shifts[4], but are based on shift wandering vectors.

LetU : H→ H be a shift, and letW be aU-wandering subspace. It is easy to see that the subspace

Mir :=
∞∨
m=0

UmW, (1.4)

isU-irreducible-invariant[4]. More is true. Halmos[4] has shown that, ifM is aU-irreducible-invariant
subspace, then there is aU-wandering subspaceW which is such thatM = ∨∞

m=0U
mW. Similar result

can be stated forU∗-irreducible-invariant subspaces. Our characterization of shift irreducible-invariant
subspaces begins with Halmos’ results. We then show that aU-irreducible-invariant subspace can be
represented by elementary irreducible-invariant subspaces—generated fromU-wandering vectors.

Let {ψn}n∈Z ⊂ H be an orthonormal set and define

W := span{ψn}n∈Z =
∨
n∈Z

ψn. (1.5)

It is easy to see that ifW isU-wandering, then so are the vectors{ψn}n∈Z. The converse is not true. It turns
out that a sufficient condition for the orthonormalU-wandering vectors{ψn}n∈Z to span aU-wandering
subspaceW is that the elementaryU-reducing subspaces be orthogonal. This is shown inTheorem 1.
Theorem 2gives a decomposition of shift reducing subspace into an orthogonal sum of elementary reduc-
ing subspaces. In addition to the familiar wandering subspace decomposition(1.3)ofH, we show thatH
can also be decomposed into an orthogonal sum of elementary reducing subspaces. These are developed
in Section 2, while application of shift elementary reducing subspaces to wavelet expansion is taken up in
Section 3. Section 4discusses representation of shift irreducible-invariant subspaces in terms of elemen-
tary irreducible-invariant subspaces. Finally,Section 5connects shift elementary irreducible-invariant
subspaces to shift outgoing and incoming subspaces, as well as to wavelet multiresolution analysis



C.S. Kubrusly, N. Levan / Mathematics and Computers in Simulation xxx (2004) xxx–xxx 3

(MRA). We then show a decomposition of the wavelet MRA time operator[1] into “elementary” time
operators.

We close the paper with a discussion on advantages of “representation-free” Hilbert space shift operators
which is the “icon” of our paper.

2. Shift elementary reducing subspaces

LetU : H→ H be a shift of countably infinite multiplicity. We begin with the following lemma.

Lemma 1. LetW be as defined by(1.5).

(i) If

Wm := UmW = Um
∨
n∈Z

ψn, m ∈ Z, (2.1)

then

Wm =
∨
n∈Z

Umψn, m ∈ Z. (2.2)

(ii) Moreover, if W is aU-wandering subspace, then

Umψn ⊥ Um
′
ψn′, wheneverm �= m′, ∀n, n′ ∈ Z. (2.3)

In particular,

Umψn ⊥ Um
′
ψn, wheneverm �= m′, ∀n ∈ Z. (2.4)

(i.e., ψn, for n ∈ Z, areU-wandering vectors).

Proof.

(i) Recall that

Umspan{ψn}n∈Z = span{Umψn}n∈Z, m ∈ Z, (2.5)

and

Um span{ψn}n∈Z ⊆ Umspan{ψn}n∈Z (2.6)

sinceUm is continuous ([5], Problem 3.46). Moreover,

Umspan{ψn}n∈Z = Umspan{ψn}n∈Z (2.7)

becauseU−m is continuous—inverse image of closed sets are closed. Therefore, by(2.6)and(2.7),

Umspan{ψn}n∈Z ⊆ Umspan{ψn}n∈Z ⊆ Umspan{ψn}n∈Z = Umspan{ψn}n∈Z.
Hence

Umspan{ψn}n∈Z = Umspan{ψn}n∈Z. (2.8)
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It then follows from this and from(2.5) that

Umspan{ψn}n∈Z = Umspan{ψn}n∈Z = span{Umψn}n∈Z.
Thus(2.2) is proven.

(ii) We have

Umψn ∈ UmW, ∀m, n ∈ Z

by (2.1). Therefore, for arbitrarym, n andm′,

Umψn ⊥ Um
′
W, wheneverm �= m′,

by (1.2)—sinceW isU-wandering. Hence

Umψn ⊥ Um
′
ψn′, ∀n′ ∈ Z,

by (2.2). In particular,

Umψn ⊥ Um
′
ψn, wheneverm �= m′, ∀n ∈ Z,

(i.e.,ψn areU-wandering vectors). This finishes the proof. �

Lemma 2. Define the elementary reducing subspaces

Hn :=
∨
m∈Z

Umψn, n ∈ Z. (2.9)

If

Hn ⊥ Hn′ whenevern �= n′,

then

Umψn ⊥ Um
′
ψn′, whenevern �= n′, ∀m,m′ ∈ Z.

Proof. We have by assumption and by definition ofHn,∨
k∈Z

Ukψn ⊥
∨
k∈Z

Ukψn′, whenevern �= n′.

But, for eachm andn,

Umψn ∈
∨
k∈Z

Ukψn.

Similarly, for eachm′ andn′,

Um
′
ψn′ ∈

∨
k∈Z

Ukψn′ .

It then follows that

Umψn ⊥ Um
′
ψn′, whenevern �= n′, ∀m,m′ ∈ Z,

and the lemma is proven. �
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We are now ready to prove the following theorem.

Theorem 1. LetU : H→ H be a shift of countably infinite multiplicity, and{ψn}n∈Z be an orthonormal
set inH. LetW be spanned by{ψn}n∈Z, andHn, n ∈ Z, be spanned by{Umψn}m∈Z.

(i) IfW is aU-wandering subspace thenψn,n ∈ Z, areU-wandering vectors. Moreover, the elementary
reducing subspacesHn, n ∈ Z, are mutually orthogonal.

(ii) If ψn, n ∈ Z, are U-wandering vectors, andHn, n ∈ Z, are mutually orthogonal, thenW is a
U-wandering subspace.

Proof. The first part of part (i) is already covered byLemma 1(ii), while orthogonality of the subspaces
Hn, n ∈ Z, follows readily from(2.3):

Umψn ⊥ Um
′
ψn′, wheneverm �= m′, ∀n, n′ ∈ Z,

and since form = m′ we already haveψn ⊥ ψn′ , whenevern �= n′.
For part (ii) we first note that, it follows fromLemma 2and from the assumption thatψn areU-wandering

vectors,

Umψn ⊥ Um
′
ψn′, ∀n, n′ ∈ Z, wheneverm �= m′.

Therefore,

Umψn ⊥
∨
k∈Z

Um
′
ψk, ∀n ∈ Z, wheneverm �= m′.

Hence,∨
k∈Z

Umψk ⊥
∨
k∈Z

Um
′
ψk, wheneverm �= m′,

or

UmW ⊥ Um
′
W, wheneverm �= m′;

i.e.,W isU-wandering. This completes the proof ofTheorem 1. �

A consequence ofTheorem 1is:

Theorem 2. LetMre be the closedU-reducing subspace

Mre :=
∨
m∈Z

UmW, (2.10)

where theU-wandering subspaceW is spanned by an orthonormal set{ψn}n∈Z. Then

Mre = ⊕n∈ZHn, (2.11)

whereHn, n ∈ Z, are the elementary reducing subspaces spanned by{Umψn}m∈Z, n ∈ Z.
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Proof. First, recall thatMre in fact reducesU since it is clearly invariant for every power ofU, and since
U∗ = U−1; thus it is invariant forU andU∗, and hence reducesU. Now we have

Mre =
∨
m∈Z

UmW =
∨
m∈Z
Wm =

∨
m∈Z

∨
n∈Z

Umψn (2.12)

by Lemma 1(i); see(2.1). Next recall that, sinceHn ⊥ Hm for n �= m (Theorem 1),

∨
n∈Z

∨
m∈Z

Umψn =
( ∞∑
n=−∞

∨
m∈Z

Umψn

)
∼= ⊕∞

n=−∞
∨
m∈Z

Umψn = ⊕∞
n=−∞Hn, (2.13)

where∼= meansunitarily equivalent. Similarly, sinceWn ⊥ Wm for n �= m, by (1.2), (2.1)and(2.2), it
also follows that

∨
m∈Z

∨
n∈Z

Umψn =
( ∞∑
m=−∞

∨
n∈Z

Umψn

)
∼= ⊕∞

m=−∞
∨
n∈Z

Umψn = ⊕∞
m=−∞Wm. (2.14)

ButU is a unitary operator so that{Umψn}m,n∈Z is an orthonormal basis for the Hilbert space
∨
m,n∈ZU

mψn
according toLemma 1(ii) andLemma 2. Thus, by unconditional convergence of the Fourier series,∨

m∈Z

∨
n∈Z

Umψn =
∨
m,n∈Z

Umψn =
∨
n∈Z

∨
m∈Z

Umψn. (2.15)

Therefore,

⊕m∈ZWm
∼=Mre

∼= ⊕n∈ZHn.

This finishes the proof of the theorem by writing= for ∼=, as usual. �

The next proposition follows at once fromTheorems 1 and 2.

Proposition 1.

(i) If theU-wandering subspaceWof Theorem 1(i) is also generating then, in addition to theU-wandering
subspace decomposition,

H = ⊕m∈ZUmW, (2.16)

andH also admits the elementary reducing subspaces decomposition,

H = ⊕n∈ZHn. (2.17)

Hence, the operatorU admits the decomposition

U = ⊕∞
n=−∞Un, (2.18)

where eachUn := U|Hn is a shift of multiplicity1 and whose generating-wandering subspace is
span{ψn} = ∨

ψn.
(ii) If, in addition to the conditions ofTheorem 1(ii), the subspacesHn, n ∈ Z, spanH, then the

U-wandering subspaceW is generating.
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Proof. If W is U-wandering and generating then the subspaceMre is all of H. Therefore(2.17) fol-
lows readily fromTheorem 2, while (2.18) is self-evident. ForProposition 1(ii) we first note that, by
Theorem 1(ii), W is alreadyU-wandering. It remains to show that it is generating. SupposeHn, n ∈ Z

spanH, and recall thatHn ⊥ Hm for n �= m. Then

H = ⊕n∈ZHn = ⊕n∈Z
∨
m∈Z

Umψn ∼=
∨
n,m∈Z

Umψn. (2.19)

Therefore, as in the proof ofTheorem 2,

H = ⊕m∈ZUmW; (2.20)

i.e.,W is aU-generating-wandering subspace, which completes the proof. �

Recall that a unitary operator is a direct sum of infinitely many unitary operators[10], which happens
in particular for a (bilateral) shift of infinite multiplicity. Note that this well-known result (see e.g.[10],
p. 46) is also evident from(2.18), as summarized below.

Corollary 1. A shift of countably infinite multiplicity is a direct sum of infinitely many shifts of multi-
plicity 1.

It is plain from(2.16)that, eachh ∈ H can be written as,

h =
∞∑

m=−∞
Umwm, (2.21)

where

wm ∈W and
∞∑

m=−∞
‖wm‖2 = ‖h‖2. (2.22)

Therefore,

Uh =
∞∑

m=−∞
Um+1wm =

∞∑
m′=−∞

Um
′
wm′−1. (2.23)

LetΦ : H→ �2(−∞,∞;W) be the map defined by

Φh = {wm}m∈Z. (2.24)

Then it is plain thatΦ is unitary, and the shiftU goes into the right shiftSr on�2(−∞,∞;W),
Sr{wm}m∈Z = {wm−1}m∈Z. (2.25)

The shift action ofU onH, under the decomposition(2.17), is transparent since

h =
∞∑

n=−∞
hn, ∀h ∈ H, (2.26)
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where

hn ∈ Hn and
∞∑

n=−∞
‖hn‖2 = ‖h‖2. (2.27)

Therefore,

Uh =
∞∑

n=−∞
Uhn. (2.28)

Then, since eachHn is reducing, the action ofU takes place onHn. Now let us expandhn in terms of the
orthonormal basis{Umψn}m∈Z ofHn. We have

hn =
∞∑

m=−∞
〈hn, Umψn〉Umψn ∈ Hn. (2.29)

Hence,

Uhn =
∞∑

m=−∞
〈hn, Umψn〉Um+1ψn =

∞∑
m′=−∞

〈hn, Um′−1ψn〉Um′
ψn. (2.30)

ThusU|Hn := Un goes into the right shiftSn, of multiplicity 1, defined by

Sn{〈hn, Umψn〉}m∈Z = {〈hn, Um−1ψn〉}m∈Z, n ∈ Z. (2.31)

Consequently,U goes into the shiftS which is direct sum of infinitely many shiftsSn of multiplicity
1—on the Hilbert space�2(−∞,∞;∨{〈hn, Umψn〉}m∈Z), n ∈ Z,

S := ⊕∞
n=−∞Sn. (2.32)

3. Shift elementary reducing subspaces in wavelet expansion

We now turn to application of elementary shift reducing subspacesHn, n ∈ Z, to wavelet expansion.
LetD denote the dilation-by-2 operator defined on the function spaceL2(R) by

Df = g, g(·) =
√

2f(2(·)), f(·) ∈ L2(R). (3.1)

It is plain thatD is unitary. Moreover, it is a shift of countably infinite multiplicity. Letψ(·) ∈ L2(R) and
define the functions

ψn(·) := ψ((·)− n) = T nψ(·), n ∈ Z, (3.2)

whereT is the translation-by-1 operator onL2(R) defined by

Tf = g, g(·) = f((·)− 1), (3.3)

and it is also a shift of countably infinite multiplicity. Now letψm,n(·) be “generated” fromψn(·) by

ψm,n(·) := Dmψn(·) =
√

2
m
ψn(2

m(·)) =
√

2
m
ψ(2m(·)− n). (3.4)

for m, n ∈ Z. We recall the following definition from[9].
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Definition 2. If the functionsψm,n(·),m, n ∈ Z, are orthonormal and span the function spaceL2(R), then
ψ(·) is called an orthonormal wavelet or, simply a wavelet, andψm,n(·) are called wavelet functions—
generated fromψ(·).

It follows easily from the above that.

Lemma 3. Letψ(·) ∈ L2(R) be aT -wandering vector,

T nψ(·) ⊥ T n
′
ψ(·), whenevern �= n′, n, n′ ∈ Z.

Thenψ(·) is a wavelet if and only if the orthonormal functionsψn(·), n ∈ Z, defined by(3.2), span a
generatingD-wandering subspace

W(ψ) :=
∨
n∈Z

ψn(·) =
∨
n∈Z

T nψ(·). (3.5)

It follows at once from this lemma that, for a given waveletψ(·) there corresponds aD-wandering
subspace decomposition of the function spaceL2(R),

L2(R) = ⊕m∈ZDmW(ψ) = ⊕m∈ZWm(ψ), (3.6)

where

Wm(ψ) := DmW(ψ), m ∈ Z. (3.7)

Therefore, anyf(·) ∈ L2(R) admits the orthogonal decomposition

f(·) =
∑
m∈Z

Dmwm(·), (3.8)

where

wm ∈W(ψ) and
∑
m∈Z

‖wm‖2 = ‖f‖2. (3.9)

Let PWm(ψ) be the orthogonal projections onto the subspacesWm(ψ), then it follows from(3.8) that

PWm(ψ)(f(·)) = Dmwm(·), m ∈ Z, (3.10)

since, by definition,Dmwm ∈Wm(ψ). Therefore, sinceD is unitary,

wm(·) = D∗mPWm(ψ)(f(·)), m ∈ Z. (3.11)

From which it follows that

〈wm(·), ψn(·)〉 = 〈D∗mPWm(ψ)(f(·)), ψn(·)〉 = 〈f(·), PWm(ψ)(D
mψn(·))〉.

Therefore,

〈wm(·), ψn〉 = 〈f(·), ψm,n(·)〉, m, n ∈ Z, (3.12)
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sinceDmψn(= ψm,n(·)) already lives inWm(ψ). Now, since the orthonormal set{ψn(·)}n∈Z spansW(ψ),
we also have

wm(·) =
∑
n∈Z

〈wm(·), ψn(·)〉ψn(·), m ∈ Z. (3.13)

Therefore, by(3.12),

wm(·) =
∑
n∈Z

〈f(·), ψm,n(·)〉ψn(·), m ∈ Z. (3.14)

This can be rewritten as

wm(·) =
∑
n∈Z

〈D∗mf(·), ψn(·)〉ψn(·), m ∈ Z, (3.15)

which implies that

wm(·) = PW(ψ)(D
∗mf(·)), m ∈ Z. (3.16)

Therefore, by(3.10),

PWm(ψ)(f(·)) = Dmwm(·) = DmPW(ψ)(D
∗mf(·)), m ∈ Z, (3.17)

or

PWm(ψ)f(·) =
∑
n∈Z

〈f(·), ψm,n(·)〉ψm,n(·) = DmPW(ψ)(D
∗mf(·)), m ∈ Z. (3.18)

In wavelet theory[9], the subspaceWm(ψ) is called “scale-2m-time-shift detail subspace”, while PWm(ψ)

(f(·)) is “scale-2m-time-shift detail variations off(·)”. The functionDmf(·)(= √
2
m
f(2m(·)) is referred

to asf(·) at scale2m, whileD∗mf(·)(= (1/
√

2
m
)f(1/2m(·))) isf(·) at resolution2−m. We conclude from

(3.20):

Proposition 2. Let ψ(·) ∈ L2(R) be a wavelet. Then the projectionsPWm(ψ) andPW(ψ) are unitarily
equivalent, withDm acting as the equivalence operator,

PWm(ψ) = DmPW(ψ)D
∗m, m ∈ Z.

From which it follows that

PWm+1(ψ) = DPWm(ψ)D
∗, m ∈ Z.

In other words, the scale-2m+1-time-shift detail variations off(·) is equal to the scale-2m-time-shift detail
variations at scale 2 off(·)—at resolution2−1.

We have from(3.10)and(3.16),

f(·) =
∑
m∈Z

∑
n∈Z

〈f,ψm,n〉ψm,n(·). (3.19)

This is the “usual” wavelet expansion over all scales of time-shift detail variations off(·) ∈ L2(R).
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We now turn to another type of expansion which is a consequence of the “elementaryD-reducing
subspaces decomposition” of the function spaceL2(R). Letψ(·) ∈ L2(R) be a wavelet, then we have,
by Proposition 1,

L2(R) = ⊕n∈ZHn = ⊕n∈Z
∨
m∈Z

Dmψn(·). (3.20)

Hence,f(·) ∈ L2(R) now admits the orthogonal decomposition,

f(·) =
∑
n∈Z

hn(·), (3.21)

where

hn ∈ Hn and
∑
n∈Z

‖hn‖2 = ‖f‖2, (3.22)

and

hn(·) = PHn(f(·)), n ∈ Z. (3.23)

HerePHn is the orthogonal projection ontoHn. Therefore, since the orthonormal set{Dmψn(·)}m∈Z spans
Hn,

hn(·) =
∑
m∈Z

〈hn,Dmψn〉Dmψn(·) (3.24)

or, from(3.23),

hn(·) =
∑
m∈Z

〈PHn(f),Dmψn〉Dmψn(·). (3.25)

Therefore, as before,

hn(·) =
∑
m∈Z

〈f, PHn(Dmψn)〉Dmψn(·). (3.26)

Consequently,

hn(·) = PHn(f(·)) =
∑
m∈Z

〈f,ψm,n〉ψm,n(·), n ∈ Z. (3.27)

We call the subspaceHn then-time-shift-scale detail subspace, whilePHn(f(·)) is then-time-shift-scale
detail variations off(·). Now, let us rewrite(3.27)as

hn(·) = PHn(f(·)) =
∑
m∈Z

Pψm,n(f(·)) (3.28)

=
∑
m∈Z

〈f,Dmψn〉Dmψn(·) (3.29)

=
∑
m∈Z

Dm〈D∗mf,ψn〉ψn(·), n ∈ Z. (3.30)
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But

〈D∗mf,ψn〉ψn(·) = Pψn(D
∗mf(·)). (3.31)

Therefore(3.30)can be rewritten as

PHn(f(·)) =
∑
m∈Z

DmPψnD
∗m(f(·)). (3.32)

It then follows from(3.28)and(3.32)that

Pψm,n(f(·)) = DmPψnD
∗m(f(·)), m, n ∈ Z, ∀f ∈ L2(R). (3.33)

We have therefore proved the following proposition.

Proposition 3. Letψ(·) ∈ L2(R) be a wavelet. Then the projectionsPψm,n andPψ0,n are unitarily equiv-
alent, withDm acting as the equivalence operator,

Pψm,n = DmPψ0,nD
∗m, m ∈ Z,

whereψ0,n(·) := ψ((·)− n) = ψn(·). Therefore,

Pψm+1,n = DPψm,nD
∗, m ∈ Z.

In other words, the scale-2m+1-time-shift-n detail variation off(·) is equal to the scale-2m-time-shift-n
detail variation at scale 2 off(·)—at resolution2−1.

This proposition is an analog ofProposition 2. We will have more to say about the projectionsPWm(ψ)

andPψm,n in Section 5.
It follows from (3.21)and(3.27)that

f(·) =
∑
n∈Z

∑
m∈Z

〈f,ψm,n〉ψm,n(·). (3.34)

This shows that, with respect to a waveletψ(·), a functionf(·) ∈ L2(R) is summation of all its time-shift-
n-scale detail variations, as well as what we have seen above, summation of all its scale-2m-time-shift
detail variations.

Now, for eachm ∈ Z and eachn ∈ Z,

Wm(ψ) ∩Hn(ψ) = {ψm,n}. (3.35)

Then, since the orthogonal complements of{ψm,n} inWm(ψ) and inHn(ψ), respectively, are orthogonal,
we have

Pψm,nf(·) = PWm(ψ)PHn(ψ)f(·) = PHn(ψ)PWm(ψ)f(·). (3.36)

This implies that, forf(·) ∈ L2(R), its “detail-variations at scale-2m and time-shift-n” can be obtained
in two ways. Either by projecting its “time-shift-n detail-variations” onto the “scale-2m-time-shift detail
subspace,” or by projecting its “scale-2m-time-shift detail variations” onto the “time-shift-n-scale detail
subspace.” These explain the existence of the two wavelet expansions(3.21)and(3.36).

Preliminary results of this section were reported in[8].
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4. Shift elementary irreducible-invariant subspaces

We now turn to shift irreducible-invariant subspaces. We begin by recalling Halmos’ results[4], together
with their “adjoint” version.

Proposition 4. LetWbe aU-wandering subspace, then the subspaceMir (respectively,M∗ ir ) defined by

Mir :=
∞∨
m=0

UmW

(
respectively,M∗ir :=

−1∨
m=−∞

UmW

)
(4.1)

is U (respectively, U∗)-irreducible-invariant. Conversely, if M (respectively,M∗) is U (respectively,
U∗)-irreducible-invariant, then there exists aU-wandering subspaceW so thatM = ∨∞

m=0U
mW

(respectively,M∗ := ∨−1
m=−∞U

mW).

LetMir beU-irreducible-invariant and letW be the correspondingU-wandering subspace. SupposeW
is spanned by an orthonormal set{ψn}n∈Z. Then,

Mir =
∞∨
m=0

UmW =
∞∨
m=0

∨
n∈Z

Umψn. (4.2)

Therefore, as in the proof ofTheorem 2, we have

Mir =
∞∨
m=0

∨
n∈Z

Umψn =
∨
n∈Z

∞∨
m=0

Umψn. (4.3)

Define the subspaces

H(0),n :=
∞∨
m=0

Umψn, n ∈ Z. (4.4)

Here the subscript(0)means that the integerm on the right hand side ranges from 0 onward. It is evident
that the subspaces{H(0),n}n∈Z areU- irreducible-invariant. Moreover, they are also mutually orthogonal,
H(0),n ⊥ H(0),n′ , whenevern �= n′. Therefore, as in the proof ofTheorem 2,

Mir = ⊕n∈ZH(0),n. (4.5)

In exactly the same way we obtain for theU∗-irreducible-invariant subspaceM∗ ir ,

M∗ir = ⊕n∈ZH(−1)
n , (4.6)

where

H(−1)
n :=

−1∨
m=−∞

Umψn, n ∈ Z, (4.7)

and the superscript(−1) indicates that the upper bound ofm is−1. Moreover, theU∗-irreducible-invariant
subspaces{H(−1)

n }n∈Z are also mutually orthogonal.
Halmos’ results can now be restated as.
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Theorem 3. AU (respectively, U∗)-irreducible-invariant subspaceMir (respectively,M∗ir ) admits the
orthogonal decomposition

Mir = ⊕n∈ZH(0),n
(
respectively,M∗ir = ⊕n∈ZH(−1)

n

)
,

where

H(0),n :=
∞∨
m=0

Umψn

(
respectively, H(−1)

n :=
−1∨

m=−∞
Umψn

)
, n ∈ Z,

are orthogonal elementaryU (respectively, U∗)-irreducible-invariant subspaces, and{ψn}n∈Z is an or-
thonormal basis of theU-wandering subspaceW.

Sequences ofU andU∗-irreducible-invariant subspaces can be generated fromMir andM∗ir , respectively.
Such sequences play a key role in wavelet multiresolution analysis as will be seen in the next section.

5. Shift elementary irreducible-invariant subspaces in wavelet multiresolution analysis (MRA)

We begin by recalling the “incoming–outgoing subspaces” definition of shifts, see for instance[6] and
the references therein.

Definition 3. A shift U : H → H is a unitary operator for which there is an outgoing (respectively,
incoming) subspaceV o (respectively,V i ) satisfying the following conditions:

(i)o UVo ⊂ V o (respectively, (i)i U∗V i ⊂ V i );
(ii)

⋂∞
m=−∞U

mV o,i = {0};
(iii)

⋃∞
m=−∞U

mV o,i = H;
where, in (ii) and (iii),V o,i can be eitherV o or V i .

We must note thatDefinition 3 was, originally, the Lax–Phillips definition of anoutgoing subspace
(respectively,incoming subspace) for a unitary operatorU [7]. However, sinceU is actually a shift,
Definition 3can simultaneously serve as that of a Hilbert space shift operator[3]. Thus, it is appropriate
to refer to it as “incoming–outgoing definition” of shifts.

We now recall some basic facts relating incoming, outgoing, and wandering subspaces of shifts.

Proposition 5. LetU : H → H be a shift, and letV o (respectively, V i ) beU-outgoing(respectively,
U-incoming). Then[7],

V o := ⊕∞
m=0U

mW

(
respectively, V i := ⊕−1

m=−∞U
mW

)
,

where the subspace

W := V o � UVo (respectively, W := V i � U∗V i)
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isU-generating-wandering. Moreover,V o (respectively,V i ) is alsoU-irreducible-invariant(respectively,
U∗-irreducible-invariant) [4].

An easy consequence of the above is:

Lemma 4. LetU : H→ H be a shift andV0 be a closed subspace ofH. Let {Vp}p∈Z be the subspaces
generated fromV0 by

Vp+1 = UVp (respectively, Vp+1 = U∗Vp), p ∈ Z.

Then{Vp}p∈Z satisfies the following properties:

(i) Vp+1 ⊂ Vp, p ∈ Z;

(ii)
⋂∞
p=−∞ Vp = {0};

(iii)
⋃∞
p=−∞Vp = H;

if and only ifV0 isU-outgoing(respectively, U-incoming). Similarly, if condition(i) is replaced by

(i′) Vp ⊂ Vp+1, p ∈ Z,

then{Vp}p∈Z satisfies(i′), (ii), (iii) if and only ifV0 isU-incoming(respectively, U-outgoing).

It follows from this lemma thatDefinition 3 can be restated in terms of the sequences of subspaces
{UmV o}m∈Z or {UmV i}m∈Z as follows.

Definition 4. A shift U : H → H is a unitary operator for which there is an outgoing (respectively,
incoming) subspaceV o (respectively,V i ) satisfying the following conditions:

(i)o Um+1V o ⊂ UmV o (respectively, (i)i U∗mV i ⊂ U∗m+1V i );

(ii)
⋂∞
m=−∞U

mV o,i = {0};
(iii)

⋃∞
m=−∞U

mV o,i = H;

where, in (ii) and (iii),V o,i can be eitherV o or V i .

The wandering subspace definition of shifts (i.e.,Definition 1) can be restated, in the spirit ofDefinition 4
as follows.

Definition 5. A shiftU : H→ H is a unitary operator for which there is a generating wandering subspace
W satisfying the following conditions:

(i)w UmW ⊥ UnW,m, n ∈ Z;

(ii)
⋂∞
m=−∞U

mW = {0};
(iii)

⋃∞
m=−∞U

mW = H.

Remark 1. ComparingDefinitions 4 and 5we see that the subspaces{UmV o}m∈Z or {UmV i}m∈Z, and
{UmW}m∈Z differ only in properties (i)o,i and (i)w. These two properties show the difference between
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outgoing subspaceV o or incoming subspaceV i , and the generating wandering subspaceW. Equivalence
between the two definitions are evident fromProposition 5.

To proceed, we now recall the definition of wavelet multiresolution analysis[9], which plays an important
role in wavelet theory.

Definition 6. A sequence of “approximation subspaces” {Vm(φ)}m∈Z of the function spaceL2(R) is a
wavelet MRA, withscaling functionφ(·), if the following conditions hold:

(o) {φ((·)− n)}n∈Z is an orthonormal basis of the subspaceV0(φ);

(i) Vm(φ) ⊂ Vm+1(φ),m ∈ Z (or,Vm+1(φ) ⊂ Vm(φ),m ∈ Z);

(ii)
⋂∞
m=−∞ Vm(φ) = {0};

(iii)
⋃∞
m=−∞Vm(φ) = L2(R);

(iv) v(·) ∈ Vm(φ) ⇔ v(2(·)) ∈ Vm+1(φ),m ∈ Z (or, v(·) ∈ Vm(φ) ⇔ v(1/2(·)) ∈ Vm+1(φ),m ∈ Z).

Remark 2. Definition 6(i)–(iii) can also be expressed in terms of the projectionsPm from L2(R) onto
the subspacesVm(φ). This was pointed out by Antoniou and Gustafson[1]. We will have more to say
about this later—in connection with the time operator of wavelet MRA.

We must note thatDefinition 6(o) is “particular” to wavelets and has nothing to do with the shift operator
D. It was introduced as a mechanism for constructing a waveletψ(·) from a given scaling functionφ(·).
Also, Definition 6(iv) can be expressed in terms ofD andD∗ as follows.

Vm+1(φ) = DVm(φ) (or, Vm+1(φ) = D∗Vm(φ)), m ∈ Z. (5.1)

Therefore, ifVm+1(φ) = DVm(φ), thenDefinition 6(i) becomes

D∗Vm(φ) ⊂ Vm(φ) (or, DVm(φ) ⊂ Vm(φ)), m ∈ Z; (5.2)

i.e., Vm(φ) is D∗-invariant (or,D-invariant). Similarly, ifVm+1(φ) = D∗Vm(φ), thenDefinition 6(i)
becomes

DVm(φ) ⊂ Vm(φ) (or, D∗Vm+1(φ) ⊂ Vm+1(φ)), m ∈ Z; (5.3)

i.e.,Vm(φ) isD-invariant (or,D∗-invariant).
We therefore conclude fromDefinition 6andLemma 4:

Proposition 6. A wavelet MRA—with scaling functionφ(·)—is a sequence of decreasingly-nested(re-
spectively, increasingly-nested) subspaces{Vm(φ)}m∈Z ofL2(R); i.e.,

Vm(φ) ⊂ Vm+1(φ) (respectively, Vm+1(φ) ⊂ Vm(φ)), m ∈ Z,

generated, either from,

(i) aD-incoming subspaceV i(φ) by

V0(φ) := V i(φ),Vm(φ) = DmV i(φ) ⇔ Vm+1(φ) = DVm(φ), m ∈ Z, (5.4)

(respectively, byVm(φ) = D∗mV i(φ) ⇔ Vm+1(φ) = D∗Vm(φ),m ∈ Z), or from,
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(ii) aD-outgoing subspaceVo(φ) by

V0(φ) := Vo(φ),Vm(φ) = D∗mVo(φ) ⇔ Vm+1(φ) = D∗Vm(φ), m ∈ Z, (5.5)

(respectively, by Vm(φ) = DmVo
0(φ) ⇔ Vm+1(φ) = DVm(φ),m ∈ Z), whereV i(φ) or Vo(φ) are

spanned by the orthonormal basis{φ((·)− n)}n∈Z.

We shall refer to a wavelet MRA generated from an incoming subspace (respectively, an outgoing sub-
space) as an incoming wavelet MRA (respectively, an outgoing wavelet MRA). From now on, without
lack of generality, we only consider incoming wavelet MRA.

Assumption 1. Let{Vm(φ)}m∈Z be an incoming wavelet MRA—with incoming subspaceV i(φ)generated
from a scaling functionφ(·)—satisfying,

V0(φ) := V i(φ) =
∨
n∈Z

φ((·)− n), (5.6)

Vm+1(φ) = DVm(φ) = Dm+1V0(φ), m ∈ Z, (5.7)

and

Vm(φ) ⊂ Vm+1(φ), m ∈ Z. (5.8)

We have, byPropositions 5,

V0(φ) := V i(φ).

Then, byProposition 6,

V0(φ) := V i(φ) = ⊕−1

p=−∞D
pW(ψ), (5.9)

where, as before, theD-generating-wandering subspaceW(ψ) is spanned by the orthonormal wavelet
functions{ψn(·) := ψ((·)− n)}n∈Z—generated from a waveletψ(·),
W(ψ) :=

∨
n∈Z

ψ((·)− n). (5.10)

It then follows that

Vm(φ) = DmV i(φ) = ⊕m−1

p=−∞D
pW(ψ). (5.11)

Remark 3. We must note thatEq. (5.9)—without the functionsφ(·) andψ(·)—is the “usual” represen-
tation of an incoming subspace for a shift operator which, in our case, is the dilation-by-2 operatorD.
However, with the shift operatorD and only whenψ(·) is an orthonormal wavelet, thenW is characterized
by (5.10). As a consequence, in(5.9) the incoming subspaceV0 is now “depending” onψ(·) and is rep-
resented by the orthogonal subspaces{DpW(ψ)}−∞<p≤−1. However, withEq. (5.6), or Definition 5(o),
the subspaceV0 is also required to be spanned by the orthonormal set{φ((·)− n)}n∈Z. Thus, in wavelet
theory, the incoming (or, outgoing) subspaceV0 depends on both a waveletψ(·) and a scaling function
φ(·). This is the key idea which resulted in a procedure for constructing a waveletψ(·) from a given
scaling functionφ(·) [9].
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We now obtain an alternate representation for the approximation subspaces{Vm(φ)}m∈Z. First, by
Lemma 1(i), (5.9)can be rewritten as

V0(φ) = V i(φ) = ⊕−1

p=−∞
∨
n∈Z

Dpψ((·)− n). (5.12)

Then, sinceV i(φ) isD∗-irreducible-invariant, it follows fromTheorem 3that

V0(φ) = V i(φ) = ⊕n∈ZH(−1)
n (ψ), (5.13)

where, as before,

H(−1)
n (ψ) :=

−1∨
p=−∞

Dpψ((·)− n), n ∈ Z. (5.14)

Next, we have from(5.7),

Vm(φ) = DmV0(φ) = ⊕n∈ZDmH(−1)
n (ψ), m ∈ Z. (5.15)

But, by(5.13),

DmH(−1)
n (ψ) =

−1∨
p=−∞

Dm+pψ((·)− n) =
m−1∨
ν=−∞

Dνψ((·)− n), m, n ∈ Z. (5.16)

Let us define theD∗-irreducible-invariant subspaces

H(m−1)
n (ψ) := DmH(−1)

n (ψ) =
m−1∨
p=−∞

Dpψ((·)− n), m, n ∈ Z. (5.17)

Then it follows from this,(5.16), and(5.15)that

Vm(φ) = ⊕n∈ZH(m−1)
n (ψ), m ∈ Z. (5.18)

Now it is plain that, for each fixedn, the subspaces{H(m)n (ψ)}m∈Z are also nested,

H(m)n (ψ) ⊂ H(m+1)
n (ψ), m ∈ Z. (5.19)

Moreover, by(2.9), they are subspaces of the elementary reducing subspaceHn,

Hn :=
∨
p∈Z

Dpψ((·)− n), n ∈ Z, (5.20)

which we have referred to as an-time-shift-scale detail subspace. Therefore the subspaceH(m)n (ψ) can
be called an-time-shift-scale-2mdetail subspace. It is easy to see that, for each fixedn, the subspaces
{H(m)n }m∈Z—ofHn— also inherit the wavelet MRA properties of the original wavelet MRA{Vm(φ)}m∈Z
onL2(R).

We summarize the above in the next proposition.

Proposition 7. Let{Vm(φ)}m∈Z be an incoming wavelet MRA satisfyingAssumption 1. Then the approx-
imation subspaces{Vm(φ)}m∈Z admit the orthogonal decomposition

Vm(φ) :=
∨
n∈Z

Dmφ((·)− n)) = ⊕n∈ZH(m−1)
n (ψ), m ∈ Z, (5.21)
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where the elementaryD∗-irreducible-invariant subspaces{H(m)n (ψ)}m∈Z, are defined by(5.17)

H(m)n (ψ) =
m∨

p=−∞
Dpψ((·)− n), m, n ∈ Z. (5.22)

Moreover, for each fixedn, the subspaces{H(m)n }m∈Z form an“elementary” wavelet MRA on the elemen-
tary reducing subspaceHn.

We close the paper with a decomposition of the time operator of wavelet MRA. First, recall thatDefinition 6
is equivalent to[1].

Definition 7. Let {Vm(φ)}m∈Z be closed subspaces of the function spaceL2(R), and letPm be the
projections ontoVm(φ). Then{Vm(φ)}m∈Z is a wavelet MRA, withscaling functionφ(·), if the following
conditions hold:

(o) {φ((·)− n)}n∈Z is an orthonormal basis of the subspaceV0(φ);
(i′) Pm < Pm+1;

(ii ′) P−∞ = limm→−∞Pm = 0;
(iii ′) P+∞ = limm→+∞Pm = I;
(iv′) Pm+1 = DPmD∗.

(In (i′) < means inclusion of ranges; in (ii′) and (iii′) we have strong convergence.)

Antoniou and Gustafson[2] have shown that this definition not only defined a wavelet MRA, but it also
allowed them to define the time operator of wavelet MRA, as the self-adjoint operatorT with dense
domainD(T ),

T :=
∑
m∈Z

m(Pm+1 − Pn). (5.23)

We have seen inPropositions 2 and 3that the projectionsPWm(ψ) andPψm,n also have property (iv′) of
Definition 7,

PWm+1(ψ) = DPWm(ψ)D
∗, m ∈ Z. (5.24)

and

Pψm+1,n = DPψm,nD
∗, m ∈ Z. (5.25)

These suggest thatPWm(ψ) andPψm,n should, somehow, be “related” to the time operatorT. Indeed, since

Pm+1 − Pm = PWm(ψ), (5.26)

and since each subspaceWm(ψ) is spanned by the orthonormal set{ψm,n(·)}n∈Z, it follows from (5.23)
that[2],

Tf(·) =
∑
m∈Z

mPWm(ψ)(f(·)), f(·) ∈ L2(R), (5.27)
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=
∑
m∈Z

m
∑
n∈Z

〈f(·), ψm,n(·)〉ψm,n(·), (5.28)

=
∑
m∈Z

m
∑
n∈Z

Pψm,n(f(·)). (5.29)

Eqs. (5.27) and (5.29)provide connections to the time operatorT of the projectionsPWm
(ψ) andPψm,n .

More is true. As in the proof ofTheorem 2, the right-hand side of(5.28)can be rewritten as

Tf(·) =
∑
n∈Z

∑
m∈Z

m〈f(·), ψm,n(·)〉ψm,n(·), f(·) ∈ L2(R), (5.30)

or,

Tf(·) = ⊕n∈ZTnf(·), (5.31)

whereTn are defined by

Tnf(·) :=
∑
m∈Z

m〈f(·), ψm,n(·)〉ψm,n(·) =
∑
m∈Z

mPψm,nf(·). (5.32)

We therefore conclude that:

Proposition 8. The time operatorT of wavelet MRA admits the decomposition

T = ⊕n∈ZTn, (5.33)

whereTn—called“elementary” time operators—are defined onHn by

Tn :=
∑
m∈Z

mPψm,n, n ∈ Z. (5.34)

Consequently, each wavelet functionψm,n(·) is age-eigenvector[2] of Tn.

We note that the time operatorTn agrees with the fact that, fromProposition 7, the subspaces{H(m)n }m∈Z
form a wavelet MRA onHn.

We refer to[1] and[2] for further results on time operator of wavelets, and connections between wavelet
theory and wandering subspace theory, and other parts of mathematics.

Finally, we must note that our approach to shifts is “non-conventional”, in the sense that, instead of
dealing with specific shift representation on�2(−∞,∞;W) such as that of(2.25)

Sr{wm}m∈Z = {wm−1}m∈Z,

we deal with the shiftU onH first, via its wandering subspacesWn, then via its elementary reducing
subspacesHn. An advantage of this “representation-free” approach, of course, is the fact that we can get
back toSr, via the vectorsUmψn, which are actually “age eigenvectors” of the associated time operator
T. Our key results (Theorem 1andProposition 1) are clearly consequence of the representation-free
approach. These results cannot be derived from the representation(2.25), even thoughSr is related toU
via the unitary operatorΦ defined by(2.24). This is due to the fact that the conventional approach does
not allow one to connect shifts with time operator or with wavelets, since it has nothing to do with the
age eigenvectorsUmψn which, in the case of wavelets, are precisely the wavelet functionsψm,n(·).
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