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Validation in Genomics: CpG Island
Methylation Revisited∗

Mark R. Segal

Abstract

In a recent article in PLoS Genetics, Bock et al., (2006) undertake an extensive computational
epigenetics analysis of the ability of DNA sequence-derived features, capturing attributes such
as tetramer frequencies, repeats and predicted structure, to predict the methylation status of CpG
islands. Their suite of analyses appears highly rigorous with regard to accompanying validation
procedures, employing stringent Bonferroni corrections, stratified cross-validation, and follow-up
experimental verification. Here, however, we showcase concerns with the validation steps, in part
ascribable to the genome scale of the investigation, that serve as a cautionary note and indicate
the heightened need for careful selection of analytic and companion validation methods. A series
of new analyses of the same CpG island methylation data helps illustrate these issues, not just for
this particular study, but also analogous investigations involving high-dimensional predictors with
complex between-feature dependencies.

KEYWORDS: multiple testing, cross-validation, local false discovery rate, classification, se-
quence features

∗The author wishes to thank Christoph Bock for providing the data. Yuanyuan Xiao and Ru-Fang
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1 Introduction

It is now widely recognized that the data structures resulting from many con-
temporary genomics studies, performed utilizing high-throughput technolo-
gies, demand novel methods of statistical analysis and attendant validation.
This derives, in part, from characteristic attributes of such datasets. They are
generally high-dimensional with respect to the number, p, of features (or co-
variates, variables) examined, and low-dimensional with respect to the number,
n, of samples (or units, cases) obtained. Moreover, complex between-feature
dependencies are commonplace. To illustrate in the context of microarray gene
expression studies, it is typical to have intensity measures on p > 103 genes
(features) but only n < 102 arrays (samples), with between-gene dependen-
cies arising from pathway and network relationships. Similarly, as will be our
focus here, when features are extracted from genome-scale sequence data, we
are confronted with such “p ! n” configurations, along with intricate depen-
dencies.

Numerous methodologies have been advanced to analyze such data and to
address the companion, often interwoven, task of validation of findings. In
particular, the multiple testing issues, engendered by separately associating
each feature with some phenotype (outcome, response) of interest, have re-
ceived considerable attention [2; 3; 4; 5]. These methods confer some level
of validation of significant findings in the face of conducting large numbers
of hypothesis tests. Conversely, when we employ all features simultaneously,
and pursue joint modeling of the phenotype, a variety of custom supervised
learning (regression, classification) techniques have been advanced to deal with
inherent over-fitting concerns [6; 7; 8; 9]. Verification of the reproducibility of
prediction rules found using such methods typically makes recourse to cross-
validation [10] or even pre-validation [11]. This is due to the absence of inde-
pendent test data, or small sample sizes precluding artificial creation thereof
although, of course, exceptions exist [12; 13] and may indeed become more
common as per assay costs diminish. Appeal to cross-validation is frequently
uncritical, perhaps because concerns – primarily pertaining to stability [14; 15]
– are not widely appreciated. These concerns are exacerbated in small n set-
tings. Finally, despite the rigors of such data analytic approaches to validation,
additional experimental validation is pursued and, in fact, often mandated for
genome-scale studies.

In this paper we scrutinize the series of validation steps – both analytic and
experimental – conducted in a recent analysis, published in PLoS Genetics,
on predicting the methylation status of CpG islands [1]. It is important to
emphasize from the outset that this study was selected for examination not
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because validation approaches were either poor or lacking. On the contrary,
the authors’ diligent use of stringent multiple testing corrections and strat-
ified cross-validation was coupled with experimental verification of findings.
Consequently, from a validation perspective, it is safe to assert that this work
exceeds much of what appears in the literature. Thus, by showcasing that de-
spite these high standards serious concerns surrounding purportedly validated
results exist, we hope to demonstrate that an even higher bar is required when
attempting to validate findings in genome-scale investigations.

We briefly provide some background context in order to detail the moti-
vation behind the Bock et al., [1] analyses. In human DNA, the measured
frequency of CpG dinucleotides is very low (< 2 %), and duly labeled as CG
suppression. Such suppression is characteristic of genomes that use Cytosine
methylation and may be related to hypermutability of methylated Cytosines.
However, there are exceptions: small regions, typically less than 5,000 base
pairs (bp), where CpG frequencies equal or exceed expectations, known as
CpG islands (CpGIs). These stretches are operationalized in terms of (i) GC
content, (ii) ratio of observed to expected (under an independence assump-
tion) numbers of CpG dinucleotides, and (iii) length, although the defining
values/thresholds employed can vary. Collectively, CpGIs account for ≈ 1% of
the human genome. They are primarily located in the 5’ region of expressed
genes, with more than 60% of known promoters contained therein. Unlike
most CpG dinucleotides, those occurring within CpGIs are usually unmethy-
lated. But, when they are methylated, the associated gene (if any) is per-
manently silenced. This silencing is transmitted through mitosis and thereby
constitutes an epigenetic means of inheritance. Numerous exceptions to the
methylation-free state of CpGIs have been documented including instances as-
sociated with X-chromosome inactivation, imprinting, senescence and cancer
[16; 17; 18]. Particularly in view of the latter association investigation of mech-
anisms leading to the methylation of select CpGIs is of obvious importance.
While little is known in this regard, some recent work implicates local DNA
sequence in determining methylation of CpGs [19; 20; 21]. It is these findings
that provide the impetus for the comprehensive evaluation of the role of local
DNA sequence, and attendant predicted DNA structure, in determining CpGI
methylation status undertaken by Bock et al. After a series of analyses, out-
lined and dissected below, they conclude that certain DNA sequence patterns,
specific DNA repeats and a particular DNA structure plays a significant role in
predisposing CpGIs for methylation. Our revisiting of these analyses indicate
that these findings are overstated.
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2 Results

The dataset analyzed in [1], where it is described in detail, was generously pro-
vided by Christoph Bock. This data, in turn, builds on a prior comprehensive
assessment of CpG island methylation on human Chromosome 21 [22]. Bock
et al analyze a sizable subset (132/149) of all the CpGIs identified in [22], re-
stricting to those where definitive methylation categories were obtained. These
breakdown as 103 unmethylated (UnM) and 29 methylated cases (M). They
then compiled an extensive list of features derived from the DNA sequence of
each of the CpGIs as well as surrounding sequence windows. The resulting 1184
features fall into eight biological classes, including DNA sequence properties
and patterns (428 features), repeat frequency and distribution (494 features)
and predicted DNA structure (28 features). It is worth noting that the first
category includes (standardized) frequencies of all possible tetramers (both
strand- and non-strand specific), while the last category includes not only pre-
dicted structural elements such as rise, twist, tilt and solvent accessible surface
area, but also up to fourth moments (kurtoses) thereof. We reevaluate the se-
ries of analyses as performed by Bock et al., using this common dataset.

2.1 Univariate Assessments Based on CpGI Features

The first set of analyses consists of performing a battery of Wilcoxon rank sum
tests on each feature separately in order to elicit which features differ between
the two (M and UnM) groups. For this suite of analyses only feature values
for the CpGI itself were used. In order to handle the multiple testing issues
spawned by examining such a large number of features Bonferroni corrections
were employed and a two-sided significance level threshold of α = 0.01 was
imposed. This approach is seemingly stringent as both a conservative correc-
tion procedure and significance level are used. Some 41 features are deemed
significant under this approach [1, Table 1], but only a select few are chosen
for follow-up interpretation. In particular, non-strand-specific CACC/GGTG
is highlighted by virtue of being the sole pattern (among the 41 top features)
that is over-represented in the methylated CpGIs. Now, prior to employing
Bonferroni correction, numerous features are excluded on the basis of being
zero for most CpGIs. This filtering is undertaken in order “to simplify the
statistical analysis”. However, there are no difficulties in computing Wilcoxon
statistics for such features and/or effecting subsequent multiplicity corrections.
Here, the filtering reduces the number of candidate features from 1184 to 706.
Had the filtering not been employed non-strand-specific CACC/GGTG, which
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ranked 38th, would not have survived the chosen multiple corrections proce-
dure. As the number of features retained is, of course, highly sensitive to the
manner whereby “mostly zero” is operationalized, this filtering practice can
distort simultaneous inference. It seems further misplaced in settings, such
as the present situation, where features are generated in a scattershot fash-
ion; that is in a maximally inclusive manner without prescribing any prior
hypotheses or feature importance hierarchies. It has been contended that this
filtering does not invalidate simultaneous inference since it is done blind to
phenotype (here methylation status). But, this is not the case: any feature
that is constant across samples (here CpGIs) is necessarily null.

The only other features singled out are the two belonging to the predicted
DNA structure category. Only one – predicted average rise – is mentioned; the
other – predicted roll skewness – being more challenging to interpret. How-
ever, even interpretation of average rise is deferred until univariate analyses
employing not just the CpGI feature values, but also values measured at the
surrounding windows, are conducted. This has the impact of making “the
role of predicted DNA structure even more pronounced”. Now predicted roll
skewness is no longer significant (ranking 360 out of 833 features tested), but
predicted average rise ranks second and predicted average twist, which pre-
viously ranked 126 (out of 706) now ranks third. As these findings attract
considerable attention [1, Figure 1] and are used to conclude that “methylated
CpG islands tend to co-locate with areas of unusual predicted DNA structure”,
we carefully revisit the underlying data analyses.

2.2 Univariate Assessments Using Features From Sur-
rounding Sequence Windows

In addition to feature values derived from the DNA sequence of the CpGI itself,
values were also computed for 10 surrounding windows straddling -20kb to
+20kb. Using this expanded data, univariate feature significance was assessed
as follows. For each feature, Z, a quadratic regression model was fitted:

Zj = Meth + Posnj + Meth ∗ Posnj + Posn2
j + Meth ∗ Posn2

j (1)

where Zj denotes the feature value for the jth sequence window, Meth is an
indicator variable for whether the corresponding (central) CpGI is M or UnM,
and Posnj codes for the relative position of the jth sequence window (j =
−5, . . . ,−1, 0, 1, . . . , 5). Quadratic regression was used to “capture symmetry
around the CpG island”, although the motivation for desiring such symmetry
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is unclear. We note that the flavor of the results that follow is unchanged
whether pure (without the Posn terms in (1)) or mixed quadratic regression
is used. The overall F test for regression, obtainable from the associated
analysis of variance (ANOVA) table, yields p-values that are then subjected
to the same Bonferroni correction procedure, again using a strict significance
level of α = 0.01.

But, despite the use of the same multiplicity correction procedure applied
to the same features, albeit measured over surrounding sequence windows, the
results obtained are radically different. Firstly, now more than a quarter of
the features tested (220/833) are declared significant, even under the stringent
procedure employed. Multiplicity control using the generally more liberal false
discovery rate (FDR) approach [23] brands more than 40% (339/833) of the
tested features as significant, once more at α = 0.01. Recall that the features
themselves were generated in a catch-all fashion, so that the anticipation would
be that the majority would be null. Additionally, the p-values themselves
are remarkable, with 100 features attaining values < 10−10. The top ranked
feature – standard deviation of total length of self-alignments – which achieves
p < 10−51 is not appraised. By way of comparison, when using features based
solely on the CpGI sequence, only the top ranked feature attains a p-value
< 10−10 and, even then, just barely (2.62× 10−11).

It seems puzzling that the inclusion of surrounding sequence windows would
sharpen inference to this extent, especially in light of the modest number
of methylated CpGIs. What has changed, in addition to using surrounding
windows, is the test statistic employed. It is well known that the F statistics
used are notoriously non-robust to departures from underlying assumptions
and that they can preferentially select for features with limited variation [24;
25]. Several approaches to counter these shortcomings have been proposed.
In the p ! n context, penalization/moderation schemes have been devised
that, in part, strive to use between-feature variance components to shrink test
statistics [24; 26; 27]. These approaches are applicable when all features are
commensurate, for example, expression measures obtained from microarray
platforms. However, this is not the case for the sequence-derived features
under consideration here. While we did investigate use of the eBayes/lmFit
functions contained in the Bioconductor [28] limma package [29], effected using
t-statistics obtained by decomposing into single degree-of-freedom contrasts
[30, p153-4] and stratifying on feature class, the resultant attenuation (using
default settings) was insufficient.

Using these contrasts proved informative with regard the role of the pre-
dicted DNA structural features. Figure 1 displays a volcano plot [31] for the
intercept contrast which was by far the most dominant effect, driving signif-
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icance for the (overall) F statistics. Such plots are used to emphasize that
variability plays a key role in significance as well as mean differences – here
methylation effect. The plot has been truncated for display purposes. What
is immediately striking is that the highly significant p-values obtained by the
showcased features – approximately 10−30 and 10−25 for predicted average rise
and predicted average twist respectively – correspond to exceedingly small ef-
fects. On this basis, it is misplaced to argue that these features have any
mechanistic role in CpG island methylation. Since the claimed role for pre-
dicted DNA structure was predicated on the importance of these two features,
we are forced to view such claims with skepticism, at least based on the data
at hand.
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Figure 1: Volcano plot based on t-statistic contrasts highlighting the predicted
DNA structural features emphasized by Bock et al., [1].

To address the first (inter-related) issue of excessive significance declara-
tions even under stringent Bonferroni adjustment we showcase an alternate
strategy based on utilizing a more appropriate null distribution. However re-
pair of, or alternatives to, the chosen F statistics remains the central concern.
In a series of recent papers Efron advances the idea of using an empiric null
distribution in large-scale (i.e., many features) hypothesis testing situations
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[32; 33; 34]. These empiric nulls may be consequentially different from the
theoretic null appropriate for individual level (i.e., single feature) testing. The
corresponding estimation scheme assumes that the bulk of the features are
indeed null which, as argued above, we believe to be the case here. Having
obtained estimates of the empiric null and the mixture distribution describing
all (null and non-null) features, it is straightforward to estimate the non-
null distribution along with the corresponding local false discovery rate. It
is important to note that (i) the distinction between empiric and theoretic
null distributions transcends multiple testing concerns, and (ii) permutation
approaches serve to refine the theoretic null rather than capturing the (appro-
priate) empiric null.
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Figure 2: Comparison of theoretic
and empirical null distributions. The
histogram depicts t-statistic contrast
values; see text.
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Figure 3: Local false discovery rates.
Thresholding at the recommended
level of 0.2 yields a total of 31 sig-
nificant features.

Implementing Efron’s procedure using the R (http://www.r-project.org)
package locfdr gives the results depicted in Figures 2 and 3. From Figure
2 it is apparent that the theoretic null density, effectively a standard Gaus-
sian, is appreciably under-dispersed compared to the empirically estimated
null density. This is likely attributable to strong between feature correlations
which are to be anticipated given the inter-relatedness between many features
and the manner in which they are derived. The associated mixture density
provides a good fit to the histogram of t-statistic contrasts that capture (inter-
cept) methylation effects. In Figure 3 we have thresholded the resultant local
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false discovery rates at the recommended [33] 0.2 level. This yields a total of 8
+ 23 = 31 significant features, in stark contrast to the 220 or 339 as obtained
by the multiplicity control schemes employed by Bock et al. It is important
to reiterate that even among these 31 are features whose significance results
from breakdowns of the underlying F statistics.

2.3 Classification Analyses

All previous analyses have been inherently univariate: features are evaluated
and ranked according to their individual significance. Bock et al., invoke a
number of motivating reasons for going beyond these univariate approaches
and using machine learning / classification techniques to develop and assess
multi-feature models for predicting methylation status which, as previously, is
treated as binary (M or UnM). The forefront classifier employed is a support
vector machine (SVM) with linear kernel and default tuning parameters. This
classifier is applied separately to each of the eight biological feature categories,
as well as various combinations thereof, including the totality of features [1,
Table 2]. Once again seemingly stringent methods for evaluating classifier
performance are used, namely, stratified cross-validation (CV). Based on the
resultant (cross-validated) confusion matrix – the 2× 2 cross-categorization of
actual versus predicted methylation status – interpretative emphasis is placed
largely on the derived “correlation” summary. This summary, which is sym-
metric in false positives (FPs) and false negatives (FNs), is equivalent to the
χ2

1 statistic for testing independence in the two-way table. We revisit these
analyses, focusing on the use of all features, and reveal that the combination
of small n (132 CpGIs), class imbalance (nM = 29 methylated CpGIs), and
reliance on correlation summaries can conspire to produce misleading results.

The trivial model that classifies all CpGIs as UnM has accuracy nUnM/n =
103/132 = 0.78. Baldi et al., [35] brand such models as “highly non-informative
and useless.” Paradoxically, this characterization reveals some utility for these
constant prediction models: as null models / baseline procedures from which
prediction gains of more sophisticated models can and should be judged, as
we now illustrate. Below we consider a more refined baseline model. In eval-
uating classifier accuracy Bock et al., use 10-fold CV. Each (withheld) fold
constitutes one tenth of the data and so, on average, will contain 10 UnM
and 3 M CpGIs. An exact binomial 95% confidence interval around accuracy
(success probability) p = 10/13 ≈ 0.78 has upper confidence limit 0.95. This
exceeds the achieved accuracies of all classifiers examined. So, from a classical
hypothesis testing standpoint, we would conclude that the use of feature-based
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classifiers does not significantly improve on a null (constant prediction) model.
Underscoring this result is variability attributable to small n, nM .

The same idea can be alternatively depicted by scrutinizing the stratified
CV accuracies for the SVM. Figure 4 displays 10-fold CV accuracies for each of
the 20 strata. The variability of these accuracies is evident. Furthermore, while
the SVM average accuracy (86%; green) exceeds the trivial model accuracy
(78%; red), the trivial model accuracy (roughly) equals or exceeds the SVM
lower quartile for 17 out of 20 strata. Conversely, the abovementioned binomial
95% upper confidence limit (95%; blue) exceeds the SVM upper quartile for
12 out of 20 strata. Accordingly, it is possible to view the predictive content
of the collection of sequence-derived features as modest at best – especially
since comparisons here are against the trivial (“useless”) model.
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Figure 4: Cross-validated accuracies for the linear SVM. Each of the 20 box-
plots corresponds to a 10-fold CV run. The dashed horizontal lines are overall
averages as follows: green – SVM; red – trivial (constant) classifier; blue –
upper 95% confidence limit for the trivial classifier.

As mentioned, the correlation summary of classifier performance is sym-
metric in FPs and FNs. This implicitly imparts a (differential) case-weighting
in situations as here, where we have class imbalance, nM &= nUnM . However,
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this weighting was not employed in applying the classifier itself. If correlation
summaries are to serve as the primary assessment criterion then a correspond-
ing loss function / weighting scheme ought be used in obtaining predictions.
Rather than prescribe a specific set of weights we employ receiver operator
characteristic (ROC) curves to evaluate prediction performance which (im-
plicitly) span wide-ranging weights. Further, we present results corresponding
to use of boosting [36; 37], although similar findings pertain to other classifiers
examined including SVMs and random forests [38]. For comparison purposes
we use as a baseline classifier one based on only three crude attributes of a
CpGI: length, chromosomal position, and category. Here CpGI category cor-
responds to the four-level factor as defined, and manually assigned, according
to the region where the CpGI is located: promoter, intragenic, gene-terminal,
and intergenic [1, p0247].
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Figure 5: Receiver operator curves (ROCs) of cross-validated boosting-based
classification of CpGIs for baseline (left panel) and all feature (right panel)
models. The individual traces correspond to differing strata.

The ROC curves for the two scenarios are qualitatively similar, with re-
spective areas under the curve (AUCs) of 0.86 (baseline model) and 0.92 (all
features). Now, of course, CpGI category contains sequence-level informa-
tion as reflected, for example, by the motifs characterizing transcription factor
binding sites and exon-intron boundaries. Indeed, Bock et al., indicate that
the methylation rates over the four levels are 2.5%, 50%, 83% and 45% re-
spectively. So, it is purposeful to determine if the battery of sequence-derived
features provides additional predictive information beyond that afforded by
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the baseline model and, if so, which features are furnishing this improvement.
To address this issue we obtained predictions from the baseline model, and
assessed whether residuals therefrom were associated with features using L1

penalized regression [39; 40], this approach having proved useful for feature
selection in other p ! n settings [41; 42; 9; 43]. Depending on the selection
criteria employed, we find contributions from some 10 - 20 features, consis-
tent with the univariate findings and the above difference in AUCs. However,
absent from these feature sets are the previously highlighted predicted DNA
structural features. So, in summary, in contrast to the classifier comparisons
detailed by Bock et al., for which we believe there was an under-appreciation
of cross-validation variability and an over-reliance on correlation measures,
analyses using ROC-based measures and two levels of rudimentary baseline
models, reveal limited additional predictive content for the sequence-derived
features.

2.4 Experimental Validation

Experimental validation of predictions confers compelling verification. While
such validation is claimed by Bock et al., again further analysis indicates that
matters are not so clear-cut. The manner in which Bock et al., effect such
experimental validation is as follows. Firstly, using the linear SVM trained on
the full (n = 132 CpGIs) dataset and all features, predictions of methylation
status were obtained for all Chromosome 21 CpGIs that were not included in
the original dataset. Next, a selection of 8 CpGIs predicted as UnM and 4
predicted as M was made. Then, using bisulphite sequencing, the methylation
status of these 12 CpGIs was experimentally determined. The results of this
program where that predictions were correct in 10 out of 11 cases, with this
finding accorded a p-value < 0.01. One case was not included since it exhibited
incomplete methylation. However, we note that if previously used methylation
criteria [1, p0250] were employed this case would have resulted in an additional
error, consequential given the small sample size.

We now review all steps of this experimental validation. In obtaining the
pool of all Chromosome 21 CpGIs a relaxed definition of a CpGI is used. From
the 12 selections it is possible to infer that the minimum required length of
a CpGI was reduced to 200 bp as opposed to the previously stipulated 400.
The motivation for this relaxation is seemingly to expand the pool available
for subsequent selection and evaluation. Otherwise, there is little purpose in
validating predictions obtained under conditions that differ from those used
in model development. But, even under the original CpGI definition (length
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> 400bp) there are approximately 90 CpGIs available (as determined using
the EMBOSS-3.0.0 tool newcpgreport), so choosing 8 predicted UnM and
4 predicted M is readily achievable. Under the relaxed definition there are
approximately 845 CpGIs available, which begs the question as to how 12
were selected. As a notable aside, more than 10% of the CpGIs constituting
the original (n = 132) training data do not conform to the stated definition of
a CpGI.

Finally, the cited p-value is seemingly based on binomial testing against a
null success proportion of p0 = 0.5. But, given the manner in which the sam-
pling of CpGIs was performed, a null value of p0 = 8/12 ≈ 0.67 is appropriate.
Observing 10/11 successes under this null gives a p-value > 0.1. Similarly,
framing the significance assessment in terms of the 2 × 2 cross-tabulation of
true and false, positives and negatives, produces equivocal results.

3 Discussion

The analyses of Bock et al., [1], addressing CpG island methylation and its re-
lationship to sequence derived features, were coupled to a seemingly rigorous
validation process. Thus, the single feature, two-sample (M vs UnM) com-
parisons used Bonferroni correction with a stringent significance threshold to
account for multiple testing concerns; the classification analyses (multi-feature
discrimination between M and UnM CpGIs) used stratified cross-validation to
obtain unbiased estimates of classifier performance; and follow-up experimen-
tal validation of model predictions was undertaken. However, in each vali-
dation phase, approaches contributing to potentially misleading results were
employed, and/or consequential issues were neglected.

For the two sample testing these facets included filtering of low-variation
features, choice of highly non-robust test statistics (F from quadratic regres-
sion), and the impact of between-feature dependence on the (theoretical) null
distribution. Furthermore, results obtained through use of the F statistic are
selectively interpreted, with emphasis accorded to predicted DNA structural
features while others, that are highly significant yet problematic to under-
stand, are disregarded. It should be acknowledged that such selectivity is
common practice. In the classification context, an over-reliance on correlation
summaries, with their attendant symmetry with respect to false positives and
false negatives in an asymmetric (class imbalanced) setting, and an under-
appreciation of cross-validation variability in small sample settings, leads to
an inflated assessment of the predictive content of the ensemble of sequence-
derived features. The experimental validation is based on a small number
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of test CpG islands, that are constitutively different from those used in de-
veloping models and predictions, with subsequent evaluation of significance
of predictions using an inappropriate referent. Compounding these primarily
methodological concerns are the facts that more than 10% of the CpGIs in the
(training) dataset do not conform with the stated operating definition and the
threshold for determining methylation is not consistently applied.

In summary, then, in order to affirm the conclusions of Bock et al., as to the
role of certain DNA sequence patterns, specific DNA repeats and a particular
DNA structure in methylation of CpGIs, additional data and alternative anal-
ysis approaches seem warranted. In highlighting the difficulties encountered
by conscientious, yet perhaps rote, approaches to validation in genome-scale
settings we hope to alert researchers to the need for heightened care in choice
and application of analytic and companion verification methods.
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