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Abstract 
The illusory causation effect describes the tendency to judge an 
unrelated cue and outcome to be causally related. The standard 
procedure for assessing the illusion is based on the implicit 
assumptions that participants start as naïve observers with no 
prior beliefs about the likely relationship between the cue and 
outcome, and that learning can be adequately captured as a 
point-estimate causal rating after null contingency training. 
Here, we use a novel distributional measure to assess 
participants’ beliefs over a range of causal relationships prior 
to, as well as after, exposure to non-contingent cues and 
outcomes. Across two experiments with different causal 
scenarios and 50% cue and outcome density, we show that 
participants have an initial bias towards expecting a causal 
relationship between the cue and outcome, and that this bias is 
mostly corrected after exposure to the null contingency. We 
conclude that distributional measures of causal beliefs can 
offer novel insights in understanding the illusory causation 
effect. 

Keywords: illusory causation, prior beliefs, distribution, 
contingency learning, null contingency 

Introduction 
A robust finding in the contingency learning literature is that 
when a cue and outcome are unrelated (i.e., a null 
contingency), participants mistakenly judge the cue and 
outcome to be causally related. This overestimation for a null 
contingency has been termed the illusory causation effect, 
and has been found across a range of causal scenarios (see 
Matute et al., 2019, for a review), with binary and continuous 
outcomes (Chow et al., 2019), and when the task requires 
passive observation as well as active responding from 
participants (Alloy & Abramson, 1979). The illusory 
causation effect has received a considerable amount of 
interest in the contingency learning literature due to its 
potential in modelling the formation of everyday false causal 
beliefs in the laboratory, and its implications for theoretical 
models of learning that generate normative predictions. 

In a typical illusory causation experiment, participants are 
tasked with learning the relationship between a cue (e.g., a 
drug) and an outcome (e.g., recovery from a disease). They 
are then exposed to a series of training trials where the cue is 
either present or absent, and the outcome is either present or 
absent. These trial types can be represented as a 2x2 

contingency table with 4 cell types: cell A (where the cue and 
outcome are present), cell B (where the cue is present but the 
outcome is absent), cell C (where the cue is absent but the 
outcome is present), and cell D (where the cue and outcome 
are both absent). The veridical contingency between the cue 
and outcome is captured by the ΔP statistic (Allan, 1980; 
Jenkins & Ward, 1965): p(O|C) – p(O|~C), which is the 
probability of the outcome occurring in the presence of the 
cue, minus the probability of the outcome occurring in the 
absence of the cue. When the difference between these 
conditional probabilities is 0, the cue and outcome are 
unrelated (i.e. there is a zero or “null” contingency). 
Although participants are generally capable of learning about 
cues and outcomes that have positive and negative 
contingencies (Shanks, 1987; Shanks & Dickinson, 1987), 
they reliably misjudge a non-contingent cue and outcome to 
be causally related. The magnitude of the illusory causation 
effect is exacerbated by selection of cell frequencies that 
implement high cue (cells A and B), and/or outcome density 
(cells A and C, e.g., Blanco et al., 2013). 

Various accounts have been proposed to explain why the 
illusory causation effect occurs. Statistical models assume 
that participants implicitly compute ΔP, but give unequal 
weighting to different cell types. Preferential weighting to 
cell A (where the cue and outcome are both present) would 
explain why high cue and outcome density conditions 
generate stronger causal illusions, since both involve higher 
frequencies of cell A trials. Indeed, the order of importance 
of the cells has been shown empirically to be: A > B >= C > 
D (e.g., Wasserman, Dorner, & Kao, 1990), providing some 
support for these weighted statistical models. 

Another class of explanations states that participants learn 
by updating the associative strength between the cue and 
outcome. Associative models such as the Rescorla-Wagner 
(RW) model (Rescorla & Wagner, 1972) specify learning as 
the updating of associative strength (V) via prediction error. 
The RW model can be used to model the illusory causation 
effect if it is assumed that an additional context cue is present 
for all 4 cells. This context cue provides a means for the 
model to account for learning on cell C trials, which 
otherwise would not occur since the RW model can only 
update associative strength for cues that are present on a 
given trial. The RW model can account for some key features 
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of contingency learning such as the observation that causal 
ratings increase with additional training for positive 
contingencies, and decrease over additional training for 
negative contingencies (Shanks, 1987).  

Despite differences between the statistical and associative 
approaches, Chapman and Robbins (1990) showed that the 
asymptotic predictions of the Rescorla-Wagner model align 
with that of ΔP. Additionally, allowing for each cell type to 
have different alpha rates (i.e., salience) in the RW model 
leads to predictions in line with weighted ΔP (Wasserman, 
1990; Wasserman, et al., 1993). In both cases however, the 
assumption that cell types should receive differential 
weighting is largely descriptive.  

In this study, we investigate the illusory causation effect 
through a Bayesian lens by introducing two novel features 
that deviate from the standard procedure. Typically, 
participants provide a single, point estimate of the 
relationship between the cue and outcome on a causal rating 
scale (Matute et al., 2015). A rating that is significantly above 
0 (the normative answer), is then interpreted as the existence 
of a causal illusion. While this method has proved to be 
reliable for capturing the illusory causation effect, it may 
mask complexity and uncertainty in what participants have 
learned. It is possible that participants entertain multiple 
hypotheses or beliefs about the way in which the cue and 
outcome might be related (see Lee et al., 2021).  

Another feature of the standard illusory causation 
procedure is that participants complete the training phase 
first, and subsequently estimate the contingency between the 
cue and outcome. Implicit in this procedure is the assumption 
that whatever contingency judgement participants provide 
can be attributed to their learning during the training phase. 
Statistical and associative models of the illusory causation 
effect also implicitly assume that participants start as naïve or 
neutral observers. In other words, the metric used to model 
learning (ΔP or associative strength) is assumed to start at 0. 
Although previous studies have shown that participants do 
hold prior beliefs that can affect the magnitude of the causal 
illusion, these prior beliefs typically concern real-world 
contingencies that are manipulated to be more or less 
plausible (e.g. Béghin & Markovitz, 2023; Vicente et al., 
2023; Fuselgang & Thompson, 2000, 2003). In contrast, we 
were interested in measuring prior beliefs in the standard 
version of the task where participants are given hypothetical 
and unknown cues and outcomes. 

The aim of the current study was to test a novel 
distributional measure of causal beliefs in the illusory 
causation task. In addition to the conventional point-estimate 
causal rating measure, we used a distribution builder 
(Quentin, 2016) to assess participants’ beliefs in 5 causal 
hypotheses (strong prevention, weak prevention, no effect, 
weak causation, strong causation). A further deviation to the 
standard procedure was that we assessed participants’ beliefs 
prior to, as well as after, exposure to any cues and outcomes 
in a null contingency training phase. We used 50% cue and 
outcome density, such that any causal illusion displayed at 
the end of training would not be influenced by cue and 

outcome density effects (previous studies show a weak 
illusion under these conditions). Finally, we included a 
control group who was not assessed on their prior beliefs to 
examine whether the act of allocating belief to various causal 
possibilities affected learning (see Howe et al., 2021). We 
tested these aims in two experiments involving different 
causal scenarios.  

Experiment 1 
Experiment 1 used a cover story where participants were 
asked to assume they were a scientist investigating the effects 
of a fictitious chemical (chemical ORSPR1) on cell growth. 
This causal scenario was intended to be relatively neutral, 
since chemicals could have beneficial or detrimental effects 
on cell counts. Note however, that the presentation of the 
outcome was binary (cell growth either occurred or did not 
occur) on each training trial. 

Method 
Participants One hundred and one participants (56 female, 
44 male, 1 other, M age = 42.0, SD age = 15.0) residing in 
Australia, USA, or the UK, were recruited from the 
Prolific.co platform. Participants were randomly allocated to 
the prior (n = 58) or control (n = 43) group. All participants 
passed the attention checks. 

 
Materials The experiment was programmed with the jspsych 
library (de Leeuw, 2015) and hosted via JATOS (Lange et al., 
2015). The distribution builder (Quentin, 2016) was adapted 
to assess distributional causal beliefs. 
 
Procedure The experiment consisted of a training phase, test 
phase, and questionnaire phase. Participants were asked to 
imagine that they were a scientist working in a lab tasked with 
discovering what effect a hypothetical chemical (chemical 
ORSPR1, i.e., the cue) had on cell growth in live tissue 
samples (i.e., the outcome), which they would observe over a 
series of days (i.e., trials). Participants were explicitly told 
that they would observe a new tissue sample on each day. 

During each training trial, participants were presented with 
text stating whether the tissue sample was treated or not 
treated with chemical ORSPR1. On cue present trials, a 
beaker icon was presented. On cue absent trials, the same 
image was presented greyed-out at 3% opacity. Once 
participants observed whether the cue was present or absent, 
they were prompted to make a prediction by pressing “A” for 
“no cell growth” or “L” for “cell growth”. Outcome feedback 
was then presented for 2s as text (“cell growth did occur/did 
not occur”), accompanied by a petri dish icon if the outcome 
was present or greyed out (3% opacity) if the outcome was 
absent. In each block of training there were 6 repetitions of 
A, B, C, and D trials, presented in randomized order, and 
there were 2 blocks of training (48 trials total). The cue and 
outcome density were both 50%, and the inter-trial interval 
was 1s. 

If participants were allocated to the prior group, they were 
asked to rate their initial beliefs prior to the training phase. 
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Participants were told that they would be asked for their 
beliefs in two different ways. For the first question, they were 
asked “what effect do you think chemical ORSPR1 has on 
cell growth” by allocating 20 balls in the distribution builder 
(see Figure 1) according to their strength of belief in each of 
the 5 options (I think chemical ORSPR1 “strongly 
prevents”/“weakly prevents”/“has no effect”/“weakly 
causes”/“strongly causes” cell growth). Participants allocated 
belief by clicking + and – buttons below each option, and 
instant visual feedback was provided as participants updated 
their beliefs. A running tally of the number of allocated balls 
was provided underneath the distribution builder, and 
participants could progress once all balls had been allocated. 

 

 
 

Figure 1: Screenshot of the distribution builder (Quentin, 
2016) used to assess causal beliefs. 

  
Participants then gave the standard causal rating on the 

next screen. Participants were asked to provide a single, best 
estimate to the same question by clicking on a visual 
analogue scale that ranged from “strongly PREVENTS” to 
“strongly CAUSES”. The midpoint was marked with a tick 
and labelled “has NO effect on”. A bidirectional rating scale 
was used to provide a conservative measure of the illusory  
 

causation effect (see Ng et al., 2023). Once participants were 
happy with their rating they could click Continue to progress.  

After training, both groups were asked about their causal 
beliefs using both the distribution builder and visual analogue 
scale. Note that this was the second time that the prior group 
had to make these judgements, but the first time for the 
control group.  

Results 
Training For brevity, the training data will not be presented.  
 
Test: Distribution Figure 2A shows the results from the 
distribution of participants’ beliefs in a range of causal 
relationships at two time points (prior, and post-training).  

To analyze the distribution of beliefs we computed two 
indices: a bias index obtained by multiplying the number of 
balls allocated to each option by coefficients [-2, -1, 0, +1, 
+2], and a shape index obtained by multiplying by 
coefficients [-2, +1, +2, +1, -2]. Note that the bias coefficients 
weight the “strong” options as double the “weak” options. 
Under this assumption, a bias index of 0 represents a lack of 
bias towards causal or prevention options, positive values 
indicate a causal bias, and negative values indicate a 
prevention bias. For the shape index, 0 represents a perfectly 
uniform distribution, positive values indicate an inverted-U 
distribution with maximal belief for “no effect”, and negative 
values indicate a U-shape distribution with maximal belief 
for the two extreme options. Perfectly normative responding 
would be indicated by a bias index of 0 and a shape index of 
40 (all 20 balls allocated to “no effect”). 

From Figure 2A, it is clear that prior to training, 
participants have the highest degree of belief in a potential 
causal relationship between the cue and outcome, and 
minimal belief in “no effect” or a preventative relationship. 
Unsurprisingly for the prior group, the bias index for the 
distribution of prior beliefs was significantly above 0, t(57) = 
5.86, p < .001.  
 

 
 

Figure 2. A) Mean proportion belief (i.e., allocated balls) for each option in the distribution builder, and B) mean causal 
ratings for each time point (prior to, and post-training) in Experiment 1. Error bars represent standard error of the mean.
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However, after null contingency training, the distribution 
appears much more normative and symmetrical, with the 
highest amount of belief now at “no effect”. In support of 
these observations, there was a significant decrease in the 
bias index, t(57) = 5.18, p < .001, and significant increase in 
the shape index, t(57) = 7.66, p < .001, as a result of training. 
The prior group’s post-training bias index did not differ from 
0, t(57) = 0.348, p = .729, while the control group’s bias index 
showed a bias towards causal options, t(42) = 5.83, p < .001. 
There was a significant group difference in the post-training 
bias indices, t(99) = 4.34, p < .001, but no group difference 
in the shape indices, t(99) = 0.17, p = .86. 

 
Test: Point estimate Figure 2B shows the results for the 
standard causal rating test of the causal illusion (0 is the 
normative answer) at two time points (prior to, and post-
training). As can be seen in Figure 2B, the prior group’s 
causal rating was significantly greater than 0 at the outset of 
training, t(57) = 6.0, p < .001, demonstrating an initial bias 
that the cue and outcome were causally related. After null 
contingency training, the prior group’s causal rating reduced, 
and was no longer significantly above 0, t(57) = 0.37, p = 
.714. In contrast, the control group showed a significant 
causal illusion following the same null contingency training, 
t(42) = 4.95, p < .001. Causal ratings in the control group 
were significantly higher than the prior group post-training, 
t(99) = 3.66, p < .001. 

Discussion 
The main findings from Experiment 1 were that a) 
participants showed an initial bias towards expecting causal 
relationships prior to experiencing any training trials, b) this 
bias was fully corrected after exposure to a null contingency 
with 50% cue and outcome density (point-estimate causal 
rating did not differ from the normative answer and the 
distribution of belief was no longer causally-biased, with 
maximal belief for the normative option), and c) in contrast, 

the control group showed a significant illusion in their point-
estimate ratings and a causal bias in their distribution of 
beliefs after training. Thus, the act of explicitly allocating 
belief to a range of causal options (prevention, no effect, 
causation) seemed to have inoculated against the illusion. 

Experiment 2 
Experiment 2 used a different, more commonly used causal 
scenario involving the relationship between a drug and 
recovery from a disease. This scenario was expected to 
produce stronger causal priors than in Experiment 1, since 
drugs are specifically developed to target particular diseases.  

Method 
Participants One hundred participants (66 female, 33 male, 
1 other, M age = 37.3, SD age = 12.8) were recruited from the 
Prolific.co platform. Participants were randomly allocated to 
the prior (n = 49) or control (n = 51) group. One participant 
from the prior group was excluded from analysis due to 
failing the attention checks. 

 
Procedure The procedure was identical to Experiment 1 
except that in Experiment 2, participants were tasked with 
judging the relationship between a hypothetical drug (drug 
ORSPR1) and recovery from a newly discovered disease. The 
instructions and stimulus images were modified accordingly. 

Results 
Test: Distribution Figure 3A shows the results from the 
distribution builder. In contrast to our predictions, the drug-
recovery scenario did not produce a stronger causal bias in 
participants’ prior beliefs. In fact, belief in the drug being a 
weak cause of recovery was numerically stronger than belief 
in the drug being a strong cause, and there was a greater 
amount of belief allocated to “no effect” compared to 
Experiment 1.  
 

 
 

Figure 3. A) Mean proportion belief (i.e., allocated balls) for each option in the distribution builder, and B) mean causal 
ratings for each time point (prior to, and post-training) in Experiment 2. Error bars represent standard error of the mean. 
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Again unsurprisingly, the bias index for the prior 
distribution was significantly above 0, t(47) = 5.20, p < .001. 
Nevertheless, after null contingency training, the distribution 
for the prior group again became more peaked and 
symmetrical, with maximal belief for the “no effect” option. 
These observations were supported statistically, with a 
significant decrease in the bias index, t(47) = 3.48, p = .001, 
and significant increase in the shape index, t(47) = 6.99, p < 
.001, after null contingency training in the prior group. This 
time however, post-training group differences were not 
significant for the bias index, t(97) = 1.07, p = .287, nor the 
shape index, t(97) = 0.292, p = .771. Also in contrast to 
Experiment 1, the bias index was significantly different from 
0 in both the prior, t(47) = 2.42, p = .019, and control groups, 
t(50) = 3.60, p < .001, after null contingency training.  

 
Test: Point estimate Figure 3B shows the results for the 
typical point-estimate causal rating test. Similar to 
Experiment 1, the prior group’s causal rating was 
significantly greater than 0 at the outset of training, t(47) = 
8.70, p < .001, again demonstrating an initial bias towards 
expecting a causal relationship. However unlike Experiment 
1, after null contingency training, both groups’ ratings were 
significantly greater than 0, smallest t(47) = 2.89, p = .006, 
and there was no significant group difference, t(97) = 0.84, p 
= .403. 

Discussion 
The main results from Experiment 2 were that a) participants 
again showed an initial bias towards expecting causal 
relationships prior to training, b) unlike Experiment 1, this 
bias did not fully correct after null contingency training in 
either the causal rating or bias index, and c) also unlike 
Experiment 1, there were no group differences in the 
distribution indices nor the causal ratings after training, with 
both groups displaying a significant causal illusion. Thus, the 
inoculation effect observed in Experiment 1 was not observed 
in Experiment 2. 

General Discussion 
The first major finding in these experiments was that the 
distribution of prior beliefs was biased towards expecting 
causal relationships. In both experiments, the maximum 
amount of belief was allocated to the two causal options. 
Contrary to our predictions, the scenario involving the effect 
of a drug on recovery from a disease (Experiment 2) did not 
produce a stronger bias towards causal options than the 
scenario involving the effect of a chemical on cell growth 
(Experiment 1). The instructions for the two scenarios were 
devised to be as similar as possible (e.g., both involved the 
participant assuming the role of a scientist working in a lab), 
so it is possible that the scientific context overshadowed any 
effect of the specific cues and outcomes employed.  

The second major finding was that reassuringly, the biased 
prior distribution of beliefs became much more normative 
after exposure to a null contingency with 50% cue and 
outcome density. In Experiment 1, the distributional prior 

became perfectly symmetrical, and the causal bias 
disappeared. This was consistent with participants’ final 
causal rating, which did not differ significantly from the 
normative value of zero. In Experiment 2, although the shape 
of the distribution changed in a similar way to Experiment 1 
after training, a residual causal illusion was seen in both the 
causal rating and in the bias index of the distribution.  

It is important to highlight that in both experiments, both 
groups allocated maximal belief to the normative “no effect” 
option after null contingency training. Thus, our results show 
that on the whole, participants do in fact update their beliefs 
appropriately to arrive at the correct answer. This stands in 
contrast to interpretations of the classic illusory causation 
effect as a failure of acquisition, or a demonstration of non-
normative learning. It should be emphasized that we do not 
believe our results speak against the idea of the illusory 
causation phenomenon being a genuine effect. However, our 
results do show that there is a high degree of uncertainty from 
participants in contingency learning tasks, and that 
participants entertain belief in a range of causal hypotheses, 
some of which are mutually exclusive with one another. The 
distributions we obtained were not the result of averaging 
over participants who allocated belief to a single option. Most 
participants spread their belief over multiple options, even 
after training. Thus, a single rating may not always be ideal 
since it fails to capture these complexities in learning. 

Interestingly, while the drug-recovery scenario in 
Experiment 2 failed to generate more biased prior 
distributions, there was more residual bias in their post-
training ratings. The results from the two cover stories are 
therefore somewhat contradictory, but may be explained if 
we distinguish between biases in the prior, and biases in 
updating. Since the drug-recovery scenario generated a 
similar distribution of prior beliefs to the chemical-cell 
growth scenario, the scenario differences must be due to 
differences in how participants updated their prior in 
response to trials. Thus, one advantage of the Bayesian 
approach is that differences between experimental groups or 
individuals can be attributed  to differences in the prior (i.e., 
initial beliefs) and/or to the likelihood (i.e., updating, see 
Howe et al., 2021).  

The final major finding was that we demonstrated that 
assessing participants’ prior beliefs in a range of causal 
relationships can inoculate participants against showing the 
causal illusion. In Experiment 1, the prior group did not show 
the illusion in their final causal ratings, and the distribution 
of beliefs became perfectly symmetrical. In contrast, the 
control group who were not assessed on their prior beliefs 
showed a causal illusion in their causal rating and in the form 
of a non-symmetrical distribution. However, since this effect 
was not obtained in Experiment 2, this conclusion is tentative 
at present. The cover story seems to be critical, and it is 
unclear whether the inoculation effect would still be present 
when the cue or outcome occur more frequently, since these 
conditions are known to inflate the illusion. Unfortunately, it 
is not possible to discern whether the inoculation effect was 
due to exposure to the distribution builder, the causal rating, 
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or the combination of the two. It is also possible that merely 
alluding to the possibility of a preventative or null 
relationship in the instructions is sufficient. Certainly, the 
distributions that we obtained suggest that participants do not 
give much weight to these possibilities at the outset of 
training.  

In any case, a simple change of causal scenario in 
Experiment 2 eliminated this inoculation effect. This result 
was particularly surprising because there were no apparent 
differences in prior beliefs between the two experiments, and 
the final causal rating observed in the control group was 
numerically higher for the chemical-cell growth scenario in 
Experiment 1 than the drug-recovery scenario in Experiment 
2, which is the opposite pattern to what would be predicted if 
the drug-recovery scenario produced stronger priors and/or 
less updating. The current experiments were not set up to 
isolate the key determinant of any scenario differences, and 
thus we will withhold speculation on the reason for these 
differences. Nevertheless, our results highlight the need to 
consider the cover story when designing and reviewing 
studies on illusory causation. 

Returning to explanations of the illusory causation effect, 
the biased prior distributions that we observed might offer 
one explanation for why participants weight the cells 
differently in contingency learning experiments. If 
participants have a prior belief that a cue and outcome are 
causally related, they might initially pay more attention to A 
and B trials to assess the validity of their primary hypothesis 
(i.e., a “positive test strategy”, Mandel & Vartanian, 2009). 
C and D trials might only become relevant when participants 
have rejected the hypothesis that the cue and outcome are 
causally related. This conclusion is similar to the idea that 
beliefs about causal mechanisms change how participants use 
covariation information (Fugelsang & Thompson, 2001; 
2003), as well as the idea that participants’ encoding of 
covariation information is restricted to participants’ focal sets 
(Cheng, 1997; Cheng & Novick, 1990). Eliciting 
participants’ prior beliefs using the distribution builder may 
serve to expand participants’ focal sets or consider other 
types of causal mechanisms, allowing them to consider the 
full range of contingencies. 

An obvious and intriguing question that follows from our 
results is why participants should show an initial causal bias. 
The bias may exist because causal relationships are 
encountered more frequently in the real world. Another 
possibility is that prevention learning is more complex or 
abstract to represent. Learning about prevention necessarily 
requires 2 stages: learning that a cue or context causes an 
outcome, and then learning that the addition of another target 
cue prevents that outcome. In associative learning, Lee and 
Lovibond (2021) have shown that after this exact type of 
training, participants infer a variety of causal structures, with 
only a subset of participants learning that the target cue is a 
direct preventor of the outcome. A final but related possibility 
is that the biased prior was an artefact of the experimental 
context. Although we were careful to use neutral language 
(e.g., “Your job is to learn the relationship between…”) in 

order to avoid hinting to participants that the underlying 
contingency was positive, it is possible that participants 
nevertheless assumed that this was the case. In other words, 
participants may assume that an experiment on learning is 
specifically an experiment on causal learning (see Szollosi & 
Newell, 2020). The laboratory setting employed in both cover 
stories may have had a similar effect if participants assumed 
that the scientists would only test chemicals or drugs that 
were good candidates to produce the effect in question. Some 
interesting questions for future research are whether a truly 
neutral causal scenario can be devised, to what extent 
participants’ prior beliefs can be manipulated, and how cue 
and outcome density influence updating. For example, 
participants may fail to update their prior under high cue 
and/or outcome density as frequent cell A trials is consistent 
with a causal relationship. 

One critique of our procedure is that because we used 
hypothetical stimuli that were relatively immune to real-
world knowledge, the distributions of beliefs that we 
obtained were not genuine, or strongly held beliefs. To 
examine this possibility, we computed the correlation 
between prior, and post-training bias and shape indices in 
both experiments. In both experiments, there was a 
significant correlation between the prior and post-training 
shape indices, rs >= .40, ps <= .005, but not between the pre- 
and post-training bias indices, rs <= .24, ps >= .094. This 
pattern of results is probably due to the fact that many 
participants showed a bias index of 0 after training. This 
result might suggest that participants did not have strong prior 
beliefs. However, one could also argue that abandoning prior 
beliefs is a sensible thing to do in this context given the nature 
of the stimuli. It is also worth noting that participants who 
were uncertain could have allocated an equal amount of belief 
to all causal options (and some participants did). Thus, we 
believe that the distribution builder is a valid method of 
assessing causal beliefs. 

In conclusion, we found that participants entertain a range 
of causal possibilities in illusory causation tasks. Participants 
showed an initial bias towards expecting a causal 
relationship, but this bias was largely corrected after exposure 
to a null contingency. We found consistent results from our 
novel distributional measure and the conventional causal 
rating, lending support to its reliability in assessing causal 
beliefs. We believe that including distributional measures of 
prior beliefs has the potential to offer novel insights in 
understanding the origins of false causal beliefs.  
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