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Dynamically organized chromatin complexes often involve multiplex chromatin
interactions and sometimes chromatin-associated RNA! 3, Chromatin complex
compositions change during cellular differentiation and ageing, and are expected
to be highly heterogeneous among terminally differentiated single cells*”. Here we

introduce the multinucleic acid interaction mappingin single cells (MUSIC) technique
for concurrent profiling of multiplex chromatin interactions, gene expression and
RNA-chromatin associations within individual nuclei. When applied to 14 human
frontal cortex samples from older donors, MUSIC delineated diverse cortical cell
types and states. We observed that nuclei exhibiting fewer short-range chromatin
interactions were correlated withboth an ‘older’ transcriptomic signature and
Alzheimer’s disease pathology. Furthermore, the cell type exhibiting chromatin
contacts between cis expression quantitative trait loci and apromoter tends to be that
inwhich these cis expression quantitative trait loci specifically affect the expression
oftheir target gene. In addition, female cortical cells exhibit highly heterogeneous
interactions between XIST non-coding RNA and chromosome X, along with diverse
spatial organizations of the X chromosomes. MUSIC presents a potent tool for
exploration of chromatin architecture and transcription at cellular resolutionin

complex tissues.

Three-dimensional folding of the genome is known to exhibit dynamic
changes during cellular differentiation processes and demonstrates
heterogeneity among terminally differentiated single cells*”. Although
itsregulatory role in the expression of specific genes is well estab-
lished® ', the extent to which the three-dimensional genome structure
impacts the expression of most genes remains a topic of debate™. Given
the pronounced heterogeneity observed in chromatin structure and
gene expression across individual cells'>*, a comprehensive under-
standing of the relationship between three-dimensional genome
structure and gene expression at single-cell resolution is necessary.
Therefore, the development of single-cell multimodal technologies
capable of simultaneous profiling of chromatin conformation and
gene expression is instrumental for elucidation of these intricate
relationships.

Single-cellmultiomic technologies enable joint analysis of chromatin
conformation and gene expression "’ (Supplementary Table 1and
Supplementary Note 1). Despite these technical advances, the simul-
taneous profiling of multiplex chromatin interactions (co-complexed
DNA sequences), gene expression and RNA-chromatin associations
from a single cell remains challenging. To fill this gap we developed
the technique multinucleic acid interaction mapping in single cells
(MUSIC), whichenables the simultaneous profiling of gene expression
and co-complexed DNA sequences with or without co-complexed RNA
atthe single-cell level.

The architecture of chromatin can encompass both pairwise and
multiplex chromatininteractions, highlighting the intricate nature of
chromatin complexes'*?°2, ChIA-Drop has facilitated the mapping of
multiplex chromatin interactions at single-complex resolution from
bulkcells, showing that multiplex chromatininteractions are prevalent
in Drosophila®. The MUSIC technique expands the capability of evaluat-
ing the composition of pairwise and multiplex chromatininteractions
inindividual human cells at single-cell resolution.

Inadditionto DNA, chromatin complexes can also encompass RNA
molecules, introducing another layer of complexity to chromatin archi-
tecture">*, Chromatin-associated RNA has been shown to contribute
to the regulation of gene expression'**%. For instance, the accumula-
tion of XIST long non-coding RNA (IncRNA) on the X chromosome
(XIST-chromosome X association) is crucial for the silencing of one
of the two X chromosomes in female cells, a process known as X chro-
mosome inactivation. Various human tissues exhibit both shared and
tissue-specific incomplete X chromosome inactivation genes (that
is, genes that escape from inactivation) that are expressed from the
silenced X chromosome?®. Genes with incomplete X chromosome
inactivation can show higher expression levels in women, potentially
contributing to sex differences in disease susceptibility?”. Recent
advancements have enabled genome-wide mapping of RNA-chromatin
associations in bulk cells"**"32, With the application of MUSIC, we can
now obtain RNA-chromatin association maps at the single-cell level.

'Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA. ?Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego,
La Jolla, CA, USA. ®Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA. “Present address: Department of Genetics, School of Medicine, Stanford, CA, USA.

5These authors contributed equally: Xingzhao Wen, Zhifei Luo. *e-mail: szhong@ucsd.edu

648 | Nature | Vol 628 | 18 April 2024


https://doi.org/10.1038/s41586-024-07239-w
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-07239-w&domain=pdf
mailto:szhong@ucsd.edu

MUSIC
Addition of Addition of i
Addition of complex barcodes (10X + 17,
DNA/RNA linker cell barcodes plex ( ) DNA reads
[ 1
@8O 10X barcodes C D 17 barcodes > RNA reads
inKer
: x3
H N C 1x10%
DD clusters
S>> Y g "
Split and pool 3 1x10%1 RD clusters
o DNA © 1 %101 RR clusters
B [~ DNA LD =000 LD )
va*" X DNA .w:,::,; :{v Rel O@0T~s g 5 m‘*’f} :«:5 d 1x10M
3 s elease PE o x 1
Q § F
3 @ complexes eoc 7 =000 = s DD contacts
g_ o L NRNA i —> —_ % 1 x 108
8 00 . 0. o =0000 . oo .g 1 %105 RD contacts
o
o
O~ T RNA @ T~ @00 T~ 000 T~ 1x1024 RR contacts
B R apna 0005~ ~ o=t — =000~ ren—
................................ Cellno. 1 Single cells Cell no. 2,546

Fig.1|MUSIC workflow and statistics. a, Schematic view of MUSIC
experimental pipeline. b-d, Summary of MUSIC datain H1 cells. Numbers of
uniquely mapped non-duplicate reads (b), clusters (c) and pairwise contacts
(d)ineveryH1cell (column, n=2,546). DNA-DNA (DD, blue), RNA-DNA (RD,

Using MUSIC, we uncover cellular heterogeneity in XIST-chromosome
X association levels (XAL) within the female cortex and explore the
covariation between XAL and chromatin interactions among female
cortical cells.

Design and workflow

Development of MUSIC technology is guided by three specific design
goals which, collectively, enable the joint profiling of gene expres-
sion, co-complexed DNA sequences and RNA-chromatin associations
from the same nucleus (Fig. 1a). The first goal is to construct RNA and
fragmented DNA into a single sequencing library and identify which
RNA and DNA sequences originated from the same nucleus. Thisgoal is
achieved by labelling all RNA and fragmented DNA in the same nucleus
withaunique cellbarcode, whichenables the identification and match-
ing of RNA and DNA sequences originating from the same nuclei.

The second goal is to distinguish RNA inserts from DNA inserts in
the sequencinglibrary. To achieve this, distinct nucleotide sequences
areused for the RNA and DNA linkers, which are ligated to the RNA and
DNA molecules, respectively. These linkers are sequenced alongside
the RNA and DNAinserts, enabling the differentiation of RNA and DNA
molecules within the sequencing data. The third goal is to capture
and identify DNA-DNA and RNA-DNA associations, including mul-
tiway contacts. To achieve this, each molecular complex is labelled
with aunique complexbarcode. A molecular complex can encompass
various combinations of DNA and RNA, including (1) anisolated RNA
molecule, (2) anisolated DNA fragment, (3) multiple DNA fragments,
(4) multiple RNA molecules, and (5) at least one RNA molecule and at
least one DNA fragment. These complex barcodes, together with the
cell barcodes, allow for the identification of co-complexed DNA and/
or RNAineachcell.

The MUSIC workflow contains two major steps (Supplementary
Note 2). The first of these ligates the RNA linker to the RNA molecules
and the DNA linker to the fragmented DNA and adds the cell barcodes
(Extended Data Fig. 1a—e). The second step adds a complex barcode
to any RNA or DNA within the same molecular complex. The complex
barcode consists of a10X barcode and an 17 barcode (Extended Data
Fig.1f,g). Thefinal sequencinglibraryis sequenced with a 28 base pair
(bp) readlsequence, an 8 bp index sequence thatis the I7barcode and
al50 bpread2 sequence (Extended DataFig. 1h). The 28 bp read1 cor-
responds to the 10X barcode, which consists of a16 bp 10X GEM barcode
and al12 bp 10X unique molecular identifier (UMI). Read2 contains the

grey) and RNA-RNA (RR, yellow) clusters are counted separately. Multiplex
interactionsare projected to pairwise interactions, with the numbers of
pairwise contactsshownind.

third, second and first cell barcodes, the RNA or DNA linker sequence
and the RNA or DNA insert. It should be noted that each read pair is
designed to capture only one insert, either an RNA or aDNA insert,
becausereadlis dedicated to reading the 10X barcode. This design dif*-
fers fromseveral ligation-based methods such as Hi-C** and iMARGI?®%
inwhich each read pair represents two inserts.

RNA-chromatininteractions in embryonicstem cells

We applied MUSIC to analyse a mixed population of H1 human and
E14 mouse embryonic stem cells. The resulting mixed-species MUSIC
library was sequenced onaNovaSeq platform, generating 3,067,956,666
read pairs. These read pairs resolved 533,233,368 uniquely mapped,
non-duplicate and barcode-complete (containing cell barcode, 10X
barcode, 17 barcode and either DNA or RNA linker) (UMNDBC) read
pairs (Supplementary Table 3). According to the experimental design,
because each UMNDBC read pair contains only one DNA or RNAinsert
we will refer to a UMNDBC read pair as either a DNA or RNA read. This
mixed-species dataset showed low species-mixing rates at both the
cellular and chromatin complex level, supporting the ability of MUSIC
to generate data at both single-cell and single-complex resolution
(Extended Data Fig. 3a,b and Supplementary Note 3).

We identified 2,546 human H1 cells from this dataset. Each H1
cell contained an average of 144,049 UMNDBC DNA reads and
11,384 UMNDBC RNA reads, corresponding to 7,036 DNA-only clus-
ters, 232 RNA-only clusters and 1,170 RNA-DNA clusters (Fig. 1b,c)
which, based on an established procedure’?, can be resolved into
2,639,302,084 co-complexed DNA-DNA pairs, 7,089,720 co-complexed
RNA-RNA pairsand 250,525,581 co-complexed RNA-DNA pairs (Fig. 1d).
Intotal there were 18,144,410 non-singleton DNA-only clusters account-
ing for 55,670,578 DNA reads, 324,121 RNA-only clusters accounting for
835,184 RNA reads and 2,401,392 RNA-DNA clusters accounting for
13,151,716 RNA reads and 216,515,595 DNA reads (Extended DataFig. 3c).
Among non-singleton DNA-DNA clusters, 13,111,228 (72.26%) contained
two DNA reads corresponding to pairwise interactions and 5,033,182
(27.74%) contained three or more DNA reads responding to multiplex
interactions (Extended Data Figs.3d and 4). Among RNA-DNA clusters
1,009,706 (42.05%) contained two reads—that is, one DNA read and one
RNAread, 783,709 (32.64%) contained between three and ten reads and
607,977 (25.32%) contained more than ten reads.

We compared MUSIC ensemble DNA reads with Micro-C data gener-
ated from the same human H1 cellline and cultured under the standard
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derived chromatin contact maps onchromosome (chr.) 1at1Mbresolution.
b-d, Chromatin contact maps based onthe ensemble of small (b), middle-sized
(c) andlarge (d) clusters. Resolution, 50 kb. Arrows represent contacts between
nested TADs. e, P.(s) curves showing the frequency of chromatin contacts (P,)
versus genomic distance (s) for MUSIC DNA-only clusters of varying size and
Micro-C.f-h, Comparison of two-dimensional contact map from ensemble
MUSIC data (f) with stacked maps of distinct DNA-DNA clusters. Each row
representsacluster,ordered by the smallest genomic coordinate of any DNA
read. Yellow dots denote genomiclocations of DNA reads withinacluster.

g, Clusters with two DNA reads (pairwise interactions). h, Clusters with three
ormore DNAreads (multiplexinteractions).i,j, Scatterplots of RNA levels as

operating protocol recommended by the 4D Nucleome Consortium.
The contact map of MUSIC DNA-DNA clusters reproduced the struc-
tures observed in the Micro-C-derived contact map (4DN data por-
tal: 4DNFI2TK7L2F**) (Fig. 2a), resulting in a similar distribution of
compartment scores across the genome (Extended Data Fig. 5a). We
compared the variously sized MUSIC DNA-DNA clusters (Fig. 2b-d,
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nsaRNA normalized counts

measured by reads per kilboase (RPK) for every gene (dot) inensemble MUSIC
versus RNA-seq (i) and versus iMARGI (j). R denotes Spearman correlation
coefficient. k, RNAreads from RNA-seq, iMARGI and MUSIC mapped to both
strands (+and -) inhumanH1cells. Ensemble and individual MUSIC data from
threesingle cells are shown. I, Distribution of chromatin-associated pre-mRNA
and nsaRNA on chromosome 1as measured by ensemble MUSIC in H1 cells.
Micro-C-derived Aand Bcompartmentsareinred and blue, respectively.
Speckle compartmentalization derived from the SPIN model is denoted in the
SPIN-speckle track.m, Scatter plot of normalized counts of pre-mRNA and
nsaRNAreadsinevery1Mb genomicbin (dot) across the entire genome, based
onensemble MUSIC data for H1 cells.

bottom left), using the same Micro-C dataset as areference (Fig. 2b-d,
topright). At the topologically associating domain (TAD) level, MUSIC
small DNA-DNA clusters (between two and ten DNA reads per cluster)
primarily contained contacts within TADs (50 kb resolution) (Fig.2b).
MUSIC middle-sized (11-50 reads per cluster) and large clusters
(51-100 reads per cluster) recapitulated the TADs and the nested TAD



structure (Fig. 2c,d). Large clusters showed more contacts between
nested TADs within a larger TAD (Fig. 2d, arrows).

For visualization of clusters we plotted each oneinarow, withevery
DNAread of that cluster aligned toits respective genomic coordinates.
We ordered clusters by the genomic coordinates of their leftmost
DNA reads and, in this way, we created a stacked map of the clusters
(Fig.2g,h). By comparison of the two-dimensional contact map based
on ensemble MUSIC data (Fig. 2f) with the stacked maps, we observed
that pairwise interactions (clusters with two DNA reads) alone poorly
reflected the TAD structure (Fig. 2g) whereas multiplex interactions
(clusters with three or more DNA reads) recapitulated it (Fig. 2h).
Analysis involving downsampling of reads suggested that this differ-
ence was not due to variation in read numbers between pairwise and
multiplex interactions (Supplementary Note 4 and Extended Data
Fig. 5b). This analysis corroborates the variation found in the contact
maps of different cluster sizes (Fig. 2b-d), suggesting that the TAD
chromatin structure predominantly consists of multiplex chromatin
interactions. Inaddition, compared with pairwise contacts, multiplex
interactions showed higher contact frequencies at submegabase to
several megabase genomic distances, indicating enrichment of long-
range chromatin interactions in the multiplex complexes (Fig. 2e and
Supplementary Note 5).

We compared MUSIC ensemble RNA reads (RNA ensemble) from the
2,546 Hl cells with RNA measurements obtained from two bulk assaysin
H1. Usingall 60,719 genes defined in GENCODE v.36, we quantified the
RNA level of each gene in terms of reads per kilobase. The RNA levels of
the MUSIC RNA ensemble correlated with those of bulk RNA sequencing
(RNA-seq; ENCSRO0O0COU®) (Fig. 2i;rho=0.8,P< 2.2 x107*). Further-
more, iMARGI is abulk assay of RNA-chromatininteractions in which
the collection of RNA reads from iMARGI measures the transcriptome
in nuclei’. The RNA ensemble of MUSIC also correlated with that of
iMARGIRNA reads (Fig.2j; rho=0.9,P< 2.2 x10™). This indicates that
the gene expression levels quantified by MUSIC ensemble RNA reads
are consistent with those obtained from bulk RNA assays. Moreover,
MUSIC detects various types of RNA species (Extended Data Fig. 5c,d)
and is strand specific (Fig. 2k and Extended Data Fig. 5e). In addition,
MUSIC recapitulated the known chromatin association patterns of
premessenger RNAs (pre-mRNAs) and nuclear speckle-associated
RNAs (nsaRNA) (Fig. 2],m and Supplementary Note 6).

A MUSIC map of human frontal cortex

We generated a MUSIC dataset on 14 postmortem samples of human
frontal cortex from tissue donors aged 59 years and above*® (Supp-
lementary Table 4). This dataset, hereafter referred to as MUSIC FC,
resolved 9,087 single nuclei, 755,123,054 UMNDBC DNA reads and
29,319,780 UMNDBCRNA reads (hg38) (Extended DataFig. 6a,e). MUSIC
FCresolved comparable numbers of single-nucleus RNA (snRNA) reads
and DNA-DNA contacts versus other methods (Supplementary Note 7
and Extended Data Fig. 6b-d).

Clustering analysis based on MUSIC snRNA reads identified seven
cell types: excitatory neurons, inhibitory neurons, astrocytes, oligo-
dendrocytes, oligodendrocyte precursors, microgliaand vascular cells
(Fig. 3a and Supplementary Note 8). The microglial cluster consists
oftwo subclusters, marked by low and high expression levels of MS4A
genes (Extended Data Fig. 7m-o0), which may reflect microglial sub-
populations in the chemokine state relative to the interferon state™.
In addition, a joint analysis of MUSIC FC with a snRNA-seq dataset of
human frontal cortex showed highly consistent clustering structures
and clustering-based cell type assignments between the two datasets
(Supplementary Note 9).

Stratification analysis, by neither sex (Extended Data Fig. 7c,e)
nor individual cortical sample (Extended Data Fig. 7d), substantially
affected the proportions of cells in clusters or subclusters, except for
a higher number of oligodendrocytes in men compared with women

(Extended Data Fig. 7b,c,e). Our data indicate a sex difference in the
number of cortical oligodendrocytes in older people (59 years of age
or above), which aligns with previous studies showing that the lifes-
pan of oligodendrocytes in female mice is shorter than in male mice®.
In summary, MUSIC FC data formed clear clusters that correspond
with known cortical cell types and cellular states.

Heterogeneity in chromatininteractions

Bulk analyses of chromatin conformation showed that chromatininter-
action frequency (P,) decreases as genomic distance (s) increases, form-
ing an approximately linear relationship on the log-log scale®. This
trend was also observed in MUSIC FC, in which the aggregate chromatin
interaction frequency in the ensemble of single cells decreased with
increasing genomic distance (Fig. 3b). Hereafter we refer to this trend
as the aggregate P.—s relationship.

At the single-cell level, most single cells also exhibited areverse
correlation between chromatin interactions and genomic distance,
whereas a minority of single cells exhibited the highest chromatin
interactions and not necessarily at the lowest genomic distances, a
deviation fromthe aggregate P.~srelationship (Fig. 3c,d). This observa-
tionis reminiscent of therecently reported increase in ultra-long-range
intrachromosomal interactions during ageing in cerebellar granule
cells* (Extended Data Fig. 8e). To test whether this observed cellular
heterogeneity is compatible with the aggregate P.-srelationship, we
binned genomic distances and counted the proportion of single cells
showing the highest chromatininteraction in each genomic distance
bin (Fig.3d). The proportion of single cellsis lower in the bins of longer
genomicdistances, conforming toareverse correlation thatis approxi-
mately linearinthe log-logscale (Fig. 3¢c). Thus, despite the high degree
of cellular heterogeneity, the population summary of single cells repro-
duces the previously reported aggregate relationship.

Whereas the different cell types exhibited similar aggregate P.(s)
curves, these were not identical (Fig. 3b), such differences indicating
cell type variations in chromatin conformation. In particular, excita-
tory neurons exhibited more frequent chromatin interactions within
the submegabase range of genomic distances than other cell types
(Fig.3b). Consistent with this aggregate behaviour, excitatory neurons
had alarger proportion of single cells exhibiting the most frequent
chromatininteractions at the submegabase range compared with other
celltypes (Fig.3c and Extended Data Fig. 7f). Together, these observa-
tions highlight the influence of cellular compositionin each cell type
on cell type variation in chromatin conformation.

We compared the cellular heterogeneities in P.(s) and transcrip-
tomic profile. For convenience we will term cells with high chromatin
interaction frequencies at low genomic distances as ‘local chromatin
structure (LCS)-preserved’ and those with high chromatin interac-
tion frequencies at high genomic distances as ‘LCS-eroded’. We simpli-
fied P.(s) for each cell into a singular score—that is, the peak genomic
distance of P.(s), which we termed the LCS-erosion score for this cell.
A higher LCS-erosion score reflects a greater loss in local chromatin
structure. In every cell type we identified those genes with single-cell
expression levels that correlated with single-cell LCS-erosion scores.
Pathway enrichment analysis showed that these genes are enriched in
the expected functions of the corresponding cell type (Extended Data
Fig.8a).Forexample, in excitatory neurons, LCS-eroded cells exhibited
reduced expression of genes associated with axon guidance, ErbB sig-
nalling and glutamatergic synapse whereas, ininhibitory neurons, these
cells exhibited reduced expression of genes in gamma-aminobutyric
acid synthesis. These datasuggest that cell-type-specific functions are
impaired in LCS-eroded cells.

Next we analysed all cortical cells together and identified those
genes with single-cell expression levels that correlated with single-cell
LCS-erosion scores. A group of small nuclear RNA genes (RNU4ATAC,
RNU4-2, RNU5A-1, RNUI2) emerged as being highly correlated with
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Fig.3|Asingle-cellmap of transcriptome and chromatin conformationin
human frontal cortex. a, Uniform manifold approximation and projection
(UMAP) representation ofindividual cortical cells based on MUSIC RNA reads.
Ast, astrocytes; ExN, excitatory neurons; InN, inhibitory neurons; Oli,
oligodendrocytes; Opc, oligodendrocyte precursors; Mic, microglia; Vas,
vascular cells. b, Chromatin contact frequency (P.) versus genomic distance (s)
foreach cell type. ¢, Histogram of the proportions of excitatory neurons with
their most frequent chromatininteractionsineach genomicbinaligned with
normalized contact frequency versus genomic distance plot for every excitatory
neuron.d, Chromatin contact frequency versus genomic distance inindividual
cortical cells (columns). Rows, genomic bins with exponential size increase.
Colorscale denotes chromatin contact frequency normalized by bin size.
Bottom tracks show P (s) group, chronological age, transcriptomic age,
Alzheimer’s disease (AD) pathology status, sex and expression levels of several
genes. e, Single-cell transcriptomic age for each cell type coloured by chromatin

LCS-erosion scores, with high expression in LCS-preserved cells in
every cell type (Fig. 3d). Small nuclear RNAs are integral components
of the spliceosome, and reduced spliceosome fidelity has emerged
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conformation age. Pvalues determined by one-sided Wilcoxon test. Numbers
onleftindicate samplesize.Inthebox plots, theleft, centre and right edges
represent the 25th, 50thand 75th quantiles, respectively; whiskers extend to
1.5timestheinterquartile range; data points beyond whiskers are outliers.
f,Upset plotofeQTL-target pairsinevery cell type. Boxindicates cell-type
specific (CTS) eQTL-target pairs. g, Association tests between DNA-DNA
contactsand cell-type-specific eQTL-target pairsin every cell type. Centre dot
denotes odds ratio; whiskers denote 95% confidence interval of odds ratio.
Pvalues determined by one-sided chi-square test.n=101,785 DNA-DNA
contacts. h, Examples of cell-type-specific eQTL-target pairs supported by
DNA-DNA contacts. Top, tick marksindicate the cell type (column) in which the
ciseQTLsof agene affect expression. Bottom, genometrack view of supporting
DNA-DNA contactsinevery cell type (row), which are DNA-DNA contacts
(curves) overlapping withciseQTLs (blue arrows) and the promoter of the target
gene (red arrowhead).

as a characteristic of cellular senescence and ageing**2. These data,
and cell-type-specific analyses, enabled us to speculate that single-cell
P.(s) indicates the ‘age’ of that cell. To test thisidea, we used the recently



published SCALE model* to compute the transcriptomic age of each
single cell, which is a model-based weighted average of age-related
gene expression in that cell. LCS-eroded cells exhibited higher tran-
scriptomic age than LCS-preservedin every cell type, suggesting that
the former are older intranscriptomic age (Fig. 3e). In comparison, the
chronological age of a sample (age at death) exhibited only weak cor-
relations with LCS-erosion scores (Extended DataFig. 8b), suggesting
the limited ability of donor chronological age to explain the cellular
heterogeneity of LCS-erosion scores (or P.(s)). Together, cells with
reduced chromatin contact frequency at smaller genomic distance
tended to exhibit older transcriptomic age.

Seven of the fourteen cortex tissues exhibited high pathology of
Alzheimer’s disease (Braak score of 4 or above) whereas the other
seven exhibited low pathology (Braak score of 3 or less). The single
cells of low-pathology samples exhibited lower LCS-erosion scores
thanthose of the high-pathology samples in excitatory neurons, inhibi-
tory neurons, astrocytes, oligodendrocytes and microglia (Extended
Data Fig. 8c), showing a correlation between loss of local chromatin
structure and high pathology. These data are reminiscent of a recent
reportonthe association of global epigenome dysregulation and Alz-
heimer’s disease**. Inaddition, regression analysis showed that those
factors with the greatest correlations to LCS-erosion score included
transcriptomic age, cell type, Alzheimer’s disease pathology and sex
(Supplementary Note 10).

Correlation of eQTL and chromatin contacts

Cisexpression quantitative trait loci (eQTLs) represent genomic regions
inwhichindividual sequence variations contribute to the variationin
expression of nearby genes*. One recent study reported 481,888 cis
eQTLs in the human brain*. Notably, the majority of these cis eQTLs
exert their influence on the expression of specific target genes within
particular cell types, indicating a strong cell type specificity ineQTL-
target pairings (Fig. 3f). The underlying factor responsible for the cell
type specificity observed in eQTL-target pairings remains elusive.
We compared cell type variation in chromatin contacts (Fig. 3b and
Supplementary Fig. 3a) with eQTL-target pairings in an association
test. This analysis involved all eQTL-target pairs and all chromatin
contacts overlapping with an eQTL and its target gene promoter
(supporting DNA-DNA contacts), irrespective of their appearance
in the same cell type. This test identified significant enrichment of
supporting DNA-DNA contacts from the same cell type as the eQTL-
target pair (P <2.2x107%, chi-square test, degrees of freedom = 25;
Supplementary Fig. 3b).

Further analysis focusing on eQTL-target pairs exclusive to indi-
vidual celltypes (CTS eQTL-target pairs) reinforced this observation,
demonstrating a similar enrichment of supporting DNA-DNA contacts
within corresponding cell types (P < 2.2 x 107, chi-square test, degrees
of freedom =25; Fig. 3g). For example, DNA-only contacts linking the
ciseQTLs of NELL1toits promoter were exclusively observed in excita-
tory neurons, where these eQTLs singularly influence NELL1 expression
variability, and similar cell-specific connections were identified for
PREX2in oligodendrocytes, where cis eQTLs exclusively impact vari-
ability in the expression of PREX2 (Fig. 3h). Together, those cell types
exhibiting chromatin contact between a cis eQTL and its target gene
promoter tend to coincide with those where the cis eQTL influences
expression of the target gene.

Cellular variation in XIST-chromosome X contacts

The XIST IncRNA is detected in female cortical cells but not any
male cells (Fig. 4a), which is consistent with its expected pres-
ence in female somatic tissues and absence in male tissues*. In the
ensemble of female cells, XIST IncRNA exhibited a strong associa-
tion with the entire X chromosome (Fig. 4b,c), consistent with its

known ability to spread across one of the X chromosomes (the Xi
chromosome)**8,

At the single-cell level, female cortical cells exhibited heterogene-
ous XAL, as measured by the number of RNA-DNA clusters involving
XIST IncRNA and X chromosomal DNA in a nucleus (Extended Data
Fig. 9¢). Recognizing the potential false negatives, we exercised cau-
tion in data analysis and interpretation (Supplementary Note 11 and
Extended Data Fig. 9a). Filtering of female cells based on a threshold
of total RNA reads per cell (over 5,000) did not eliminate cellular
heterogeneity, indicating that the observed heterogeneity cannot
be solely attributed to the limited sensitivity of the technique. As
expected, the XIST RNA read count in a cell correlated with XAL
among female cells (XIST RNA column versus Heatmap, Extended Data
Fig. 9e), whereas the number of chromosome X DNA reads remained
relatively invariant, confirming that the total DNA read count of the
X chromosome is independent of XAL (log,(chromosome X DNA
column), Extended Data Fig. 9e). Furthermore, the loss of XIST-
chromosome X association in single female cells correlates with
greater sex difference in gene expression in the human frontal cortex
(Supplementary Note 12).

We compared the X chromosomal clusters associated with XIST
IncRNA (XIST") and those not associated with XIST IncRNA (XIST").
XIST* clusters included RNA-DNA clusters with at least one XIST RNA
read whereas XIST  clusters were RNA-DNA and DNA-DNA clusters
that did not contain any XIST RNA read. At the chromosomal scale,
most DNA-DNA contacts in XIST clusters were concentrated near
the diagonal line in the chromatin contact map (Fig. 4d), similar to
the contact maps of autosomes. However, XIST" clusters exhibited not
only near-diagonal contacts butalso asignificant number of contacts
spanning distances of 10 Mb or more (Fig. 4d).

Consistent with the chromatin contact maps, the frequency of
chromatin contacts (P,) of XIST clusters was greater than that of XIST*
clusters when the genomic distance (s) was less than around 10 Mb
(Fig.4e). Todetermine whether this separationin P(s) curves could be
attributed to limited sensitivity in detection of XAL at the single-cell
level, a stratification analysis was performed. Female cells were strati-
fied into four groups based on zero, low, medium and high XAL. Of
note, the zero-XAL group (group 1) contained only XIST  clusters and
groups2,3and4 contained the same number of cells. P.(s) of the XIST"
clusters (XIST P.(s)) was above XIST* P(s) when the genomic distance
was less than about 10 Mb in groups 2, 3 and 4 (Fig. 4f). Importantly,
the difference between XIST and XIST* P.(s) curves increased from
group 2 to group 4, indicating that higher XAL ina cellgroupledto a
more pronounced chromatin conformation difference between XIST~
and XIST’ clusters. As a control, the P_(s) curves of X chromosomal
clusters associated with or without any RNA (group 1) were nearly
indistinguishable (Fig. 4f). These data suggest that the active X chro-
mosome (Xa) has ahigher contact frequency than theinactive X chro-
mosome (Xi) in the sub-10 Mb range of genomic distance in the female
human cortex.

Different cell types exhibited different proportions of XAL-positive
(XAL") cells (Extended Data Fig. 9b), with excitatory neurons having
the highest proportion of these cells (chi-square, P=1x 107; Fig. 4g).
Considering the greater separation between XIST* and XIST™ P.(s) curves
(AP.(s)) inXAL-high cells, we anticipated seeing a differencein cell type
inAP(s), particularly with excitatory neurons exhibiting higher AP, (s)
compared with other celltypes. To test thisideawe compared the three
cell types with at least 45% of cells exhibiting non-zero XAL, namely
excitatory neurons, inhibitory neurons and astrocytes (Extended Data
Fig. 9b). As expected, excitatory neurons showed a higher AP (s) and
more long-range interactions than inhibitory neurons or astrocytes
(Fig. 4h,i). Specifically, the excitatory neuron XIST* P(s) curve was
below that of XIST"when genomic distance was below roughly 10 Mb,
butabove it at around 10 Mb. Although this transversion was consist-
ently observed for inhibitory neurons and astrocytes, gaps between
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P.(s) curves were narrower for these cell types. Downsampling excita-  type variation in the spatial organization of the two X chromosomes
tory neurons, inhibitory neurons and astrocytes tothe same number of  inthe female cortex in both mice and humans.

cells did not change this observation (Extended Data Fig. 9g). Consist-

ently, sequential fluorescence in situ hybridization analysis showed a . .

larger conformational difference between Xaand Xiin excitatoryneu-  Discussion

rons compared withinhibitory neurons or astrocytes in female mice*  Human cortical cells exhibited heterogeneity in the distribution of
(Supplementary Note 13). Together, these datasuggestaconservedcell ~genomic distance-dependent chromatin contact frequency (P.(s)).
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To capture this diversity, we introduced ametric called the LCS-erosion
score, designed to condense P.(s) into a singular value. A higher
LCS-erosion score signifies amore pronounced decline in local chro-
matin contacts. Notably, cells with increased LCS-erosion scores
(LCS-eroded cells) demonstrated a tendency towards exhibiting
transcriptomic profiles indicative of an ‘older’ cellular age in com-
parison withtheir counterparts, LCS-preserved cells. This distinction
sheds light on the correlation between the chromatin conformation
ofacellanditstranscriptomic age, thus extending our understanding
from previous observations associating chromatin structural decline
with ageing® to the single-cell level. Consequently, we introduce the
concept the chromatin conformational age of a cell, as indicated by
the LCS-erosion score.

Compared with the male cortex, the female cortex exhibited
fewer ‘old’ neurons and more old oligodendrocytes in chromatin
conformation age (Fig. 3d and Extended Data Fig. 8d)—that is, a
higher oligodendrocyte:neuron ratio in old cells (odds ratio = 6.85,
P<2.2x107, chi-square test). Compared with male mice, females
exhibited more age-related cell deaths in oligodendrocytes but not
in neurons®. Healthy oligodendrocytes protect normal neuronal activi-
ties,and abalance between neurons and oligodendrocytes is required
to maintaintheir bidirectional communications that ensure the neces-
sary protectivity®-*2, We speculate that the disproportionately greater
ratio of old oligodendrocytesin females contributes to explaining the
increased risksin neurodegenerative and mental disordersin women.

The genomic sequence at each eQTL usually remains constant across
various cell types within an individual, raising questions about why
most eQTLs exert their influence on gene expression in specific cell
types. Our findings show a connection between cell-type-specific pair-
ing of eQTLs with their target genes and the variability in chromatin
contacts between the eQTL and the promoter of the target gene. This
underscoresthe significance of cell type differences in chromatin con-
tacts for future investigations aimed at unravelling this puzzle.

The widespread effect of three-dimensional genome organization
on the expression of numerous genes (model 1) and the reciprocal
influence of gene expression on chromatin conformation (model 2)
continue to be subjects of debate*!’. Recent findings suggest that altera-
tionsin chromatin conformation precede changesin gene expression
during development, lending support to model 1 and challenging
model 2 (ref. 19). However, experiments involving the degradation of
cohesin, a pivotal regulator of chromatin conformation, demonstrated
limited impact on the expression levels of most genes in a human cell
line, casting doubt on model 1 (ref. 11). Our data potentially reconcile
thelimited impact of cohesin degradation withmodel 1. The correlation
observed between variations in cell-type-specific chromatin contacts
and eQTL-target pairing highlights the potential significance of incor-
porating celltype and interindividual variations to the understanding
of amore comprehensive impact.

Following initial debates®, chromatin-associated RNA (caRNA)
has been increasingly acknowledged as a structural component of
chromatin?®. Work on Drosophila and Gallus gallus suggested that
2-5% of total chromatin-associated nucleic acids are RNA*. In the
human MUSIC data, RNA reads account for approximately 4.6% of
all chromatin-derived reads, including all DNA-DNA and RNA-DNA
clusters, indicating a relatively consistent proportion of RNA in
chromatin-associated nucleic acids across species. Interestingly,
approximately 11.7% of non-singleton chromatin clusters (DNA-DNA
or RNA-DNA) contain RNA reads. Chromatin clusters containing RNA
more frequently demonstrate multiplex DNA-DNA contacts than those
devoid of RNA, as shown in Extended Data Fig. 4c,d. This observation
aligns with the hypothesis that RNA contributes to spatial genome
compartmentalization'?.

Women exhibit numerous differencesin neurodegenerative diseases
and mental disorders compared with men; for example, there are twice
as many women with late-onset Alzheimer’s disease than men, and

women have asignificantly higher frequency of adulthood depression
and anxiety. Notably, many X-linked genes are expressed in the brain
and have a role in cognitive functions®. MUSIC data showed that, in
female cortical cells, the diminishing association between XIST and
chromosome X correlates with reduced structural differences between
activeandinactive X chromosomes, and thisis associated with greater
differences in chromosome X gene expression between the sexes. These
multimodal, single-cell data provide a critical resource for future inves-
tigations of sex differences in health and disease. In summary, MUSIC
provides a unique tool for joint analysis of gene expression, multiplex
chromatininteractions and RNA-chromatin associations at single-cell
resolution from complex tissue.
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Methods

Critical reagents

RNA linker. The RNA linker is asingle-stranded chimeric oligonucleo-
tidewith17 DNA nucleotidesatits 5 end (ssDNA; Extended Data Fig. 2e)
and 10 RNA nucleotides at its 3’ end (ssRNA; Extended Data Fig. 2e),
denoted as 5’-/50H/CGAGGAGCGCTTNNNNNrArUrArGrCrArUr
UrGrC/30H/-3’,where A, C, G, Tand N denote DNA nucleotides, rA, rC,
rGandrT denote RNA nucleotides and NNNNN denotes five randomized
DNA nucleotides that serve as a UMI. The RNA linker was synthesized
by Integrated DNA Technologies (IDT).

The RNA linker is designed for efficient ligation with (1) RNA through
the RNA linker ssRNA, and (2) the first set of cell barcodes through the
RNA linker ssDNA, which is complementary to the seven nucleotide
(nt) overhang in the first set of cell barcodes.

DNA linker. The DNA linker is a hybridized product of two DNA strands,
with the top strand being 5’-/5Phos/CTAGACACTGTGCGTATCTNBAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA/3OH/-3’, where N denotes
arandom base and B denotes any base except A, and with the bot-
tom strand being 5’-/SOH/CGAGGAGNNNNNACAACGCACAGTGTCT
AGT/30H/-3’, where NNNNN denotes five randomized DNA bases that
serve as a UML. Following hybridization, the DNA linker contains 15 bp
double-stranded DNA and 36 nt (top ssDNA) and 15 nt unhybridized
ssDNA (bottom ssDNA), and a single base (T) overhang at the bottom
strand (Extended Data Fig. 2g). The 36 nt top ssDNA is reverse com-
plementary to 10X barcodes in the Chromium Next GEM Single Cell
3’ Reagent kit (PN-1000268). The two strands of the DNA linker were
synthesized by IDT.

The DNAlinker is designed for (1) efficient ligation with fragmented
chromosomal DNA through the 1 nt overhang of the DNA linker by a
sticky-end ligation, (2) efficient ligation with cell barcodes through
the 15 ntbottom ssDNA of the DNA linker, and (3) efficient hybridation
with10X barcodes through the polyA sequence within the top ssDNA.

Cell barcodes. The cell barcodes contain three sets of barcodes ref-
erredtoasthefirst, second and third sets. Every set of cellbarcodes has
three components, namely a7 nt top-strand overhang, al4 bp dsDNA
regionand abottom-strand overhang (7 ntfor the firstand second sets,
11 ntfor the third). The 14 bp dsDNA region contains a unique sequence
to every cell barcode (double-stranded N14; Extended Data Fig. 2d,i).
Every set of cell barcodes contains 96 unique barcodes, each being
uniquein this 14 bp dsDNA (Supplementary Table 2).

Inthe current version of MUSIC (v.1.0), each set of cell barcodes con-
tains 96 unique barcodes based on their dsDNA regions, resultingina
total of 884,736 unique sequence combinations. The three sets of cell
barcodes are designed to maximize ligation efficiency for sequential
ligation of the first set of cell barcodes with the RNA and DNA linkers,
the second set with the first set, and the third set with the second set.
Optimalligation efficiency is achieved by the complementarity of the
overhang sequences (Extended Data Fig. 2d,i). Out-of-order ligations,
such as that of the third set with the first set of cell barcodes, are mini-
mized because the overhang of the third set does not complement with
that of the first set.

Inaddition, the third set of cell barcodes is also designed to comple-
ment the 22 nt sequence at the 3’ side of the index adaptors.

The first and second sets of cell barcodes were synthesized by
Sigma-Aldrich and the third by IDT.

10X barcodes. The10X barcodes are included in the Chromium Next
GEM Single Cell 3’ Reagent kit (PN-1000268) from 10X Genomics. Each
10X barcode is an 82 nt oligonucleotide with a partial (22 nt) lllumina
Readl sequence (Readl), a16 nt unique barcode sequence (N16, 10X
GEM barcode),a12 nt UMI(N12,10X UMI), a30 nt polyT sequence,aV
(A, CorG)andan N (any base) (10X barcode; Extended Data Fig. 2j, k).

The 10X GEM barcode is shared among the barcodes of the same GEM;
the 10X UMl s unique to every 10X barcode.

Index adaptors. The index adaptors contain three segments, namely
the 24 ntllluminaP7 sequence, an 8 ntunique identifier sequence called
17 and the 34 nt lllumina Read2 sequence (Supplementary Table 2).
In this release, MUSIC v.1.0 uses eight distinct 17 barcodes providing
atotal of approximately 83.5 million complex barcodes (8 (17 bar-
codes) x 3.5 million (10X barcodes)). Eight index adaptors are used
foreachlibrary construction, each of which has aunique 17 sequence.
We callthese eightindex adaptors aset of index adaptors, each of which
can hybridize with the complementary read2 sequence inthe third set
of cellbarcodes toinitiate a PCRreaction.

Meanwhile these serve as sample barcodes. We designed a total
of three sets of index adaptors to allow for the construction of three
libraries fromthree input samples and sequencing them together (Sup-
plementary Table 2). These three sets of index adaptors share P7 and
read2 sequences and differ by their I7 sequences; they also serve as a
sample index to differentiate the three samples. The index adaptors
were synthesized by IDT.

Universal adaptor. The universal adaptor contains an Illumina P5
sequence and an lllumina readl sequence (Supplementary Table 2).
The universal adaptor can hybridize with 10X barcodes through their
complementary readl sequencetoinitiate a PCRreaction. The universal
adaptor was synthesized by IDT.

Cell culture. H1 human embryonic stem cells and E14 mouse embry-
onic stem cells were obtained from the 4D Nucleome Consortium and
cultured according to 4D Nucleome Consortium-approved protocols
(https://www.4dnucleome.org/). Inbrief, Hl cells were grown at 37 °C
under 5% CO, on Matrigel (Corning, 354277)-coated dishes. Cells were
maintained in complete mTeSR medium prepared from basal medium
(Corning, 85851) with 5x supplement (Corning, 85852). Medium was
replaced daily. Cell passage numbers were kept below P10. E14 cells
were cultured on plates coated with 0.1% gelatin (EMD, SFO08) in
serum-free 2i/LIF medium; this medium was made from base medium
(1:1 mixture of NeuroBasal medium (Gibco, 21103-049) and DMEM/
F12 medium (Gibco, 11320-033) supplemented with 0.5x N2 supple-
ment (Gibco, 17502-048), 0.5x B27 supplement (Gibco, 17504-044)
and 0.05% bovine serum albumin (BSA) fraction V (Gibco, 15260-037)),
supplemented with 1 uM PD0325901 (Reprocel, 04-0006-02C), 3 uM
CHIR99021 (Reprocell, 04-0004-02C), 0.15 mM monothioglycerol
(Sigma, M6145-25ML) and 1,000 U mI LIF (Cell Guidance Systems,
GFM200). Medium was replaced daily, and cell passage number was
kept below P10.

Crosslinking and nuclei isolation for cell lines. After cellshad become
confluentinal0O cmdish, medium was removed and washed once with
PBS. Accutase (1 ml; EMD, SFO06) was added, withincubation for 3 min
at37 °Ctodissociate cells. PBS (10 ml) was used to generate asingle-cell
suspension by pipetting. Cell pellets were formed by centrifugation at
330gfor3 min.Next, 10 mlof 2 mM disuccinimidyl glutarate (DSG) dis-
solvedin PBSwas added to crosslink and resuspend the cellsinaLoBind
tube, with incubation at room temperature for 45 min under gentle
rotation. Followingincubation, cells were collected by centrifugation
at1,000gfor 4 mintoremove DSG solution, washed once with PBS and
then centrifuged again at 1,000g for 4 min to remove supernatant.
Following washing, cells were thoroughly resuspended in10 ml of PBS
containing 3% formaldehyde and incubated for 10 min with gentle rota-
tion. The crosslinking reaction was stopped by the addition of 3 ml of
2.5Mglycine per10 ml of 3% formaldehyde, with incubation for 5 min
withrotation. Cells were then centrifuged at1,000g for 4 min to remove
supernatant. Next, cells were washed twice withice-cold PBS contain-
ing 0.5% BSA (w/v) and centrifuged at1,000g for 4 min. Following this
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wash, cells were resuspended in PBS with 0.5% BSA (w/v), each cell
aliquot then containing 5 millioncellsinal.5 mltube. Cell pellets were
obtained by centrifugation at 1,000g for 5 min, snap-frozen in liquid
nitrogen and stored at -80 °C.

Frozen cells were thawed on ice and resuspended in 1.4 ml of cell
lysis buffer A for every 5 million cells, as previously described™ (50 mM
HEPES pH 7.4,1 mM EDTA pH 8.0,1 mM EGTA pH 8.0, 140 mM NaCl,
0.25% Triton X-100, 0.5% IGEPAL CA-630,10% glycerol, proteinase
inhibitor cocktail). For the mixed-species experiment, equal amounts
of human H1 (2.5 million) and mouse E14 (2.5 million) cells were resus-
pended together. Following 10 minincubation onice, cell pellets were
collected by centrifugation at 900g for 4 minat4 °C. Cell pellets were
thenresuspendedin 1.4 mlof cell lysis buffer B (10 mM Tris-HCI pH 8.0,
1.5 mMEDTA, 1.5 mM EGTA, 200 mM NaCl and proteinase inhibitor
cocktail) and kept onice for 10 min. The nuclei thusisolated were col-
lected at 900g for 5 minat4 °C. Two hundred microlitres of rCutSmart
buffer (NEB, B7204S) containing 0.25% SDS was used to thoroughly
resuspend and permeabilize the nuclei, with incubation at 62 °C for
10 min with Eppendorf Thermomixer C. Following incubation, 60 pl
of rCutSmart buffer containing 10% Triton X-100 (w/v) was mixed with
the SDS solution and the reaction incubated at 37 °C for 15 min while
shaking at 800 rpm. Treated nuclei were centrifuged at 900gfor 2 min
at4 °Ctoremove supernatant and washed once with rCutSmart buffer.

Crosslinking and nuclei isolation from postmortem brain. Each
50 mg of postmortem human brain frontal cortex sample was kept on
iceinal.5 mlLoBind tube and chopped into smaller pieces by pestle.
Brainsamples were transferredinto a15 ml LoBind tube and incubated
atroom temperature for 45 min with gentle rotationin 10 ml of 2 mM
DSG dissolved in PBS. Following incubation, tissue samples were cen-
trifuged at1,000g for 4 min and washed once with PBS to remove DSG
solution. Following washing, samples were thoroughly resuspendedin
10 mI PBS containing 3% formaldehyde and incubated for 10 min with
gentlerotation. The crosslinking reaction was stopped by the addition
of 4 mlof 1.25 M glycine, followed by incubation for 5 min with rotation.
Samples were then centrifuged at 1,000g for 4 min and washed twice
withice-cold PBS containing 0.3% BSA (w/v).

A Chromium Nucleilsolation kit (10X Genomics, 1000494) was used
to isolate nuclei from crosslinked cortex samples according to the
manufacturer’s user guide). Specifically, 50 mg of frozen tissue was
placedinaprechilled sample-dissociation tube, then 400 pl of the lysis
buffer provided was added to the tube and tissues were dissociated
until homogeneous using a plastic pestle. Next, 600 pl of lysis buffer
was added to the tube and the contents mixed ten times by pipetting.
Following 10 minincubation onice, the solution was evenly loaded into
two nuclei isolation columns and centrifuged at 16,000g for 20 s at
4 °C.Theflowthroughinthe collection tube containing the nuclei was
vortexed for10 sat 3,200 rpmto resuspend nuclei. The collection tube
was then centrifuged for 3 minat500gand 4 °Cto pellet the nucleiand
the supernatant was removed. The nuclei were resuspended in 500 pl of
debris removal buffer provided with the kit by pipetting 15 times, then
centrifuged at 700g for 10 min at 4 °C and the supernatant removed.
The nuclei were resuspended twice in 1 ml of wash and resuspension
buffer. The supernatant was removed following centrifugationat 500g
for5minat4 °C,whichleftapurified pellet of isolated nuclei (Supple-
mentary Fig. 1a,b). All the following steps were identical for both cell
lines and human cortex samples.

Ligation of the RNA linker with RNA. Nuclei were resuspended in
250 pl of 5" phosphorylation master mix (T4 PNK buffer, 500 U m1™
T4PNK, 1mM ATP, 1 U pul™* RNAse inhibitor (Roche, 3335399001))
with incubation at 37 °C while rotating at 800 rpm for 1 h to phos-
phorylate the 5’ ends of RNA. Nuclei were washed once with PBS
wash buffer 1 (PBS,1 mM EDTA, 1 mM EGTA and 0.1% Triton X-100)
and three times with PBS wash buffer 2 (PBS, 0.5% BSA (w/v) and

0.1% Triton X-100). The RNA linker is a single-stranded chimeric oligo
with the DNA 5" hydroxyl group end and the RNA 3’ hydroxyl group
(5’-OH-CGAGGAGCGCTTNNNNNrArUrArGrCrArUrUrGrC-OH-3").
A RNA ligation mix was made with 4 M RNA linker, T4 RNA ligation
buffer,400 U mI™ T4 RNAligase 1,15% PEG8000,1 mMATPand1U pl™*
RNAse inhibitor. Isolated nuclei were thoroughly mixed with 250 pl
ofthe RNA ligation mix to ligate the RNA linker with nuclear RNA. The
mixture was incubated at 25 °C for 2 hthen at 16 °C overnight, withan
intermittent mixing at 800 rpm (30 s on and 270 off). Following liga-
tion, nuclei were washed once with PBS wash buffer 1and three times
with PBS wash buffer 2.

Chromatin digestion. All washed nuclei were resuspended in a
digestion master mix (300 pl of rCutSmart buffer containing 30 pl of
5,000 U mI™ HpyCH4V with 1 U pl™ RNAse inhibitor). This master mix
was kept for 3 h at 37 °C while rotating at 800 rpm. Nuclei were col-
lected at 900g for 2 min with the supernatant removed. Nuclei were
further washed once with 900 pl of PBS wash buffer 1and three times
with 900 pl of PBS wash buffer 2.

Ligation of the DNA linker with DNA. To create the sticky end for
DNA linker ligation, the nuclei was suspended in 250 pl of dA-tailing
reaction master mix (NEBNext dA-tailing reaction buffer, 200 U ml™
Klenow fragment, 1U pl™ RNAse inhibitor) and incubated at 37 °C
while rotating at 800 rpm for 1.5 h. Next, nuclei were washed once
with PBS wash buffer 1and three times with PBS wash buffer 2. The
DNA linker is a hybridized product of two DNA strands, with the top
strand being 5’-Phos-CTAGACACTGTGCGTATCTNBAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA-OH-3’ and the bottom-strand 5’-OH-CGA
GGAGNNNNNACAACGCACAGTGTCTAGT-OH-3’. The DNA linker con-
tains 14 bp dsDNA, 36 nttop ss DNA and 15 nt bottom ssDNA (Extended
Data Fig. 2g,h). A DNA ligation master mix comprised 4.5 uM DNA
linker, 0.2x of 2x Instant Sticky-end Ligase Master Mix (NEB, M0370),
0.8x of 5x Quick Ligase Buffer (NEB, B6058S), 6% (v/v) 1,2-propanediol
(Sigma-Aldrich,398039) and 1 U pl ' RNAse inhibitor). To ligate the DNA
linker with the sticky-end DNA, all nuclei were thoroughly mixed with
250 pl of DNA ligation master mix. The ligation reaction was carried
out at 20 °C for 6 h with an intermittent mixing at 1,600 rpm (30 s on
and 270 s off).

Ligation of cell barcodes. To phosphorylate the 5’ end of the linker,
nuclei were resuspended in 250 pul of 5 phosphorylation master
mix and incubated at 37 °C while rotating at 800 rpm for 1 h. Nuclei
were then washed once with PBS wash buffer 1and three times with
PBS wash buffer 2. Nuclei were resuspended in 900 pl of PBS wash
buffer 2 with 0.2 U pul™ RNase inhibitor and filtered through a 10 pM
cellstrainer (pluriStrainer, 43-10010-50). Six microlitres of the nuclear
suspensionwas stained with 6 pl of ethidium homodimer-1, and nuclei
counted using a Countess Il Automated Cell Counter (ThermoFisher).
Atotal of 288 barcodes were taken from Hawkins et al.>® and splitinto
sets1,2and 3. Each barcode takes the form of 7 nt_overhang-dsDNA-7
nt_overhang (Extended Data Fig. 2d,i and Supplementary Table 2).
Those 288 barcodes collected were then termed the cell barcodes.
Three ligation master mixes were prepared, each containing one set
ofbarcodes (5.4 pM), 0.2x of 2x Instant Sticky-end Ligase Master Mix,
0.8x of 5x Quick Ligase Buffer, 6% (v/v) 1,2-propanediol and 0.8 U pl™*
RNAse inhibitor. The ligation master mixes were named mixes1,2and
3, corresponding to barcode sets 1,2 and 3, respectively.

First round of split-pooling. Up to 100,000 nuclei were collected for
split-pooling to ensure that the majority were labelled with unique cell
barcode combinations. The nuclear suspensionwas made up to1,144 pl
with PBS wash buffer 2 and 24 pl of RNAse inhibitor and subsequently
splitinto 96 wells. To ligate barcode set 1 with the RNA and DNA linkers,
nucleiin each well are incubated overnight in ligation master mix 1 at
20 °C with an intermittent mixing at 1,600 rpm (30 s on and 270 off).



Following overnightincubation the reaction was quenched by the addi-
tion of 60 pl of quenching buffer (PBS, 50 mM EDTA, 50 mM EGTA, 0.1%
Triton X-100) and incubated for 10 minat 20 °C. Nuclear solutions from
the 96 wells were pooled into a 15 ml LoBind tube; 95 pl of quenching
buffer was then added to each well to rinse and collect any remaining
nuclei, with pooling into the same 15 ml tube. Nuclei were centrifuged
at900gfor4 minandthentransferredtoal.5 mltube with 0.5 mlofthe
remaining supernatant. PBS wash buffer 2 (500 pl) was used torinse
the 15 ml tube and collect residual nuclei into the same 1.5 ml tube.
Nuclei were washed three times with 900 pl of PBS wash buffer 2 by
centrifugation at 900g for 2 min.

Second and third rounds of split-pooling. Pooled nuclei were sub-
jectedtothe same split-pooling procedure asinthefirst round, except
that ligation master mixes 2 and 3 were used for the second and third
rounds, respectively, replacing ligation master mix 1.

Addition of complex barcodes. We used a combination of two sets
of barcodes to jointly differentiate individual molecular complexes,
referred to as the complexbarcodes. Thefirst set of barcodes are those
3.5 million oligos provided in the Chromium Next GEM Single Cell
3’ Reagent kit (PN-1000268; 10X barcodes). Each oligo is an 82-base
oligonucleotide with a 16 nt barcode and 12 nt UMI (10X BC + UMI;
Extended Data Fig. 2j,k). The second set of barcodes is composed of
eightbarcodes (index barcodes), each being 8 nt (I7 in Extended Data
Fig.1h and Supplementary Table 2).

The nuclei were resuspended in 250 pl of 3’ dephosphorylation
buffer (PNK buffer, 0.5 U pl™ T4PNK, 1U pl™ RNAse inhibitor) and
incubated at 37 °Cfor 1 h, with rotation at 800 rpm, to convertany 2’,
3’ cyclic phosphate on RNA to 3’-OH. Nuclei were washed once with PBS
wash buffer 1, three times with PBS wash buffer 2 and centrifuged at
900g for 2 min. To add polyA sequences to all RNA molecules, nuclei
were resuspended in polyA tailing buffer (E. coli poly(A) polymerase
reaction buffer, 0.08 U pl ™ E. coli poly(A) polymerase,1 mM ATP,1U pl™*
RNaseinhibitor). The mixture was keptat 37 °C for 10 min while rotating
at 800 rpm. Following the addition of polyA tails, nuclei were thor-
oughly resuspended in PBS with 0.04% BSA (w/v) and filtered through
a10 pM cell strainer (pluriStrainer, 43-10010-50) into a 1.5 ml tube to
obtainisolated nuclei. Six microlitres of the nuclei-containing solution
was stained with 6 pl of ethidium homodimer-1, and nuclei counted
usinga Countess Il Automated Cell Counter. Five thousand single nuclei
were transferred to a Covaris microtube-15, which was then filled to
15 plwith PBS and 0.04% BSA (w/v). Nuclei were sonicated using a Cova-
ris M220 Focused-ultrasonicator (water temperature 6 °C, incident
power 50 W, duty factor 5) for 5 min to release chromatin complexes.

Toadd10Xbarcodes to polyadenylated RNA and the top ssend of the
DNA linker, sonicated nuclei complexes were transferred intoa 1.5 ml
LoBind tube and mixed with 25 pl of water, 18.8 pl of reverse transcrip-
tion (RT) reagent B, 2 pl of reducing agent Band 8.7 pl of RT enzyme C.
The mixture was transferred to one wellin chromatin immunoprecipi-
tation sequencing G, which was then loaded onto the 10X Chromium
controller according to steps 1.1-1.5 in the protocol of the Chromium
Next GEM Single Cell 3’ Reagent kit. The retrieved droplets were trans-
ferred to a PCR tube for complementary DNA synthesis according to
the10X protocol. The droplets were dispersed, with the aqueous phase
obtained according to step 2.1in the 10X protocol.

Theaqueous phase containing nucleic acids wasfilled to 200 pl with
nuclease-free water and splitinto eightaliquotsin LoBind 1.5 ml tubes;
next, 25 pl of 2x reverse crosslinking buffer (400 mM Nacl, 0.4% SDS,
50 mMEDTA, 50 mMEGTA, 0.04 U pl proteinase K) was added to each
tube and the ensuing reverse crosslinking reaction was incubated at
50 °Cfor2 h,thenat55 °Covernight, with shakingat 800 rpm.Ineach
aliquot the reverse crosslinked nucleic acids were purified using the
Monarch RNA purification kit (NEB, 76307-460) with elutioninto 21 pl
of nuclease-free water. Eluted DNA and RNA molecules were incubated
at 55 °C for 15 min with isothermal amplification buffer I, 0.32 U pl™

Bst 3.0 DNA polymerase, anadditional 6 mM MgSO,, 1.4 mM dNTP Mix
and 0.5 U pl™ RNasin. The product was purified with 1.8x RNA clean
Ampure beads (Beckman Coulter Life Science, A63881) and eluted
into 20 plof nuclease-free water. PCR was performed for each aliquot
with 2.5 pl of 10 puM shared Universal Adaptor (P5and readlin Extended
DataFig.1h) and 2.5 ul of 10 pM aliquot-specific primerin 25 pl of NEB-
Next Ultra Il Q5 Master Mix. The aliquot-specific primers are the eight
index adaptors (‘Critical reagents’). PCR was carried outin 13-14 cycles.
Amplified DNA was purified with 1.2x Ampure beads and eluted into
12.5 pl of nuclease-free water. Purified DNA solutions from the eight
aliquots were combined and loaded into five lanes of 4% E-gel (Invitro-
gen, G401004). DNA bands between 300 bp and 1.2 kb were excised.
DNA was extracted using the NEB Monarch gel purification kit (NEB,
T1020S) with two columns and eluted in 30 pl of elution buffer.

Sequencing. The molarity of the sequencing library was measured
using a Qubit 4.0 Fluorometer (Invitrogen, Q33238) and Qubit dsDNA
HS assay kit (Invitrogen, Q33231). Fragment size distribution was as-
sessed using an Agilent bioanalyser with high-sensitivity DNA chroma-
tinimmunoprecipitation sequencing. The library was sequenced by
UCSan Diego IGM Genomics Center using an Illumina NovaSeq 6000.
The sequencer was set to read a 28 bp sequence next to the universal
adaptor asReadl, an8 bpindex sequence fromthel7 regioninside the
indexadaptorandal50 bp sequence nexttotheindexadaptorasRead2.

Computational analysis

The MUSIC-docker data-processing pipeline. We developed MUSIC-
docker to process MUSIC sequencing data using Docker to encapsulate
aSnakemake® pipeline, ensuring cross-platform execution. This han-
dles17 index-split, paired-end fastq files, processes themseparately into
RNA and DNA sequences, adds cell and complex barcodes and maps
tothe genome, removing PCR duplicates and deriving processed files.
Detailed documentation is available at http://sysbiocomp.ucsd.edu/
public/wenxingzhao/MUSIC_docker/intro.html and Supplementary
Note 14.

The raw sequencing output (.bcl) was converted to FASTQ files with
bcl2fastq, producing eight FASTQ files with 28 bp readl and 150 bp
read2. Readlincludes the 10X barcode and 10X UMI, with read2 con-
taining cell barcodes, the RNA and DNA linkers and insert sequences.

The demultiplexing step extracts cell and complex barcode informa-
tionand fragmentidentity information, creating separate FASTQfiles
for RNA and DNA readsindividually in which the read sequence will be
theinsertand the read name will be the fragmentidentity information.

Toaddress potential artificial sequencesintroduced by sequencing
errors and experimental design, we remove consecutive As or Gs from
the 3’ end of DNA inserts if their length is greater than 20 bp. For RNA
reads we detect the ssDNA region of the RNA linker sequence CGAG-
GAGCGCTT and remove any sequence following it. We use cutadap-
tor (v.2.8)%® with the parameter ‘-q 15 -m 20". DNA and RNA inserts are
mapped to the genome using bowtie2 (v.5.4.0)* with the parameters
‘bowtie2 -p 10 -t --phred33 -x’, and bwa (v.0.7.17)°* mem with param-
eters -SP5M’, respectively. Uniquely mapped reads are selected for
downstream analysis.

Following reads mapping, PCR duplicates, identified by shared 10X
UMI and mapped coordinates, are removed using customized script.
This script sorts the BAMfile, scansit once and flags duplicates if they
meet specific criteria: (1) it maps to alocation within 8 bp of the previous
read; (2) itshares the same celland molecular barcodes with the previ-
ous read; and (3) its UMI exhibits a Levenshtein distance of less than
2 bpfromthe UMl ofthe previousread. Allidentified PCR duplicates are
subsequently removedto ensure the integrity of downstream analyses.

Finally, deduplicated BAMfiles fromeach7 index library are merged
intoacomprehensive, sorted BAM file capturing essential information
forboth DNA and RNA, including cell and molecular barcodes (10X and
17 index) and insert mapping location.
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Mixed-species experiment. Based ona previously published method®,
we assigned a cell to a species if 95% of its DNA reads could map to
asingle species. Cells with uniquely mapped, non-duplicated DNA
reads of less than 1,000 were classified as ambient cells. To calculate
single-cluster mixed-species rate we assigned a cluster to asingle spe-
ciesif more than99% ofits uniquely mapped non-duplicated DNA reads
came from that species.

Parsing multiplex clusters into pairwise interactions with normali-
zation. Each cluster is a collection of reads that share the same cell,
10X and 17 barcodes (CB + GEM +17). A cluster of two reads (cluster
size 2) corresponds to a pairwise interaction and a cluster of three or
morereads corresponds to amultiplex cluster. Each multiplex cluster
is decomposed into pairwise interactions with a normalization pro-
cedure that adjusts for the total number of combinations of pairwise
interactions from a multiplex cluster, as previously described®?. For
homotypical clusters, which are clusters containing exclusively DNA
or RNA reads, each homotypical cluster of size Nis first decomposed
into all non-overlapping pairs and then each pair is normalized by a
factor of 1/N. For heterotypic clusters, which are clusters containing
both DNA and RNA reads, each heterotypic cluster is first decomposed
into all DNA-RNA pairs and then each pair is normalized by a factor
of 1/(M+ N), where M and N are the numbers of DNA and RNA reads,
respectively. This normalization process removes the differencein the
number of pairwise decompositions from different-sized clusters, thus
ensuring that larger clusters are not inflated in regard to the number
of decomposed pairwise interactions'>?,

To generate a two-dimensional contact map of DNA-DNA inter-
actions we first define the size of each unit, typically represented
as genomic bins, for rows and columns. The weight assigned to bin
[i,j1is determined by the total number of clusters containing DNA
reads mapped to both the ith and jth bin, and this is normalized by
cluster size as previously described. To compare DNA-DNA contact
differences within a specific genomic region, cluster sizes are calcu-
lated using only DNA reads mapped to that region, considering small,
medium and large clusters. Ifthe DNA-DNA contact map is generated
for multiple cells, the weighted sum of all clustersis calculated. Similar
methods are applied to derive RNA-DNA two-dimensional contact
maps, with the calculation of the weight of each interaction adjusted
accordingly.

To determine RAL at specific genomic bins, representing one-
dimensional RNA-chromatin contacts for a particular RNA of interest,
we calculate the total weighted RNA-DNA interactions involving the
RNA of interest and DNA ends mapped to the desired genomic bins.
For ensemble maps, RAL values fromindividual cells are summed.

Finally, for visualization of the two-dimensional contact maps of
DNA-DNA or RNA-DNA interactions, the raw contacts obtained fol-
lowing previously mentioned procedures are scaled up using a linear
factor, typically 100 or 1,000. This amplification step prevents the
application of logarithmic transformation to decimal values. Following
amplification, alogarithmic transformationis performed to enhance
visualization of the contact maps.

Comparison of MUSIC DNA-DNA contacts with Micro-C data.
To achieve consistency in the scale of total contacts between MUSIC
and Micro-C, contact maps obtained from both methods underwent
astandardized transformation. Initially the contact maps derived from
Micro-C or MUSIC were logarithmically scaled; these were then nor-
malized to their respective maximum values, resulting in all contacts
being constrained within the range of [0, 1]. The Micro-C data used in
this study were obtained from the 4DN portal® (4DNFI2TK7L2F)**. To
extract raw contacts from the .hic file, the straw®* tool was employed.

To calculate the compartment score (PClscore) for both Micro-Cand
MUSIC DNA-DNA contact matrices we first computed the expected
contact matrix. Subsequently we determined the PC1 score from

the correlation matrix of the observed/expected ratio matrices, in
which the expected matrix was derived by calculating average con-
tact frequencies as a function of genomic distances. For comparison
of PC1 correlations between Micro-C and MUSIC, the calculations
were performed individually on each chromosome. The reported
correlation represents the median of these correlations across all
chromosomes.

nsaRNA and pre-mRNA RAL. Pre-mRNAs are RNA reads that exhib-
itan overlap of at least 15 bp with gene introns and are classified as
protein-coding RNAs. The calculation of RNA-DNA cluster weight
involves the inclusion of all nsaRNAs and pre-mRNAs, along with
their associated DNA reads. RNA-DNA clusters of size not exceeding
1,000 were selected for the computation of RAL. The H1A/B compart-
ment data used in this study were obtained from the 4DN data portal
(4DNFID162B9)J)%.

Calculation of genomic distance versus contact frequency curve
from MUSIC data. The relationship between contact frequency
and genomic distances within chromosomal arms was system-
atically examined. Initially the genomic distance range (from 10 bp
to 150 megabases) was divided into 500,000 equally sized bins.
Subsequently, for DNA reads originating from DNA-DNA or RNA-
DNA clusters, the genomic distances of all intrachromosomal pair-
wise interactions were determined and the frequencies for each
genomic distance bin were computed. These frequencies were
then normalized based on the weight assigned to each interaction.
Normalized frequencies were calculated for each genomic bin in
every cluster and single cell. Finally, genomic distances versus
contact frequencies were aggregated across all clusters from all
single cells.

We used cooltools (v.0.5.4)% to generate the curve in Micro-C
data representing genomic distance versus contact frequency. We
downloaded the .mcool file for H1 Micro-C from the 4DN data portal
(4DNFI9GMP2J8)*.

Preprocessing and filtering of single brain cells. For each brain
sample we applied standard MUSIC_docker pipelines to obtain valid
RNA and DNA reads information for each single cell. To select high-
quality single cells for robust analysis and interpretation of our data, we
removed cells with fewer than100 RNA reads or fewer than 5,000 DNA
reads for downstream analysis on brain samples.

Transcriptome merging of brain samples. We first constructed the
single-cell RNA expression count matrix by calculating the number
of RNA reads mapped to each human gene (GENCODE®, v.36; chrM
genes are excluded) for all single cells from all 14 brain samples. We
then constructed one Seurat object (Seurat v.4.3.0)°>% for each brain
sample with the parameters ‘min.cells = 2 and min.features =200’
(filtering out genes expressed in no more than two cells and filtering
out cells with no more than 200 expressed genes). The count matrix
from all brains was then integrated using RunHarmony from the har-
mony R package (v.0.1.1)°° based on STransform processed data, and
regressed out on factorsincludingindividual library and experimental
batches.

Expression of brain genes. For comparison of gene expression in
brain cells we used the LogNormalize method from the Seurat R pack-
age. Raw reads counts were first normalized by library size and then
log-transformed.

Single-cell clustering and cell type identification. The integrated
brain object was then subjected to dimensionality reduction by UMAP
methods based on the first 20 principal components from PCA using
the Seurat R package. All cells are then clustered in an unsupervised



method using a shared nearest-neighbour graph based on k-nearest
neighbours (k =20) calculated from the top two coordinates of UMAP.
Clusters were then derived by optimization of the modularity function
using the function FindClusters with parameter resolution at 0.05.
Excitatory and inhibitory neurons were clustered by first extracting
the subset of cells and reclustering at a resolution of 1.

We assigned cell typesto each cluster by the known cell-type-specific
marker gene expression level. Cell-type-specific marker genes are
based on previous publications: for major brain cell types®, subclusters
(Azimuth)® and vascular cells®®. Each cluster is assigned to one cell
type (A) iftwo times the average expression of all marker genes of cell
type A plus the proportion of cells in the cluster expressing marker
genes for celltype Aare higher thanany other cell types. We designed
this score that takes both cell type marker gene expression level and
proportion of cells expressing the genes into consideration, but with
agreater emphasis on expression level.

Single-cell LCS-erosion score and transcriptomic age calculation.
We calculated the LCS-erosion score for each cell by determining
the middle point of the genomic distances of the top ten most fre-
quently contacting genomic bins. To derive the contact frequency
versus genomic distances heatmap for all frontal cortex cells we
first generated 149 genomic bins spanning from 5,000 bp to
150 megabase pairs, with the nth bin spanning the genomic region

{]ogz(LSxm }—logZ(S,OOO)) (IogZ(LSXIO }—logz(S,OOO))
50 *(n-1) 50 xn

(2I0g2(5,000)+ : 2Iog2(5,000)+ ,
where n=1,2,3,..,150. Subsequently, for DNA reads originating from
DNA-DNA or RNA-DNA clusters, the genomic distances of all intra-
chromosomal pairwise interactions were determined and the frequen-
ciesforeachgenomicdistancebin calculated. These frequencies were
then normalized against binsize. For each single cell the total contact
frequency was normalized against total frequency within each cell
before plotting the heatmap. Cells exhibiting an LCS-erosion score
exceeding 3 x 10° were classified as LCS-eroded cells, with the remain-
der considered LCS-preserved.

For assessment of the transcriptomic-based biological age of cells
we implemented the SCALE methodology described in a previous
study*®. Thisapproach involves using alist of human ageing-associated
genes obtained from https://sysomics.com/AgingMap/. Initially
we determined the direction (either +1 or —1) of each marker gene
based on its correlation with the chronological age of the sample.
This direction depended on whether gene expression was posi-
tively (+1) or negatively (1) correlated with age. Subsequently, for
each marker gene, we assigned a weight computed as the propor-
tion of cells expressing that gene multiplied by its directional value.
Finally we calculated the transcriptomic age for each cell using the
dot product of gene expression z-scores and corresponding gene
weights.

LCS-erosion score-associated transcriptome functions. To identify
genes whose expression is significantly associated with chromatin
LCS-erosion score, we applied analysis of variance (ANOVA) between
the expression of each gene and LCS-erosion score across all cells.
Genes with P<0.01, F>1and the absolute value of Spearman correla-
tion between LCS-erosion score and gene expression greater than 0.1
were considered significant. To identify cell-type-specific LCS-erosion
score-associated genes we applied ANOVA individually within each cell
type. We used the R package gprofiler2 (ref. 69) for pathway enrich-
ment analysis. Enriched wikipathway, KEGG and REACtom pathways
areshown.

eQTL analysis. All brain cell-type-specificeQTL datawere downloaded
fromref.45. We compiled acombined dataset by selecting eQTLs with
nominal P<1x10™* and removing those in endothelial cells and peri-
cytes. MUSIC DNA-DNA contacts between eQTL and their target genes
areread pairs where one end is mapped (one base overlap) over the

eQTLand the other over the gene promoter (2.5 kb flanking region from
the transcriptional startsite). The global chi-square test was performed
onaé6 x 6tabletotest the overall association of cell-type-specific DNA-
DNA contacts with cell-type-specificeQTL-gene pairs. The 6 x 6 table
wasthenreducedtosix 2 x 2 tables to test that associationineach cell
type (chi-square test). The 95% confidence interval of the odds ratio
was calculated as exp(log(odds ratio) +1.96 x SELOR), where SELOR
isthe standard error of log(odds ratio).

Analysis of XIST-chromatin interactions. To derive the one-
dimensional XIST-genome RAL we extracted all clusters containing
at least one XIST RNA. For each cluster with M XIST RNA reads and N
DNA reads we derived M x N paired XIST-DNA interactions, each of
which was then normalized according to its cluster size 1/(M + N). We
then binned the whole genome at 1 Mb resolution. The XIST RAL for
eachbinisthe total weight of all XIST-DNA interactions with DNA ends
overlapped with that bin.

To derive the two-dimensional RNA-DNA contact map for chro-
mosome X we extracted all RNA and DNA reads that can map to chro-
mosome X. Next, for any matched molecular complex barcode with
M chromosome X RNA reads and N chromosome X DNA reads, we
again first derived all combinations of RNA-DNA interactions, with
adjusted weight indicating the reverse of cluster size (1/M + N). We
binned chromosome X at 1 Mb resolution; M[i,j] then represents the
sum of weighted interactions whose RNA ends mapped to the ith bin
and DNA ends mapped to the jth column.

XAL stratification and corresponding genomic distance versus
contact frequency. XIST-chromosome X association levels are
numerically represented as the number of XIST-attached chromo-
some X DNA bins; eachindividual cell will have one XAL value. To assess
the differences in chromatin organization between XIST* and XIST~
clusters, we stratified all brain cellsinto four groups based on their XAL
value: group 1, with zero XAL, whichincludes all cells with no detectable
XIST-chromosome X association; and groups 2-4, withincreasing XAL
values, whichinclude all cells with an XIST-chromosome X association,
splitequally between these three groups. To derive genomic distances
and contact frequency relationships we follow the methods introduced
in ‘Calculation of genomic distance versus contact frequency curve
from MUSIC data’.

Human sample acquisition

The acquisition of postmortem brain tissue was conducted at Banner
Sun Health Research Institute with Institutional Review Board approval
(study 1132516, investigator T. Beach). Informed consent was obtained
from all tissue donors.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All processed data, including those from cell lines and brain sam-
ples and raw sequencing data from cell lines, have been deposited
in the Gene Expression Omnibus (GEO) under accession GSE253754.
Raw sequencing data for brain samples have been deposited in the
HuBMAP data portal (https://portal.hubmapconsortium.org/) and
dbGap phs003568.v1.plwith controlled access. Please follow the NIH
Delegated Acquisition Certification instructions to request author-
ized access. We also downloaded the following public single-cell
gene expression datasets: CITE-seq, GSE100866 (PBMC); SNARE-seq,
GSE126074 (AdBrainCortex); PairedTag, GSE152020; and snRNA-seq,
syn18485175. Micro-C datawere downloaded from the 4DN data portal
under session no. 4DNFI9GMP2J8.
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Code availability

The pipeline used to process the raw data is documented on our
website: http://sysbiocomp.ucsd.edu/public/wenxingzhao/MUSIC_
docker/intro.html. We developed a MUSIC-docker for raw data pro-
cessing, the code for which can be accessed at https://github.com/
Zhong-Lab-UCSD/MUSIC-docker (ref. 70). Additional analysis scripts
associated with the paper can be accessed at https://github.com/
Zhong-Lab-UCSD/MUSIC-tools (ref. 71) and made available onrequest.
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Extended DataFig.1|Overview of the MUSIC method. (a) Anexample
chromatin complex with one associated DNA fragment (blue) and one RNA
molecule (red) is shown toillustrate the procedure. Other chromatin complexes
withany number of associated DNA fragments or RNA molecules are expected
toreactaccordingly. The RNA Linker with half single strand RNA (ssRNA, red)
and halfsingle strand DNA (ssDNA, purple). (b) Theligation product withaRNA
linker conjugates with the Y-shaped DNA Linker that contains adouble strand
region (dsDNA) and single strand regions (top-ssDNA and bottom-ssDNA).

(c) Theligation product withboth DNA and RNA linkers. (d-e) Addition of the

three sets of Cell Barcodes (color coded in black, yellow, green) and A-tail.
(f) Reactioninal0X GEM system. (g) Aliquoting the output of the 10X GEM
system for library preparation. (h) The sequence configuration of the
constructed sequencinglibrary. For Illumina paired-end sequencing, Read1l
coversthe 28 bp 10X Barcode that consists of a16 bp 10X GEM Barcode and
12bp 10X UMI.Index1coversthe 8 bp 17 Barcode, and Read2 covers the Cell
Barcodes as wellasthe RNA Linker and the RNA insert or the DNA Linker and
theDNAinsert.
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Extended DataFig.2|Critical reagents and reactions. (a-c) DNAsize
distribution of DNA fragments (a) after chromatin digestion, corresponding to
Fig.1a, (b) after three rounds of cellbarcode ligation, corresponding to Extended
DataFig.le,and (c) inthefinallibrary, corresponding to Extended Data Fig. 1h.
(d) the1stset of Cell Barcodes. (e) The RNA Linker with half single strand RNA
(ssRNA, red) and half single strand DNA (ssDNA, purple) (f) Base-pairing assisted
ligation of the ssDNA (purple) in the RNA Linker with the 1st set of Cell Barcodes
(black). (g) The Y-shaped DNA Linker witha double strand region (dsDNA) and

NVTTTTTTTTTTTTTTITTTTTITTTITTTTTITTIT-N12-N16-TCTAGCCTTCTCGCAGCACATC
10X Barcode

single strand regions (top-ssDNA and bottom ssDNA) with a3’dT overhang.

(h) The DNA Linker (purple) is ligated with 3’ dA-tailed double-stranded genomic
DNA (blue) and with the 1st set of Cell Barcodes (black). (i) the2nd and the 3rd
sets of Cell Barcodes. The 3rd set of Cell Barcodes contains a fraction of Illumina
Read2adaptersequence. (j) Hybridization of the RNA’s polyA tail (red) with

the poly(dT) region of the 10X Barcodes (turquoise). (k) Hybridization of the
top-ssDNA of the DNA linker (purple) with the poly(dT) region of the 10X
Barcodes (turquoise).
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resolution. PCls are calculated from Micro-C, MUSIC’s small clusters (2-10 DNA
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Extended DataFig. 8| Correlation between Pc(s) and transcriptomic
ageamongsingle cells. (a) The enriched pathways (row) in those genes
thatexhibitacorrelated expression level with the LCS-erosionscore across
allthesingle cellsin each cell type (column). The size of the dot represents
theenrichmentscore (-loglO(P value)) with larger dots indicating higher
significance. (b) Distribution of the chronological ages (age at death, y axis)
inthe LCS-preserved (gray) and LCS-eroded cells (orange) ineach cell type
(column). Wilcoxon test, One-sided. Left numbers: sample size. Boxplot: the
rightedge, center lineand left edge represent the 75th percentile, median and
25th percentile, respectively. Whiskers extend to 1.5 times the Interquartile
Range from the box edges. Data points beyond the whiskers are outliers.

(c) LCS-erosionscores (y axis) in the cells within the samples with high

(Braak stage >=4) and low (Braak stage <3) AD pathology. Wilcoxon test,
One-sided. Left numbers: sample size. Boxplot definitionis the same as (e).

(d) Proportion of LCS-eroded cellsand LCS-preserved cells by gender (female (F),
male (M)) within oligodendrocytes (Oli) and Neurons (InN, ExN). () Number

of contacts (color) plotted against genomic distance (y-axis) in single nuclei
(columns) using data from Tan et al. (left) and our study (right). Rows represent
genomicbins withexponentially increasing sizes. The two datasets were
plotted using the same computational program and genomic bin sizes. The
‘Stage’ labels correspond to cell groups identified by Tan et al., where Stages S1
toS5areenriched with cells of chronologicalages0.2,1,10,30,and 80,
respectively. ExN: Frontal cortex excitatory neurons. InN: Frontal cortex
inhibitory neurons.
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Extended DataFig. 9|See next page for caption.



Extended DataFig. 9| XIST-chromatin associationinsingle female cells.

(a) Thechange of the percentage of XIST IncRNA detected cells (y axis) in the
female cortical cells that satisfy the threshold on the total number of RNA reads
inacell (x axis). (b) The variation of the proportions of the observed XAL+ cells
across cell types (columns) in the female cortex under total RNA larger than
5000 cutoff. (c-f) The female cells are filtered so that every cell has at least
3000 RNAreads (c-d) or atleast 5000 RNAreads (e-f). (c, ) Genome-wide
distribution of XIST-chromatin associationinindividual female cortical cells.
Eachrowrepresentsasinglecell. The RNA attachmentlevel (RAL) of the XIST
IncRNA (intensity of red color) at any genomic region on any chromosome is
plotted with the corresponding genomic coordinates (x axis). Resolution: 1 Mb.

Trackat the bottom: cumulative RAL of XIST. Tracks on the leftindicate the
celltype (color), XISTRNA read count (XIST RNA), X chromosomal DNA

read counts (chr.XDNA) inlog2scale. (d, f) sex-fold-change of a previously
identified gene withincomplete X chromosome inactivation (XCI) (column)
between this female cell (row) and the average expression of the male cells of
thematched cell type. Only the genes expressedin atleast 20 cellsare plotted.
(g) Downsampling analysis of cell numbers. X chromosome Pc(s) curvesin
excitatory neurons (ExN), inhibitory neurons (InN), and astrocytes (Ast) are
plotted from the same number of female cells (n =100). The difference between
XIST+ (darker color) and XIST- Pc(s) (lighter color) curvesis most pronounced
in ExN.
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Software and code
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Data collection  The library was sequenced by UC San Diego IGM Genomics Center utilizing an Illlumina NovaSeq 6000. The sequencer is set to read a 28 bp
sequence next to the Universal Adapter as the Readl, a 8 bp index sequence from the 17 region inside the Index Adapter, and a 150 bp
sequence next to the Index Adapter as the Read2.

Data analysis Pipeline used to process the raw data is documented in our website: http://sysbiocomp.ucsd.edu/public/wenxingzhao/MUSIC_docker/
intro.html. We developed a MUSIC-docker for the raw data processing and the code can be accessed at: https://github.com/
Zhong-Lab-UCSD/MUSIC-docker. Additional analysis scripts associated with the paper can be accessed at: https://github.com/
Zhong-Lab-UCSD/MUSIC-tools and made available upon request.

A customized pipeline called MUSIC-docker (http://sysbiocomp.ucsd.edu/public/wenxingzhao/MUSIC_docker/intro.html) is used to process
the raw sequencing data to molecular identity resolved bam file. Within MUSIC docker, In house scripts were used to parse the raw fastq files
and separate RNA and DNA inserts into separate fastq files. Cutadapt (2.8) is used to remove potential artifacts. For reads mapping, bowtie2
(5.4.0) is used for DNA inserts genome mapping with the command “bowtie2 -p 10 -t --phred33 -x ” and bwa mem (0.7.17) is used to map
RNA inserts to the reference genome in a splice aware manner. Customized code is then used to remove PCR duplicates from mapping
results. MUSIC-docker image can be downloaded from Docker Hub through "docker pull irenexzwen/MUSIC-docker".

Data were analyzed using customized R (4.1.0) scripts, exploiting several R packages including: GenomicRanges (1.38.0), chromstaR (1.20.2),
plyranges (1.14.0), InteractionSet (1.14.0) as the main packages for genomic ranges data manipulation; KaryoploteR (1.12.4), ggplot2 (3.4.2),
plotgardener (1.0.17) and ggpubr (0.6.0) for visualization of genomic data and tracks, ComplexHeatmap (2.10.0) to make heatmaps. gprofiler2
(0.2.2) for enriched pathway analysis. To analyze micro-C data, we used strawr (0.0.91) to extract the contact matrix from .hic file which is
downloaded from 4DN data portal. Juicer Tools (1.22.01) was used for calling A/B compartment and loops from micro-c .hic file. A/B
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compartments were called by Juicer’s “Eigenvector” tool and loops were called by Juicer’s “CPU HiCCUPS” tool, default parameters were
used. We used cooltools (0.5.4) for generating the genomic distance versus contact frequency curve in Micro-C data. For single cell RNA
expression analysis we used Seurat (4.3.0) for data storage, quality control, clustering and plot. We use harmony (0.1.1) for data integration.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All processed data, including data from cell lines and brain samples, has been deposited in GEO (GSE253754). The raw sequencing data from cell lines has been
deposited in GEO (GSE253754). Raw sequencing data for brain samples has been deposited in the HUBMAP data portal (https://portal.hubmapconsortium.org/)
with controlled access. Please follow the NIH Delegated Acquisition Certification (DAC) instructions to request authorized access. We also downloaded public single
cell gene expression datasets. CITE-seq: GSE100866(PBMC); SNARE-seq: GSE126074(AdBrainCortex); Paired-Tag: GSE152020; snRNA-seq: syn18485175. Micro-C
data is downloaded from the 4DN data portal under session number: 4ADNFI9GMP2J8.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The acquisition of postmortem brain is conducted at Banner Sun Health Research Institute, under IRB approval for
investigator Thomas Beach, MD, PhD. Snap frozen cortex tissues from age matched 7 females and 7 males were used to
generate MUSIC library for each individual. In our preliminary submission, we examined the distribution of female and male
cells within each brain cell type. We conducted a comparison of XIST expression levels between males and females.
Subsequently, for the XIST RNA localization analysis, only female cells were included.

Reporting on race, ethnicity, or | The metadata for the brain samples can be found in Supplementary Table 4, which is included in our initial submission. As per

other socially relevant the sample demographics provided by the Banner Sun Health Research Institute, all individuals in the study are categorized
groupings as race 1. Race is not considered as a variable in our analysis.
Population characteristics The comprehensive metadata for the brain samples can be found in Supplementary Table 4, which is included in our initial

submission. Each individual's data includes age at death, ApoE genotype, Plaque Total level, Tangle Total level, and Braak
score. The deceased age of the 7 female donors ranges from 59 to 82 years, with one donor being 90 years or older.
Similarly, the deceased age of the 7 male donors ranges from 63 to 81 years, with one donor being 90 years or older. The
ApoE genotype distribution among the female donors includes 2/3, 3/3, 3/3, 3/3, 3/3, 3/3, and 3/4, while among the male
donors it includes 2/3, 2/4, 3/3, 3/3, 3/3, 3/4, and 4/4.

Plaque Total represents the cumulative score obtained by summing the scores from Plaque F, T, P, H, and E, which are used
to assess senile plaque density in standard regions of the frontal, temporal, and parietal lobes, as well as the hippocampal
CA1 region and entorhinal/transentorhinal region. Tangle Total, similarly, is derived by summing the scores from Tangle F, T,
P, H, and E. The Braak score corresponds to the neurofibrillary stage (ranging from 0O to VI) as originally defined by Braak and
Braak (1991). This score is obtained using thick 40-80 micron sections stained with Gallyas, Campbell-Switzer, and thioflavine
S stains.

It is important to note that our analysis does not differentiate patients based on their disease states.

Recruitment The recruitment process for the BBDP subjects primarily involves the enroliment of cognitively normal volunteers residing in
retirement communities within metropolitan Phoenix, Arizona. Additionally, specific recruitment efforts are targeted towards
individuals diagnosed with Alzheimer's disease, Parkinson's disease, and cancer. The median age at death for the enrolled
subjects is 82 years. Throughout their lives, subjects in the study undergo standardized assessments encompassing general
medical, neurological, neuropsychological, and movement disorders evaluations. After death, more than 90% of the
participants receive comprehensive pathological examinations conducted by pathologists who hold valid medical licenses.
Certain subsets of the Program are utilized by esteemed institutions such as the US National Institute on Aging Arizona
Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue
Resource for Parkinson's Disease and Related Disorders.

Ethics oversight The acquisition of postmortem brain is conducted at Banner Sun Health Research Institute with IRB approval (Study Number:
1132516, Investigator: Thomas Beach, M.D., Ph.D.). Informed consent was obtained from all tissue donors.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Fourteen human frontal cortex samples. No sample size calculation was performed. The number of samples was bounded by our limited
access to brain specimens. We aimed to characterize more than 1,000 single cells. The data resolved more than 9,000 single cells and thus
satisfied our goal.
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Data exclusions  No data were excluded.
Replication MUSIC is applied to analyze 14 human frontal cortex samples.
Randomization  Randomization is not applicable because this study does not involve any treatment or modifiable environmental factors.

Blinding Blinding is not applicable because this study does not involve any treatment or modifiable environmental factors.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants

XXNXXNX[X s
OO0O00O0XO

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) H1 human embryonic stem cells were obtained from the 4D Nucleome Consortium. E14 mouse embryonic stem cells were
obtained from Bing Ren lab.

Authentication Cell lines are authenticated by morphology. Cell passage number was kept under P10. Additionally, karyotype evidence is
derived from the genomics data of this work.

Mycoplasma contamination Our lab routinely tests for mycoplasma contamination on all cultured cells on a quarterly basis.

Commonly misidentified lines {1 and £14 cell lines are not commonly misidentified lines.
(See ICLAC register)
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