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ABSTRACT

Sacramento River winter-run Chinook Salmon 
are listed under the Endangered Species Act as 
Endangered, and there are substantial efforts to 
estimate, predict, and limit mortalities at various 
stages of their life cycle. One such effort is the 
annual forecast of the number of juvenile winter-
run entering the Sacramento–San Joaquin Delta. The 
natural-origin juvenile production estimate (JPE) 
is defined as the number of winter-run juveniles 
produced from natural spawning areas that enter 
the Delta, and its forecast is used to determine the 
allowable level of winter-run incidental take at the 
state and federal pumping facilities located in the 
South Delta. Current monitoring programs in the 
Sacramento River basin do not allow the JPE to be 
directly estimated, and thus various methods have 

been used to forecast this value annually. Here, we 
describe three alternative methods for forecasting 
the natural-origin JPE. The methods range from the 
status quo approach (Method 1), which expresses the 
JPE forecast only as a point estimate, to two other 
methods that account for forecast uncertainty to 
various degrees. A comparison of JPE forecasts for 
2018 across the three methods indicates that relative 
to Method 1, Methods 2 and 3 result in lower JPE 
forecasts, by 24% and 18%, respectively, primarily 
because of lower forecasts of the fry-to-smolt 
transition and the smolt survival rate that occurs 
downstream of Red Bluff Diversion Dam. Because 
post hoc estimates of juvenile winter-run abundance 
at the entrance to the Delta do not currently exist, we 
are unable to evaluate forecast skill among the three 
methods.

KEY WORDS

Chinook Salmon, Sacramento River, winter-run, 
juvenile production estimate, forecast, incidental take

INTRODUCTION

Management of fish and wildlife populations relies 
upon data generated from monitoring programs 
and analytical tools that use these data to inform 
decisions. For imperiled species, the need for 
robust monitoring and models is particularly acute 
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because management actions can significantly affect 
population persistence, extinction risk, and the 
potential for recovery. One such imperiled species 
is Sacramento River winter-run Chinook Salmon 
(hereafter winter-run), which has been listed as 
Endangered under the Endangered Species Act 
(ESA) since 1994 (Fed Regist 1994). Native to the 
headwaters of the Sacramento River basin in northern 
California, nearly all winter-run spawning habitat 
was blocked by the construction of Shasta and 
Keswick dams on the Sacramento River, and currently 
the species exists as a single population that spawns 
in the mainstem Sacramento River near the terminus 
of fish passage. Maturing winter-run leave the ocean 
for the Sacramento River in winter, where they hold 
until spawning in the summer. Juveniles emerge in 
late summer and early fall, and ultimately enter the 
ocean in the following winter/spring (Fisher 1994). 
Winter-run persist in the Sacramento River outside of 
their historic range only because releases from Shasta 
Dam can be maintained at cool enough temperatures 
in most years to allow for successful spawning and 
egg incubation during the summer months (Fisher 
1994; Yoshiyama et al. 1998; Lindley et al. 2007). 

Currently, there are substantial efforts to enumerate 
and predict winter-run abundance and survival across 
several life stages, as well as recent recommendations 
for improvement and augmentation of the existing 
monitoring network (Johnson et al. 2017; Windell 
et al. 2017). Most of these monitoring and research 
efforts are focused on informing water and fisheries 
management decisions. The juvenile production 
estimate (JPE) is a forecast of the number of juvenile 
winter-run entering the Sacramento–San Joaquin 
Delta that relies on existing monitoring and research 
projects occurring in the Sacramento River. We 
refer to the JPE as a forecast because it is a forward 
projection rather than an estimate of a current or past 
state. The National Marine Fisheries Service (NMFS) 
makes this forecast annually, and provides it to the 
U.S. Bureau of Reclamation generally in January 
or February. (In 2018, this occurred on January 29 
[NMFS 2018].) The JPE is used to determine the 
annual allowable level of incidental take of ESA-
listed (endangered) winter-run at the state and federal 
pumping facilities in the South Delta. Separate 
natural-origin and hatchery-origin JPE forecasts are 

made—and origin-specific incidental take levels are 
established—based on these JPE forecasts.

The methods used to forecast the JPE have varied 
over time. In recent years, a variety of methods have 
been presented, with a preferred method identified. In 
2017 and 2018, the method chosen for the natural-
origin JPE was termed the “JPI” (juvenile production 
index) method because it relied on an estimate of 
the number of natural-origin winter-run juveniles, 
in fry-equivalent units1, that passed the Red Bluff 
Diversion Dam (RBDD) (Voss and Poytress 2017). The 
JPI method, for natural-origin fish n, was defined as

	 JPEn,t = JPIt 1 f sn , 	 (1)

where f  is a forecast of the fry-to-smolt survival 
rate, and sn  is a forecast of the smolt survival 
rate of natural-origin fish from RBDD (more 
precisely, Salt Creek, which lies 3 miles 
downstream of RBDD) to the Delta entrance 
(Tower Bridge in Sacramento). The JPI estimate 
from calendar year t−1 is used for the year t JPE 
forecast because most of the fry passage at RBDD 
occurs in the fall and winter of the calendar year 
before the year t JPE. We refer to the JPIt 1  as 
an estimate because it is a characterization of the 
fry abundance in year t−1. The terms f  and sn  
are referred to as forecasts because they represent 
a projection of quantities for which year-specific 
data are not yet available. 

For hatchery-origin fish,

	 JPEh,t = Pt sh , 	 (2)

where Pt is the number of hatchery-origin pre-smolts 
released in year t in the upper Sacramento River 
(typically at Caldwell Park in Redding), and sh  is 
a forecast of the survival rate of hatchery-origin 
fish from release to the Delta entrance. For both 
the natural- and hatchery-origin JPEs, s  was 
forecast based on data from acoustically tagged 
hatchery-origin fish in previous years; year t 
estimates of sn  and sh  are not available in time 
to forecast the year t JPE. 

A review of past JPE forecast methods (Anderson et 
al. 2014) led to a number of recommendations. Most 

1	 The relative proportions of winter-run fry and pre-smolts passing Red 
Bluff Diversion Dam varies annually. Production is therefore stan-
dardized to the fry stage to facilitate comparisons across years.
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relevant to the development of a new JPE forecasting 
approach were recommendations to develop better 
estimates of the egg-to-fry survival rate, and to 
commit more resources to developing improved 
estimates of winter-run survival below RBDD (see 
Anderson et al. 2014, p. 23). The recommendation to 
develop better estimates of the egg-to-fry survival 
rate may not be warranted because fry-equivalent 
passage of natural-origin winter-run past RBDD is 
routinely estimated, and thus it is possible to use 
these year-specific abundance estimates directly, in 
lieu of multiplying estimates of egg production by 
a survival rate estimated from previous years’ data. 
The recommendation to develop improved estimates 
of winter-run survival below RBDD has, therefore, 
become a central focus of our analysis.

In this paper, we present three alternative methods 
for forecasting the natural-origin JPE. Method 1 is 
the most current JPE forecast method. Following 
current practices for forecasting the JPE, the 
components of Equation 1 are expressed as point 
estimates, and thus the JPE forecast is itself a point 
estimate with no associated expression of uncertainty. 
Method 2 follows the same basic model structure 
as Method 1 but (1) introduces a new approach for 
forecasting the fry-to-smolt survival rate ( f ), (2) 
uses external survival estimates to forecast the smolt 
survival rate ( sn ), and (3) quantifies observation error 
for the model components and thus the JPE itself. 
Observation error represents the error in estimation 
for a particular year; it is the variation between the 
true value and its estimate. Method 3 accounts for 
observation error in the JPI estimate and uses the 
same approach to forecast f  as Method 2, but uses 
a Bayesian approach to forecasting sn that accounts 
for both observation and process error. Process error 
is the variation in true abundances or rates (not 
their estimates) across years from endogenous or 
exogenous forces. Both observation and process error 
can be important when making forecasts.

For the three methods, we forecast the 2018 natural-
origin JPE and compare their results. We end with a 
discussion of the relative merits and drawbacks of the 
three methods, and describe the data deficiencies that 
limit the current options available for forecasting the 
JPE. 

METHOD 1

Method 1 is the approach to forecasting the natural-
origin JPE that has most recently been used in 
practice (NMFS 2018). This method uses Equation 1 
for the forecast, with its three component quantities 
estimated or forecast as described below.

The JPIt 1  was a point estimate of the number of 
fry-equivalent juveniles that pass RBDD, and the 
preliminary estimate for 2017 was JPI2017 = 545,132  
(2018 email from B. Poytress to M. O’Farrell, 
unreferenced, see “Notes”). Juvenile passage at RBDD 
is standardized to the fry stage by summing (1) the 
estimated fry passage and (2) the estimated number 
of smolts and pre-smolts that pass RBDD, which are 
converted to fry-equivalents by applying the inverse 
of the fry-to-smolt survival rate f

1  (Poytress et al. 
2014). The fry-to-smolt survival rate value used to 
estimate JPIt 1  and forecast JPEn,t  was set at 0.59, 
an estimate attributed to work by Hallock (undated). 
Smolt survival from RBDD to the Delta entrance 
was forecast to be sn = 0.5129 . This was based on a 
variance-weighted mean of survival rates estimated 
from acoustic tagging studies performed on hatchery-
origin winter-run conducted over 2013–2017 (NMFS 
2018), where the weights are inversely proportional 
to the estimated variance of the corresponding 
survival rate estimate (Table 1). This approach used 
a binomial model to estimate annual survival rates 
and the associated variances (Cochran 1977), treating 
the estimated number of tagged fish that pass Salt 
Creek as the number of “attempts,” and the estimated 
number of tagged fish that pass Tower Bridge as the 
number of “successes” (Table 1). Because the variance 
calculations do not directly account for detection 
probabilities, they understate the uncertainty 
associated with each estimate, and do so by varying 
amounts, depending on the detection probability for 
that year.

Using Method 1, the 2018 natural-origin JPE forecast 
is JPEn,2018 = 545,132 0.59 0.5129=164,963 .

METHOD 2

For Method 2, the variance associated with 
observation error is estimated for each of the 
components on the right side of Equation 1. These 
error variances are then used to derive a variance 

https://doi.org/10.15447/sfews.2018v16iss4art4


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

4

VOLUME 16, ISSUE 4, ARTICLE 4

estimate for the overall forecast JPE that results from 
uncertainty in the mean level of each component of 
the forecast, assuming that the observation error in 
each component is independent. Note, however, that 
the variance in the forecast JPE does not include 
uncertainty associated with year-to-year variation 
in the survival rates  f  and sn , nor does it account 
for the covariance between them, in part because 
of the lack of data adequate to characterize annual 
variability in  f  (see “Discussion”). Method 2 can 
be implemented either in a spreadsheet or using a 
computer programming language, for example, R 
(R Core Team 2018).

The forecast natural-origin JPE in year t is calculated 
as the product of JPIt 1 , the estimated fry-to-smolt 
survival rate  f , and the estimated smolt survival rate 
sn  from RBDD to the Delta entrance (Equation 1). 
Assuming that these three terms are statistically 
independent, the variance associated with this 
product may be estimated as (Gray 1999):

V JPEn,t( )= JPIt 1
2

V JPIt 1( )

f
2
V sn( )+ sn

2V f( ) V f( )V sn( ) + f
2
sn

2V JPIt 1( ).

	(3)

Method 2 uses a new approach to forecasting  f .  
A zero-intercept linear model was fitted to estimates 
of hatchery-origin juvenile survival rates  jh , and 
estimates of natural-origin juvenile survival rates 
j n , from the same year, with the estimated slope 

representing f  (Figure 1). Hatchery-origin juvenile 
survival rates (spanning the period of time from 
release as pre-smolts to the end of age-2 in the 

ocean) are estimated using cohort reconstruction 
methods applied to coded-wire-tag recovery data 
(O’Farrell et al. 2012). The structure of the cohort 
reconstruction model does not allow observation 
error for the hatchery-origin juvenile survival rates 
to be estimated. We estimated natural-origin juvenile 
survival rates (spanning fry-equivalent passage at 
RBDD to the end of age-2 in the ocean) using a 
Bayesian state–space population dynamics model 
(Winship et al. 2014). Although this forecast of f  is 
not a direct measure of fry-to-smolt survival, we note 
that the differences in the hatchery- and natural-
origin juvenile survival rates represent different 
durations in the river environment but similar 
durations in the marine environment (Winship et al. 
2014). The slope of the linear model was estimated 
using the ratio of means estimator

f =
mean jn{ }
mean jh{ }

(4)

and its associated variance estimator

V f( )= 1

T mean jh{ }
2

i=1
T jn,i f jh,i( )2

T 1
	 (5)

(Cochran 1977), where mean{} denotes the 
arithmetic mean of the respective survival rate 
estimates, and T is the number of years with 
paired  j n  and  jh . Over the period of record (brood 
years 1998–2013), this yielded f = 0.4725  and 
V f( )= 0.01104971.

Table 1  Acoustic tag-derived estimates of hatchery-origin winter-run passage, survival rates, variances of the survival rates, and weights 
used to forecast sn under Method 1. Passage estimates at the two locations represent tagged fish detected by receivers at those locations, 
as well as tagged fish that were not detected at those locations but detected further downstream. When there were multiple releases within 
a year, the passage estimates were pooled for that year. Passage estimates were provided by A. Ammann (2017 email from A. Ammann to 
M. O’Farrell, unreferenced, see “Notes”).

Passage

Release year Salt Creek Tower Bridge Survival rate Variance Weight

2013 137 21 0.1533 0.0009473612 0.1260

2014 325 135 0.4154 0.0007472007 0.1598

2015 471 269 0.5711 0.0005200450 0.2296

2016 538 288 0.5353 0.0004623658 0.2582

2017 400 279 0.6975 0.0005274844 0.2264
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The estimated JPI2017  for Method 2 differs from 
Method 1 because the different forecasts of  f   
result in a change in the factor used to convert 
pre‑smolt passage to fry-equivalent units ( f

1).  
Given f = 0.4725 , JPI2017 = 606,039  (2018 email 
from B. Poytress to M. O’Farrell, unreferenced, see 
“Notes”). The variance associated with  JPI2017  was 
specified by squaring the product of  JPI2017  and the 
coefficient of variation (CV) for the JPI estimates, 
CV JPIt 1( ) , averaged over the previous 5 years. This 
approximation of the variance estimate was necessary 
because at the time of this writing, the estimated 
observation error variance for JPI2017  was unavailable 
(and may not be available in time for annual 
forecasting of the JPEn,t ). For t = 2013–2017, mean 
CV JPIt 1( ){ }= 0.2185  and JPI2017 = 606,039  yielding an 

estimated variance of V JPI2017( )=17,535,056,400 .	

We forecast the smolt survival rate sn  by taking 
the variance-weighted mean of estimated annual 
survival rates (Table 2). Annual survival rates were 
estimated using the Cormack-Jolly-Seber model for 
live recapture, as described in Michel et al. (2015), 
and the estimated variance of the rates was obtained 
by squaring the model-estimated standard errors. 
Note that annual survival rate estimates reported in 
Table 1 differ from those reported in Table 2. These 
differences are the result of the Cormack–Jolly–
Seber model accounting for detection probabilities 
in the estimation of annual survival rates; no such 
accounting occurs under Method 1.

Each study year is assigned a weight wi V sn,i( ) 1 . 
That is,

	

wi =

1
V sn,i( )

1
V sn,k( )k=1

T

	 (6)

where T is the set of all years under study (this also 
follows Meier [1953]). The mean survival rate 
over the study period of record is then estimated 
as the weighted average,

	
sn = wisn,i

i=1

T 	 (7)

with variance

	 V sn( )= 1
1

V sn ,i( )i=1

T
.	 (8)
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Figure 1  Relationship between hatchery-origin and 
natural-origin survival rates. Solid line is the fitted zero-
intercept model, and the dashed line is the 1:1 line. 
Numbers denote brood years.

Table 2  Hatchery-origin winter-run survival rate estimates, 
variances and weights used to forecast sn  under Method 2. 
Survival rates and standard errors (from which the variances 
were computed) were provided by C. Michel (2018 email from 
C. Michel to M. O’Farrell, unreferenced, see “Notes”).

Release year Survival rate Variance Weight

2013 0.1686 0.0010901817 0.1697

2014 0.4175 0.0008083331 0.2289

2015 0.4765 0.0009904364 0.1868

2016 0.5366 0.0004707077 0.3930

2017 0.6369 0.0085626337 0.0216

https://doi.org/10.15447/sfews.2018v16iss4art4
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The variance V sn( ) reflects the uncertainty in the 
estimated mean survival. It does not reflect the 
amount of year-to-year variability in smolt survival 
from RBDD to the Delta entrance, and implicitly 
assumes (as does the variance-weighted mean 
approach the NMFS adopted previously) that the 
variability in survival across years is negligible. 
Given the data from releases in 2013–2017, 
sn = 0.4378  and V sn( )= 0.000185004. The forecast of 
sn  for Method 2 differs from the variance-weighted 
mean approach applied in Method 1 because the 
standard errors (and thus the variances) estimated 
from the mark–recapture model are larger, especially 
in years with low detection probabilities, such as 
2017. This results in a substantial down-weighting of 
the 2017 estimate, and thus the Method 2 approach 
generates a smaller forecast of sn  relative to 
Method 1.

Thus, for Method 2, JPEn,2018 = 606,039 0.4725 0.4378=125,378  
and V JPE2018( )=1,505,106,006 , yielding a 95% 
confidence interval of 49,339 to 201,418 using a 
normal approximation.

METHOD 3

As with the two previous methods, JPE forecast 
Method 3 has the same basic structure defined in 
Equation 1; however, each of the components on the 
right side of Equation 1 are expressed as probability 
distributions. Taking the product of samples from the 
component distributions results in a distribution of 
JPEn,t , from which the mean, credible intervals, and 
other measures can be obtained. Under Method 3, a 
hierarchical Bayesian model that accounts for both 
observation and process error is used to forecast 
a posterior predictive distribution of sn. Method 3 
is implemented in R (R Core Team 2018), with the 
forecast of sn  performed in JAGS (Plummer 2016).

To account for observation error associated with 
fry abundance, we drew values of JPIt 1  from 
a Lognormal(µ , 2) distribution where µ is the 
estimated log-scale bias-corrected mean,

	 µ = log JPIt 1( )
2

2
, 	 (9)

and 2  is the estimated log-scale variance of JPIt 1

	
2 = log 1+

V JPIt 1( )
JPIt 1

2

	 (10)

(Newman and Lindley 2006). For forecasting the 2018 
JPE, JPI2017 = 606,039and V JPI2017( )=17,535,056,400, as 
noted in the description of Method 2.

The fry-to-smolt survival rate is estimated in the 
same manner as described for Method 2. To account 
for observation error, values of f were drawn from 
a Normal(µ, 2) distribution with µ = f = 0.4725  and 

2 =V f( )= 0.01104971.

The distribution used for sn  accounts for both 
observation and process error, and was developed 
using a Bayesian hierarchical model as follows. For 
computational tractability, the number of acoustically 
tagged fish estimated to enter the Delta—relative 
to the number passing the upstream detector—was 
modeled as a binomial random variable

	 Rt Binomial Nt ,sn,t( ) 	 (11)

where Nt is the number of tagged fish that pass Salt 
Creek in year t, Rt is the number of fish that pass 
Tower Bridge at Sacramento in year t, and sn,t 
is the survival probability. The values used for 
Nt and Rt (Table 3) are not raw count data, but 
instead were generated based on the estimated 
survival probabilities and associated standard 
errors from the mark–recapture model. For each 
year, a set of counts was generated for Nt and 
Rt that, when modeled as a binomial process, 
yielded a mean and standard error as close as 
possible to the mean and standard error generated 
by the mark–recapture model (see Appendix A 
for details). This resulted in effective sample sizes 
with information content similar to the outputs 
of the mark–recapture model. This approach 
greatly increased the computational efficiency 
and tractability of the Bayesian model, and is 
conceptually similar to the tuning of effective 
sample sizes for age- or size-composition data 
frequently used in integrated stock assessments 
of West Coast groundfish and coastal pelagic 
species (Francis 2011). We accounted for process 
error by modeling the annual survival probability 
itself as a random variable. We assumed the 
logit-transformed survival probability for year t, 
logit sn,t( )= log sn,t / 1 sn,t( ) , to be equal to a mean 
survival rate across years, a, plus a year-specific 
random effect, t ,

	 logit sn,t( )= + t 	 (12)
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where t Normal 0, 2( ). We used the logit 
transformation to ensure that the resulting 
random variable sn,t was bounded by 0 and 1.

We specified Bayesian prior distributions for 
the two model parameters as Normal 0,1.6( )  
and Gamma 1,1( )  (Figure 2). We chose the 
prior distribution for  because it is relatively 
uninformative on the arithmetic scale (Figure 2). 
We thought the prior distribution for   was a 
reasonable representation of the year effect standard 
deviation, though we considered other forms and 
parameterizations (see “Discussion”). We generated a 
posterior predictive distribution of sn  by (1) taking a 

Table 3  Derived numbers of fish passing Salt Creek and Tower 
Bridge, which yield a mean and standard error nearly equivalent 
to those estimated by the mark–recapture model

Passage

Release year (t) Salt Creek (Nt) Tower Bridge (Rt)

2013 120 18

2014 301 125

2015 248 142

2016 529 283

2017 25 17
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Figure 2  Prior distributions for the mean effect (α) and the year effect standard deviation (σε). Plots in the top row (A, B) display the prior 
distributions on the logit scale, while plots in the bottom row  (C, D) display these distributions on the arithmetic scale. Distributions were 
generated by making 100,000  random draws from the respective distributions of α and σε.
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draw from the posterior distribution of , (2) taking 
a draw from t Normal 0, 2( ) , where   is itself a draw 
from the posterior distribution of the year effect 
standard deviation, (3) taking the sum of these draws, 
and (4) performing a back transformation from the 
logit scale to the arithmetic scale. This procedure 
is repeated many times to generate the posterior 
predictive distribution of sn . The mean, credible 
intervals, and other measures can then be estimated 
from the posterior distribution, if desired.

Figure 3 displays the distributions of JPIt 1, f , and sn. 
The JPE forecast distribution is the product of these 
random quantities, following Equation 1, and is 
determined by taking the product of random samples 
from the component distributions. The mean of the 
JPE forecast distribution was JPEn,2018 =135,472 , with 
a 95% credible interval of 19,848 to 318,201. We 
note, however, that other distributional metrics, such 
as the median, could be considered as an alternative 
measure of central tendency for JPEn,t . Because the 
distribution of JPEn,2018  is positively skewed, the mean 
of the distribution exceeds the median.

The Method 3 approach accounts for annual variation 
in sn , but as currently implemented does not fully 
characterize JPE forecast uncertainty that results 
from annual variability, because it accounts neither 
for annual variability in  f  nor the covariance 
between sn  and  f .

RESULTS

Table 4 summarizes the JPI2017, f , sn, and JPEn,2018  
forecast under the three methods. Relative to 
Method 1, Methods 2 and 3 result in lower JPE 
forecasts by 24% and 18%, respectively. The disparity 
between Method 1 and Methods 2 and 3 are partly 
due to lower forecasts of the fry-to-smolt transition. 
However, the largest difference between the methods 
concerns sn. Method 2 results in the lowest sn  and 
JPEn,2018  forecasts among the three approaches.

DISCUSSION

In this paper, we present three methods for 
forecasting the JPE that have the same general form 
but differ in complexity and their quantification of 
uncertainty. Method 1 makes no attempt to quantify 
uncertainty. Method 2 accounts for observation error 
but not process error, and therefore underestimates 
true forecast uncertainty since survival probabilities 
f and sn likely vary substantially across years.2 
Method 3 accounts for uncertainty in sn  more 
comprehensively than Method 2 because it 
incorporates both observation and process error. 

2	 In theory, variance in the annual estimates of sn could be partitioned 
into within- versus across-years components using a random effects 
ANOVA approach (Gelman et al. 2004, p. 131–139), but the point 
estimate of annual variability would be highly uncertain with only 5 
years of data.
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We note, however, that the modeled uncertainty in 
f  for Method 3, like Method 2, only accounts for 
uncertainty in the estimated mean value and not 
the year-to-year variation in f. Additionally, neither 
method accounts for covariation between sn and f.

There are substantial difficulties in accounting for 
the year-to-year variation in the forecast of f . In 
particular, the ratio of natural-origin to hatchery-
origin survival rates is not a true estimate of a 
survival rate, but rather an indirect method of 
approximating fry-to-smolt survival in the apparent 
absence of data that could be used to estimate 
this rate directly. The limitations of this approach 
are evident in that the ratio of natural-origin to 
hatchery-origin survival rate estimates exceeds 1.0 in 
4 of 16 years (Figure 1). Yet, the approach may be an 
improvement on the forecast of  f  used in Method 1 
because it is fully documented, reproducible, is based 
entirely on winter-run data, and can accommodate 
new data going forward.

The f  forecast is used both in the estimate of JPIt 1  
and the forecast of JPEn,t . Estimates of JPIt 1  are used 
in other aspects of winter-run management aside 
from the application discussed here, and for many 
years the standardization to fry-equivalents has 
assumed f = 0.59, attributed to work performed by 
Hallock. A change to the methods used to convert 
total RBDD passage to fry-equivalent units should 
thus be considered carefully, because it may raise 
consistency issues with other winter-run management 
efforts.

Some logistical issues with implementation of 
Methods 2 and 3 will need to be considered carefully. 

Both methods require an estimate of the variance of 
the JPI estimate. However, at the time the JPE is to 
be forecast, the JPI estimate is preliminary. To date, 
the USFWS has provided the preliminary estimate to 
the JPE Project Work Team as a point estimate, and 
estimates of the variance have not been provided 
at that time (2017 in-person conversation between 
B. Poytress and M. O’Farrell, unreferenced, see 
“Notes”). It may be infeasible to obtain preliminary 
estimates of the JPI variance in time to make the JPE 
forecast. A solution to this issue, applied here, was 
to use historical estimates of the CV, derived from 
past estimates of the JPI and its error variance, and 
assume that the average of past CVs represent the 
current year CV. Such an approach would be less 
tenable if substantial annual changes in the CV were 
to occur in the future.

Method 3 uses a Bayesian approach to estimating the 
distribution of the survival rate based on past data, 
and thus prior distributions for the model parameters 
must be specified. We specify minimally informative 
prior distributions for the example provided here, but 
recognize that these priors can substantially influence 
the parameter estimates, given the small amount 
of acoustic telemetry data currently available. To 
investigate how sensitive the estimates were to 
the prior distribution on the year effect standard 
deviation, we fitted the model to simulated data sets 
that ranged in length from 5 to 50 years. We found 
that there was little sensitivity to the prior once there 
were approximately 10 years of data (unpublished 
analysis). Hence, as data accumulate, the influence of 
the prior distributions will be expected to diminish, 
and overall uncertainty will decrease. Of course, 
additional data will accumulate slowly, and that 
accumulation will depend on continued funding of 
the acoustic tagging and monitoring program.

Each method described here employs survival 
rate data for hatchery-origin fish as a proxy for 
natural-origin fish, which can be problematic for 
several reasons. First, there are out-migration 
timing differences because hatchery-origin fish are 
usually released in February while peak passage of 
natural-origin fish at RBDD is frequently in October. 
Furthermore, hatchery-origin fish that pass RBDD are 
generally larger than the natural-origin fish that pass 
RBDD. This condition has required the use of a fry-
to-smolt survival rate that is not based on winter-

Table 4  Point estimates used to make the 2018 JPE forecast. 
For Method 3, the point estimates are means of the respective 
distributions.

Method

1 2 3

JPI2017
545,132 606,039 606,794

f 0.5900 0.4725 0.4733

sn
0.5129 0.4378 0.4721

JPEn,2018
164,963 125,378 135,472

https://doi.org/10.15447/sfews.2018v16iss4art4
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run data. We introduced an approach that indirectly 
estimates the fry-to-smolt survival rate, yet cannot 
verify its accuracy. Natural-origin survival from 
RBDD to Sacramento could perhaps be estimated 
by implanting acoustic tags in natural-origin fish 
captured at RBDD earlier than the date of hatchery 
release. This would obviate the need to estimate fry-
to-smolt survival, and allow for more direct estimates 
of sn. We understand that tags have recently 
decreased in size such that they could be implanted 
in fish smaller than the pre-smolts currently released 
from Livingston Stone Hatchery (though tag size is 
likely still too large to be implanted in winter-run 
fry). There is also a potential issue with the current 
practice of timing hatchery releases to target flow 
pulses. This practice may cause the relationship 
between hatchery and natural-origin survival to 
change over time.

A number of challenges exist for forecasting the JPE. 
Current monitoring in the Sacramento River does 
not allow the number of winter-run juveniles that 
enter the Delta to be estimated. Johnson et al. (2017) 
identified this data gap, and recommended that steps 
be taken to allow for annual estimations. Without 
estimates of winter-run passage at Sacramento, we 
cannot make comparisons between JPE forecasts and 
observed (estimated) values. As such, assessment of 
forecast skill for the alternative methods is currently 
not feasible. In theory, we could evaluate the skill 
of proposed forecast models for sn. However, with 
only five annual estimates of sn,t from winter-run 
currently available, it would be difficult to verify the 
statistical significance of any apparent relationships 
identified. This situation could slowly improve 
through time as more data accumulate.

Anderson et al. (2014) recommended considering 
“trickle” rather than “batch” releases of tagged fish 
to increase the statistical power of future survival 
analyses. Although this could help the effects 
of environmental conditions at the time of fish 
migration to be better understood, it does not solve 
the problem that any forecast of sn to inform the 
JPE forecast would need to be made before those 
environmental conditions were known. Because 
acoustically tagged, hatchery-origin fish are typically 
released after the JPE is forecast, and environmental 
conditions at the time of release are not yet known, 

we did not attempt to include environmental 
covariates into our forecasts of sn.

CONCLUSIONS

Given the current winter-run management setting 
and the available data, we recommend use of Method 
2 to forecast the JPE. The use of annual smolt 
survival rates estimated from a mark–recapture 
model allows variation in detection probabilities 
to be accounted for, thus better characterizing the 
variances that inform the weighted mean approach to 
forecasting sn. Method 2 has several advantages over 
Method 1, including the accounting for observation 
error, the use of a fry-to-smolt survival rate forecast 
that is reproducible and documented, and the 
aforementioned use of smolt survival rates and their 
variances estimated by a mark–recapture model. 
We do not recommend the use of Method 3 at this 
time because the “tuning” of the juvenile passage 
estimates is somewhat ad hoc, and the Bayesian 
model used to forecast sn is highly sensitive to prior 
distributions given the few years of data currently 
available. In addition, further development of this 
approach would ideally include characterization 
of annual variation in f as well as the covariance 
between f and sn, which are not possible now, given 
the currently available data. As data accumulate, 
Method 3 may become a more viable alternative. 
Regardless of the JPE forecast method used in the 
future, we recommend collection of data that will 
enable the number of juvenile winter-run that enter 
the Delta to be estimated (Johnson et al. 2017), so 
that performance of these and potentially new JPE 
forecast approaches can be rigorously assessed.
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