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On earthquake predictability measurement:information score and error diagramYan Y. Kagan1�1 Department of Earth and Space SciencesUniversity of California, Los Angeles, California, USAJune 13, 2008AbstractWe discuss two methods for measuring the e�ectiveness of earth-quake prediction algorithms: the information score based on the likeli-hood ratio and error diagrams. For both of these methods, closed formexpressions are obtained for the renewal process based on the gammaand lognormal distributions. The error diagram is more informativethan the likelihood ratio and uniquely speci�es the information score.We derive an expression connecting the information score and errordiagrams. We then obtain the estimate of the region bounds in theerror diagram for any value of the information score. We discuss howthese preliminary results can be extended for more realistic models ofearthquake occurrence.Key words: Earthquake prediction, Statistical methods, Seis-micity, Renewal processes, Information score, Error diagram1



1 IntroductionIn a recent article, Jordan (2006) argued that more objective, rigorous, quan-titative methods for testing earthquake prediction schemes need to be de-veloped. Particularly, he asked \What is the intrinsic predictability of theearthquake rupture process?" To contribute to this inquiry we discuss twomethods currently used to measure the performance of earthquake predictionprograms.The �rst method is the likelihood ratio procedure which has long beenused for statistical analysis of random processes. In particular, Kagan andKnopo� (1976; 1987), Kagan (1991), Ogata (1999), Kagan and Jackson(2000), Imoto (2004), Rhoades and Evison (2006), and Helmstetter et al.(2006) have applied this likelihood method for earthquake occurrence stud-ies. Kagan and Knopo� (1977) �rst proposed calculating the informationscore for earthquake predictability based on the likelihood ratio.The second method is related to the Relative Operating Characteristic(ROC) used in weather prediction e�orts (Jolli�e and Stephenson, 2003),where the success rate of an event prediction is compared against the falsealarm rate (ibid., p. 69; see also Holliday et al., 2005). Since periodic (diurnal,annual) e�ects are strong in weather prediction, such a method has broadapplications; we can compare the above characteristics of a forecast systemfor one-day or one-year alarm periods. But in earthquake prediction, there2



is no natural time scale for forecasting, so the time interval is arbitrary.Therefore, if the alarm duration is increased, both criteria approach thetrivial result: all events are predicted with no false alarms.Molchan (1990) modi�ed this method as an error diagram to predict ran-dom point processes. Molchan and Kagan (1992) and Molchan (1997; 2003)also review the error diagram method and its applications. Error diagramsare actively used to evaluate earthquake prediction algorighms. Recently,McGuire et al. (2005), Kossobokov (2006), and Baiesi (2006) and othersused this method for this purpose. Kagan and Jackson (2006) commentedon Kossobokov's analysis and discussed the application of error diagrams topredicting earthquakes.In this paper we consider the simplest stochastic models of earthquakeoccurrence { the renewal processes (Davis et al., 1989; Daley and Vere-Jones,2003) based on the gamma and lognormal distributions. The reason for us-ing these models is that the closed form information score expressions existpresently only for these processes (Daley and Vere-Jones, 2004; Bebbington,2005). We simulate these processes to test both these formulae and our sim-ulation procedure and thereafter to test the derived forward and inverse re-lations between the information scores and the error diagrams. Although thesimple renewal models are widely used for representing large earthquake oc-currences on speci�c faults, the data available presently are rather scarce. Wediscuss extending our results to more complex earthquake occurrence models.3



Extensive earthquake catalog data are available that can be modeled usingmore sophisticated schemes. A more complete and rigorous investigation ofsuch models is a task for future work.2 Information scoreKagan and Knopo� (1977) suggested measuring the e�ectiveness of earth-quake prediction algorithm by �rst evaluating the likelihood ratio to test howwell does a model approximate earthquake occurrence. In particular, theyestimated the information score, Î, per one event byÎ = `� `0N = 1N NXi=1 log2 pi�i ; (1)where ` � `0 is the log-likelihood ratio, log2 was used to obtain the scorein bits of information, N is the number of earthquakes in a catalog, pi isthe probability of earthquake occurrence according to a stochastic model,conditioned by the past:pi = Prob f an event in (t; t+�) j I(t)g ; (2)where I(t) is the past history of the process up to the moment t, and �i is asimilar probability of event occurrence for a Poisson process.One information bit would mean that uncertainty of earthquake occur-rence is reduced on average by a factor of 2 by using a particular model.4



Here the `average' needs to be understood as a geometric mean (Vere-Jones,1998). For long catalogs (N !1)limN!1 Î ! I = E � log2 pi�i � ; (3)where E is the mathematical expectation (Vere-Jones, 1998; Daley and Vere-Jones, 2003).For a renewal (i.e., with independent intervals) process the informationscore can be calculated as (Daley and Vere-Jones, 2003, their equation 7.6.16)I = m ( 1� logm+H ) ; (4)where m is the intensity (rate) of a renewal process and the entropy functionH is H = Z 10 f(x) log f(x) dx ; (5)where f(x) is a probability density function (pdf) for interevent times.The entropy function (5) has been calculated in closed form for two dis-tributions, gamma and lognormal (Daley and Vere-Jones, 2004; Bebbington,2005). Imoto (2004) obtained information score estimates for the lognormal,gamma, and several other distributions. For this purpose (5) was integratednumerically.The gamma distribution has the pdff(x) = �� x��1�(�) exp(��x) ; (6)5



where � is the gamma function, � is a shape parameter, � is a scale parameter,and 0 < � < 1; 0 < � < 1; 0 � x < 1 (Evans et al., 2000). If � = 1,then the process is the Poisson one, � < 1 characterizes the occurrence ofclustered events.For the gamma renewal process, normalized to have the mean equal to1, i.e., � = �, the information score is (Daley and Vere-Jones, 2004, theirequation 14)I(�) = [ log � + (�� 1) (�)� � � log �(�) ] = log(2) ; (7)where  is the digamma function (Abramowitz and Stegun, 1972, Eq. 6.3.1).If � = 1, I(�) = 0. This function is shown in Fig. 1. The small �-valuescorrespond to a clustered process, the large values correspond to a quasi-periodic one.The lognormal distribution has the pdff(x) = 1�xp2� exp�� 12�2 [ log(x)� � ]2� ; (8)where � is a shape parameter, � is a scale parameter and 0 < � < 1; 0 <� < 1; 0 � x < 1 (Evans et al., 2000). For a renewal process normalizedto have the mean interevent time equal to 1.0�̂ = exp(��� �2=2) = 1:0 ; (9)6



or � = ��2=2, the information score for the lognormal distribution is (Beb-bington, 2005, p. 2303)I(�) = " 1 + �22 log(2) � log2 ��p2� �# : (10)This function also is shown in Fig. 1. Contrary to the gamma distributionplot, the small �-values correspond to a quasi-periodic process, the largevalues to a clustered one. The sequence with the parameter value � = 1 isthe closest to the Poisson process, its information score is at minimum, butis still non-zero, I ' 0:117 bits.Fig. 2 displays a simulation of the lognormal renewal process for � = 1:86.According to (10), the average information score for such a process wouldbe 1 bit. An initial alarm with the duration 0.1 is declared after each event.If a new event occurs during a declared alarm, the alarm time is extendedaccordingly (cf. Stark, 1997), thus individual alarms may signi�cantly exceedthe length of the initial one. These alarms are shown at the bottom of theplot.3 Error diagramsThe error diagram for evaluating how well a prediction program performswas �rst suggested by Molchan (1990). For any prediction algorithm, thediagram plots the fraction of alarm time, � , versus the fraction of failures to7



predict, �. For the optimal prediction algorithm the lower hull of points isconcave (Molchan, 1997; 2003).Fig. 3 shows a sketch of the error diagram. The diagonal of the squarecorresponds to the random guess prediction strategy: an alarm is declaredindependently of the process past history (Molchan, 1991; Molchan and Ka-gan, 1992). The other curves are for hypothetical prediction algorithms.Two dashed line curves are error diagram curves consisting of two segments,the lower curve is for a certain forecast strategy and the upper curve is an`antipodal' prediction, obtained by a reversal of alarm declaration (ibid.).The information score or Shannon's information for line curves, consistingof straight line segments, can be calculated, extending arguments by Molchan(1991) or Molchan and Kagan (1992), asI = n+1Xj=1(�j � �j+1)� log2 "� �j � �j+1�j � �j+1 # : (11)where n is the number of line segments and �j and �j are the coordinatesof line segment ends. Eq. 11 shows that the information score in Fig. 3 isthe same for the forecast (dashed curve) and for its antipodal prediction(I = 1 bit). The score is 0, 0.84, and 0.63 bits for solid line, dash-dotted anddotted line curves, respectively.The error diagram curve for a clustered renewal process can be calculatedas follows. An alarm is declared after each event for a �xed initial time(�t). We normalize the initial alarm window w by dividing it by the mean8



interevent time, �T , i.e., making w dimensionlessw = �t�T : (12)As we discussed above, for both distributions the mean interval �T is ad-justed to be 1.0. If a new event occurs during a declared alarm, the alarmtime is extended by w. Such an alarm declaration strategy produces an op-timal prediction curve for a clustered process, in which the hazard rate ismonotonically decreasing (Molchan, 1991; 2003).The fraction of failures to predict is�(w) = 1 � Z w0 f(x) dx : (13)The fraction of total alarm time is� (w) = w �(w) + Z w0 x f(x) dx : (14)The �rst right-hand term in (14) is the average alarm duration, if no eventoccurs in the w interval. The second term is the average alarm length if anevent or events occur during a declared alarm.For the lognormal and gamma renewal processes the variables �(w) and� (w) can be found in a closed form. For the gamma distribution�(w) = 1 � (�; �w)=�(�) ; (15)and � (w) = w �(w) + (1 + �; �w)=�(1 + �) ; (16)9



where  is the incomplete gamma function (Abramowitz and Stegun, 1972,Eq. 6.5.2).For the lognormal distribution�(w) = 12 (1 � erf "�2 + 2 log(w)2�p2 #) ; (17)and � (w) = w �(w) + 12 (1 + erfc"�2 � 2 log(w)2�p2 #) : (18)Here erf and erfc are the error function and its complementary function,respectively.Contrary to similar expressions (15{16) for the gamma distribution, equa-tions (17{18) do not specify an optimal prediction strategy. In the optimalstrategy the alarm is declared when the hazard function or the pdf exceedsa certain level (Molchan and Kagan, 1992; Molchan, 1997; 2003). For thelognormal distribution the hazard function increases initially but eventuallydecreases again. However, for the highly clustered version of the process� = 1:86, the initial increase is concentrated at very small time intervals,hence the error curve is close to be optimal. For example, if � = 1:86, onlyfor � < 0:0003 the error curve is above the random guess strategy, i.e., theforecast curve is not optimal. However, these considerations are irrelevantfor the problem we are considering here: the relation between an error curveand the information score. As shown in Fig. 3 and Eq. 3 even the antipodalcurve yields the same value of I as the real forecast curve. Our numerical10



experiments show that (17{18) for any value of � specify a curve which, whenprocessed by (3) or by Eq. 19 below, yields the information score as in (10).Fig. 4 shows an example of the error diagram for the lognormal renewalprocess. The theoretical curves (17, 18) are compared to the simulationresults for 33 choices of the alarm duration w. The alarm duration startswith 0:001 and then increases logarithmically with the factor value 1.52 untilit reaches the total length of a series (1000 units). We deliberately userelatively short simulated sequences to show random uctuations.4 Relation between the error diagram and in-formation scoreThe information score can be calculated for an error diagram curve as anextension of (11) to continuous concave curvesI = Z 10 log2  �@�@� ! d� : (19)It is helpful to have an estimate of the region boundaries for curves cor-responding to a speci�c value of the information score. Such an estimatecan be obtained if the prediction scheme in the error diagram consists of twolinear segments (cf. Fig. 3) with the slopesD1 = � @�1@�1 = � ��1��1 ; (20)for the �rst segment and D2 for the second segment;D1 � 1 ; and D2 � 1 ; (21)11



given a curve concavity. D1 = D2 = D0 = 1 is the random guess strategy(Molchan, 1990).For the assumed information score I the envelope curve is de�ned by theequation D1 � �� � 1�D1 �� = � 2I : (22)By solving this equation for any value of D1, one obtains the �-value for thecontact point of two linear segments, � = (� � 1)=D1.As an example, Fig. 5 displays several two line segments that correspondto the prediction schemes with an information score that equals 1 bit. Theenvelope curve is also shown. This curve delineates the lower boundary ofall possible error curves with the information score I = 1 bit. Numericalexperiments show that any concave (not straight) line connecting the point(�; �) with (0, 1) or (1, 0) would have a larger information score (I). Asimilar result can be obtained using the H�older-Jensen inequality. The upperboundary is, in principle, the random guess line,D0: ifD1 !1, the resultingcurve can be as close to this line as needed.We also show in this diagram the results of simulating a mixture of twoPoisson processes with the rates di�ering by a factor 44.4. This factor wasadjusted to obtain the information score 1 bit for a renewal process in whichintervals have been selected randomly from each sequence. The simulationresults are similar to theoretical curves having two straight line segments.12



Fig. 6 displays the curves for the renewal processes with gamma andlognormal distributions. The information score again is taken to be 1 bit.Curves for both sequences, clustered and quasi-periodic, are shown. All fourcurves are within the region speci�ed by (22) and the random guess line.When simulating or computing curves for quasi-periodic sequences, alarmdeclaration is reversed, i.e., it is declared after the elapsed w time period fol-lowing an event. Alternatively, an alarm strategy is the same as in clusteredsequences producing an antipodal prediction (Molchan and Kagan, 1992;Molchan, 1997). Then a curve is rotated 180� around the center of symme-try [ � = 1=2; � = 1=2 ] .The curves behavior in Fig. 6 is di�cult to see in the neighborhood of thepoint � = 0; � = 1, so we display the curves in a semi-log format (Fig. 7). Theclustered gamma distribution (� = 0:329) is seen as approaching � = 1 linemore slowly than the other curves. This means that for even very small alarmtime intervals, some prediction capability is still available for this model. Thelower envelope of (22) also has non-zero values for the fraction of predictedevents (1��) for small � , i.e., although the curve asymptotically approachesthe purely random forecasts, this convergence is very slow.5 DiscussionIn this work we use simulations as well as previously and newly derivedanalytic expressions for renewal stochastic processes to test four relations:13



(a) between the pdf's of the gamma and lognormal distributions and theinformation score;(b) between the pdf's of these distributions and error curves;(c) between the error curve and the information score;(d) the inverse relation between the information score and the error curve.Clearly, from the theoretical and the simulation results described above,the error diagram represents a much more complete picture of the stochasticpoint process than does the likelihood analysis. Using the diagram curve onecan calculate the information score for a renewal process sequence. The scorealso imposes some limits on the diagram region where curves are located, butFigs. 5 and 6 show that these limitations are rather broad. By specifyinga more restricted class of point processes to approximate an earthquake oc-currence, the relation between these two methods can likely be made moreprecise.As we mentioned in the Introduction section, the available information islimited to few or even only one historical large earthquake on a single tec-tonic structure. Because of this the renewal models, analyzed in this work,may have only a minimal application in the statistical analysis of seismic-ity patterns. However, even with these quali�cations, a signi�cant number ofpublications apply the renewal or similar models (Davis et al., 1989; Molchan,1990, 1991; Imoto, 2004; Jackson and Kagan, 2006) for earthquake occur-rence description. Therefore, it is important to have a quantitative compar-14



ison of various prediction techniques applied to such models. It is even moreimportant to extend these results to more complex models of earthquakeoccurrence: for example, taking into account insu�cient earthquake data,various modeling assumptions, multidimensionality of the earthquake pro-cess, and so on. Below we will o�er a few comments on how the techniquesdiscussed above can be used to forecast earthquake rupture.� 1) The derived equations apply to very long processes (N !1), theyneed to be extended for a small number of predicted earthquakes when ran-dom uctuations could modify results. For example, in Fig. 4, the directapplication of (11) may give a zero or a negative argument for a logarithm.If we form a concave hull of simulated points, the obtained simulation curvewould be lower than the theoretical estimate. Molchan (1990, Eqs. 18 and19) derived asymptotic expressions for statistical estimates of � and � forsu�ciently long renewal processes. This result can be used to evaluate un-certainties in error curve estimates as in Fig. 4.� 2) Our analysis assumes that earthquake process �ts the models exactly.In reality we work with models which are at best imperfect approximations toreal stochastic relations between earthquakes. Daley and Vere-Jones (2004,p. 301) suggest that the information score is at a maximum if the true modelis used for the process description. Harte and Vere-Jones (2005, p. 1240) alsowrite that \the [�-� ] curve for a wrong model always lies above the curve forthe true model." If the data do not match the model, the obtained score Î15



(3) should be below the maximum, thus the error curve would be above thecorresponding lower envelope (see Figs. 5, 6). However, the actual shape ofthe curve would depend on the employed model pdf form, and hence maydi�er signi�cantly from the true model curve. In Figs. 5 and 6 various curvescorresponding to I = 1 bit are quite di�erent and it is possible that a curvecorresponding to a lesser information score may in some � -interval be belowa curve with a higher I. This problem needs to be investigated more closely.� 3) Earthquake prediction algorithms are tested against the Poissonhypothesis even though earthquakes do not follow this distribution. Testingagainst weak null hypothesis biases the results (Stark, 1997). More realisticreference distributions need to be introduced in the measurements of theearthquake prediction e�ciency.� 4) Additionally, a more appropriate stochastic model for earthquakeoccurrence is not a renewal but a branching process (Hawkes and Oakes,1974; Kagan and Knopo�, 1976; Ogata, 1999) which captures the importantfeature of seismicity, its clustering. Renewal processes can yield clusteringfeatures, but in contrast to branching models their clustering is symmetricin time. Earthquake occurrence is highly time asymmetric, there are few, ifany, foreshocks, and many aftershocks. These events often exhibit secondaryclustering.� 5) Moreover, earthquakes occur not only in time. Their spatial coordi-nates, earthquake size, and focal mechanisms need to be taken into account16



in actual prediction e�orts (Kagan and Jackson, 2000). Introducing newvariables complicates the calculation of the information score and the er-ror diagram. Molchan and Kagan (1992) have done some preliminary workin determining error diagrams for multidimensional processes. Kagan andJackson (2000) and Helmstetter et al. (2006) have shown how to evaluatethe e�ectiveness of spatial smoothing for seismic hazard maps.The results of statistical analysis of the central California catalog (Kaganand Knopo�, 1987; Kagan, 1991; Molchan and Kagan, 1992) suggest that(19) is valid for multidimensional processes as well. In Fig 8 we displaythe error curve obtained for the catalog, its processing by (11) yields Î =1:86 bits. As in Fig. 7 the model exhibits a signi�cant predictive power evenfor very small space-time alarm volumes. The information score obtainedby the likelihood procedure is 1.58 bits (Kagan and Knopo�, 1987; Kagan,1991). There are many potential sources for the score discrepancy: randomuctuations due to the limited size of the catalog, possible biases in handlingboundary e�ects, etc. As we mentioned above (item 1), random uctuationsmay increase the estimate of Î, obtained from the error diagram.� 6) Another challenge in dealing with earthquake prediction is the fractalnature of most distributions controlling earthquakes (Kagan, 2006). Sincethese distributions approach in�nity for small time and distance intervals,the value of the information score is not well de�ned (see Helmstetter et al.,2006). Similarly, the error diagram curve would start to approach the point of17



the ideal prediction (� = 0; � = 0) for earthquake catalogs of high locationaccuracy and extending to small time intervals after a strong earthquake.Clearly both predictability measurement methods need to be signi�cantlymodi�ed to apply to fractally distributed seismicity forecasting.� 7) None of the above-mentioned models would be likely to allow ananalytic computation of the information score or the error diagram curves.Therefore, the solution to most of the problems listed in this section canonly be obtained by simulation. Most likely simulations need to be startedfor simpler models and then model complexity could be increased. If thesimulations could not be tested against closed form expressions, the resultswould be less reliable. Nevertheless, we hope that such simulations wouldshow that Eqs. 19 and 22 which describe the relationship between two mea-sures of earthquake predictability turn out to have a general applicabilitybeyond the simple models analyzed in this paper.Finally, I would like to mention that Eq. 19 was derived, using heuristicarguments, exempli�ed in Fig. 3, in December 1991 { January 1992. Sincethat time I have privately sent these preliminary results to many researchersinterested in the problem. Recently, Harte and Vere-Jones (2005) publisheda similar formula (see the �rst right-hand term in their Eq. 18) for a model ofthe discrete-time point process. Actually, for this term d� can be cancelledand since the second term disappears for a continuous process, their equationis becoming almost identical to our (19). However, they did not explore the18



connection between the error diagram properties and the information scoreor any constraints the information score would impose on the diagram.AcknowledgmentsI appreciate partial support from the National Science Foundation throughgrants EAR 04-09890, and DMS-0306526, as well as from the Southern Cal-ifornia Earthquake Center (SCEC). SCEC is funded by NSF CooperativeAgreement EAR-0106924 and USGS Cooperative Agreement 02HQAG0008.I am very grateful to P. Stark of UC Berkeley who sent me matlab pro-grams employed in his (Stark, 1997) paper. With appropriate modi�cationsthese programs were used in some calculation reported above. I also thankD. D. Jackson, I. V. Zaliapin, F. Schoenberg, and J. C. Zhuang of UCLA,D. Vere-Jones of Wellington University and P. Stark for very useful discus-sions. Reviews by Rodolfo Console and by two anonymous reviewers havebeen very helpful in revising the manuscript. I thank Kathleen Jackson forsigni�cant improvements in the text. Publication 1058, SCEC.
19



References[1] Abramowitz, M. and I. A. Stegun (1972), Handbook of MathematicalFunctions, Dover, NY, pp 1046.[2] Baiesi, M. (2006), Scaling and precursor motifs in earthquake networks,Physica A, 360(2), 534-542.[3] Bebbington, M. S. (2005), Information gains for stress release models,Pure Appl. Geophys., 162(12), 2299-2319.[4] Daley, D. J., and Vere-Jones, D. (2003), An Introduction to the Theoryof Point Processes, Springer-Verlag, NewYork, 2-nd ed., Vol. 1, pp. 469.[5] Daley, D. J., and Vere-Jones, D. (2004), Scoring probability forecastsfor point processes: The entropy score and information gain, J. AppliedProbability, 41A, 297-312.[6] Davis, P. M., D. D. Jackson, and Y. Y. Kagan (1989), The longer ithas been since the last earthquake, the longer the expected time tillthe next?, Bull. Seismol. Soc. Amer., 79(5), 1439-1456.[7] Evans, M., N. Hastings, and B. Peacock (2000), Statistical Distribu-tions, 3rd ed., New York, J. Wiley, 221 pp.[8] Harte, D., and Vere-Jones, D. (2005), The entropy score and its usesin earthquake forecasting, Pure Appl. Geophys., 162(6-7), 1229-1253.20



[9] Hawkes, A. G. and Oakes, D. (1974), A cluster process representationof a self-exciting process, J. Appl. Prob., 11, 493-503.[10] Helmstetter, A., Y. Y. Kagan, and D. D. Jackson (2006), Compar-ison of short-term and time-independent earthquake forecast modelsfor southern California, Bull. Seismol. Soc. Amer., 96(1), 90-106.[11] Holliday, J. R., K. Z. Nanjo, K. F. Tiampo, J. B. Rundle, D. L. Turcotte(2005), Earthquake forecasting and its veri�cation,Nonlinear ProcessesGeophys., 12(6), 965-977.[12] Imoto, M. (2004), Probability gains expected for renewal process mod-els, Earth Planets Space, 56, 563-571.[13] Jackson, D. D., and Y. Y. Kagan (2006), The 2004 Park�eld earth-quake, the 1985 prediction, and characteristic earthquakes: lessons forthe future, Bull. Seismol. Soc. Amer., 96(4B), S397-S409.[14] Jolli�e, I. T. and D. B. Stephenson, Eds. (2003), Forecast Veri�cation:a Practitioner's Guide in Atmospheric Science, J. Wiley, Chichester,England, 240 pp.[15] Jordan, T. H. (2006), Earthquake predictability, brick by brick, Seis-mol. Res. Lett., 77(1), 3-6.[16] Kagan, Y. Y. (1991), Likelihood analysis of earthquake catalogues,Geophys. J. Int., 106, 135-148.21



[17] Kagan, Y. Y. (2006), Why does theoretical physics fail to explain andpredict earthquake occurrence?, in: Lecture Notes in Physics, 705,pp. 303-359, P. Bhattacharyya and B. K. Chakrabarti (eds.), SpringerVerlag, Berlin{Heidelberg.[18] Kagan, Y. Y., and D. D. Jackson (2000), Probabilistic forecasting ofearthquakes, Geophys. J. Int., 143(2), 438-453.[19] Kagan, Y. Y., and D. D. Jackson (2006), Comment on `Testing earth-quake prediction methods: \The West Paci�c short-term forecast ofearthquakes with magnitude MwHRV � 5.8"' by V. G. Kossobokov,Tectonophysics, 413(1-2), 33-38.[20] Kagan, Y., and L. Knopo� (1976), Statistical search for non-randomfeatures of the seismicity of strong earthquakes, Phys. Earth Planet.Inter., 12(4), 291-318.[21] Kagan, Y., and L. Knopo� (1977), Earthquake risk prediction as astochastic process, Phys. Earth Planet. Inter., 14(2), 97-108.[22] Kagan, Y. Y., and L. Knopo� (1987), Statistical short-term earthquakeprediction, Science, 236, 1563-1567.[23] Kossobokov, V. G. (2006), Testing earthquake prediction methods:\The West Paci�c short-term forecast of earthquakes with magnitudeMwHRV � 5.8", Tectonophysics, 413(1-2), 25-31.22



[24] McGuire, J. J., Boettcher, M. S., and Jordan, T. H. (2005), Foreshocksequences and short-term earthquake predictability on East Paci�c Risetransform faults, Nature, 434(7032), 457-461; Correction { Nature,435(7041), 528.[25] Molchan, G. M. (1990), Strategies in strong earthquake prediction,Phys. Earth Planet. Inter., 61(1-2), 84-98.[26] Molchan, G. M. (1991), Structure of optimal strategies in earthquakeprediction, Tectonophysics, 193(4), 267-276.[27] Molchan, G. M. (1997), Earthquake prediction as a decision-makingproblem, Pure Appl. Geoph., 149(1), 233-247.[28] Molchan, G. M. (2003), Earthquake prediction strategies: A theoreti-cal analysis, In: Keilis-Borok, V. I., and A. A. Soloviev, (Eds) Nonlin-ear Dynamics of the Lithosphere and Earthquake Prediction, Springer,Heidelberg, 208-237.[29] Molchan, G. M., and Y. Y. Kagan (1992), Earthquake prediction andits optimization, J. Geophys. Res., 97(B4), 4823-4838.[30] Ogata, Y. (1999), Seismicity analysis through point-process modeling:A review, Pure Appl. Geophys., 155(2-4), 471-507.23



[31] Rhoades, D. A., and F. F. Evison (2006), The EEPAS forecasting modeland the probability of moderate-to-large earthquakes in central Japan,Tectonophysics 417(1-2), 119-130.[32] Stark, P. B. (1997), Earthquake prediction: the null hypothesis, Geo-phys. J. Int., 131(3), 495-499.[33] Vere-Jones, D. (1998), Probabilities and information gain for earth-quake forecasting, Computational Seismology, 30, Geos, Moscow, 248-263.

24



10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

Fig. 1

Shape parameters, σ and κ

In
fo

rm
at

io
n 

pe
r 

ev
en

t, 
I (

bi
ts

)

Figure 1: Dependence of the information score on the shape parameters �and � for the gamma (solid line) and lognormal (dashed line) renewal process.Two squares and circles show the curves position for I = 1 bit.
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Figure 2: Parts of a realization of lognormal distributed renewal process.Solid line { cumulative number of events. Crosses { beginning of alarms, `x's{ end of alarms. In this example, 33 events are simulated with the shapeparameter � = 1:86 (see Eq. 8). After each event an alarm with duration 0.1is issued. 17 events fall into 16 alarms, i.e., they are successfully predicted.The duration of alarms is 23.4 % of the total time.26
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Figure 3: Error diagram example.
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Figure 4: Error diagrams for the lognormal renewal process with � = 1:86.The straight solid line is the strategy curve corresponding to a random guess.The left solid curve is calculated using (17{18), circles are the result of sim-ulations. The dashed and dotted curves are the �rst and second right-handterms in (18), respectively.
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Figure 5: Error diagrams for renewal processes. The thick straight solid linecorresponds to a random guess. Thin solid lines are for the curves with theinformation score 1 bit. The D1-values (22) for the �rst segment startingfrom the right (or the second segment starting from the bottom) are 2, 2.5,3, 4, 6, 10, 20, 50, 100, 250, 1000, and 10000. The left thick solid line isan envelope curve for these two-segment curves. Circles stand for simulatingthe Poisson renewal process with two states (see text).29
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Figure 6: Error diagrams for renewal processes with the information score1 bit. The straight solid line is the diagram curve corresponding to a randomguess. The left solid line is an envelope curve for two-segment curves. Dashedcurves with squares and with diamond signs are for the gamma distributionwith � = 0:329, and � = 8:53, respectively. Solid curves with circles andwith plus signs are for lognormal distribution with � = 1:86, and � = 0:35,respectively. 30
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Figure 7: Same as Fig. 6 in semi-log format.
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Figure 8: Error diagram (�; �): solid line { the strategy of random guess, solidline with asterisks { the error curve for the short-term prediction algorithmby Kagan and Knopo� (1987), as applied to seismicity of central Californiain the years 1971-1977. 32




