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Abstract
Stance detection for unseen targets is designed to automati-
cally identify the user’s stance or attitude towards various new
targets that are constantly appearing with no labels. Inspired
by work in cognitive science, we distinguish functions between
systems for syntactic and semantic to enhance stance detection.
First, we construct a dual-view graph and utilize unsupervised
graph contrastive learning to capture target-invariant features
influencing stance expression from a syntactic structure per-
spective. Second, we use an attention mechanism to learn the
relationship between syntactic pattern features and a given tar-
get, and fuse the two parts to enhance the model’s ability to
predict unseen targets. Meanwhile, we employ the interactive
GCN to maintain the global semantics of the dual-view graph
fusion and ensure the stability and validity of the learned syn-
tactic representations. Comprehensive experiments on stance
detection of unseen targets verify the effectiveness and superi-
ority of our proposed method.
Keywords: Stance Detection; Dual-View Graph; Contrastive
Learning

Introduction
Stance detection aims to automatically identify attitudes or
stances (i.e., pro, con, or neutral, etc.) in texts for a specific
target. Traditional stance detection training and inference are
all on the same target, which requires a lot of labeled data
(Wei, Mao, & Chen, 2019). With the development of so-
cial media, the data on the internet is exploding, and people
are discussing a wide range of targets, many of which have
yet to be seen before and for which there is no labeled data
(Mohammad, Kiritchenko, Sobhani, Zhu, & Cherry, 2016).
This problem corresponds to two tasks: zero-shot stance de-
tection and cross-target stance detection, which we collec-
tively refer to as unseen target stance detection (UTSD).

The key to solving UTSD problems is learning transfer-
able, target-invariant knowledge from the labeled seen target
data. Some existing approaches try to improve the model’s
predictive ability for unseen targets by employing attention
mechanisms (Xu, Paris, Nepal, & Sparks, 2018a) or fusing
external knowledge (Liu, Lin, Tan, & Wang, 2021a). How-
ever, due to the coupling of target-specific features, the pre-
diction effect of transferring knowledge directly from a spe-
cific target to unseen targets is usually limited. (Allaway,
Srikanth, & Mckeown, 2021) uses adversarial learning to
guide the model to learn the feature distribution of unseen tar-
gets, and this model is less effective in the case of unbalanced
label distribution. (Liang et al., 2021) refers to shallow prag-
matics features such as word frequency statistics in unseen

target data to achieve feature sharing among different targets;
(Liang et al., 2022) performs stance detection through hierar-
chical supervised contrastive learning. They earn better clas-
sification results, while more natural general target-invariant
features, such as syntactic patterns, are underutilized.

Both linguistics and psychology consider that language
can be divided into ”syntactic representation” and ”seman-
tic representation”. Text semantics is the unity of syntactic
and semantic representations, which interact with each other
to complete the process of sentence comprehension and ex-
pression. Even sentences oriented to different targets may
have the same or similar syntactic patterns, which is a natu-
ral target-invariant textual feature that plays an essential role
in stance expression. Inspired by this, we propose a Unified
Framework for Unseen Target Stance Detection based on Fea-
ture Enhancement via Graph Contrastive Learning (FEGCL).
Our method integrates unsupervised contrastive learning and
graph neural network techniques to model the syntactic pat-
terns of texts and employs such syntactic pattern features to
enhance model prediction and thus improve the performance
of UTSD task.

The main contributions of this paper are summarized as
follows:

• We unify the stance detection task for unseen targets and
propose a novel end-to-end unification framework. The
model constructs a dual-view graph focusing on ”syntactic
representation” and ”semantic representation” by masking
keywords and builds a bridge for knowledge transfer be-
tween seen and unseen targets (i.e., syntactic pattern fea-
tures) through unsupervised graph contrastive learning.

• Based on GCN for interactive convolution of the dual-view
graph, we fuse syntactic presentation and semantic presen-
tation and keep the fused features consistent with the global
semantics, thus ensuring the effectiveness of the acquired
features. Further, our model employs target-invariant syn-
tactic pattern features to enhance global semantic features
and facilitate the generalization of stance features from
seen to unseen targets.

• Extensive experiments on typical benchmark datasets show
that our model performs well on zero-shot stance detec-
tion. We even apply the model to the cross-target stance
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Figure 1: The framework of the proposed FEGCL model.

detection tasks, demonstrating our model’s superiority and
generalizability.

Task Description
The labeled ”seen target dataset” Ds = {us

i = (ts
i ,x

s
i ,yi)}|Ns

i=1
is the training set, where us

i is the i-th sample in the train-
ing set, which consists of the utterance xs

i towards the target
ts
i and stance label yi ∈ {pro,con,neutral}. The ”unseen tar-

gets dataset” Dd = {ud
i = (td

i ,x
d
i )}|

Nd
i=1 is the testing set, where

the target has not been seen in the training set, and ud
i is the

i-th sample in the testing set, meaning the utterance xd
i to-

wards the target td
i . Our goal is to train on seen targets dataset

and generalize the model’s inference ability to unseen targets.
In particular, the cross-target stance detection is trained on a
training set with seen targets and generalizes the inference ca-
pability to a testing set with unseen but relevant targets(Liang
et al., 2021). Zero-shot stance detection aims to learn from
the training set of many targets with labels and automatically
identify previously unseen targets that have little relevance to
the training targets(Allaway & Mckeown, 2020).

Methodology
In this section, We introduce the proposed unified Framework
for Unseen Target Stance Detection(UTSD) based on Feature
Enhancement via Graph Contrastive Learning. As demon-
strated in Figure 1, FEGCL consists of four main compo-
nents: 1)graph contrastive learning module, which is based on
the dual-view graph to separate and learn target-invariant fea-
tures as shared features for migration from seen to unseen tar-
gets; 2)global semantic preservation module, which is based
on interactive GCN to avoid distortion of the learned syn-
tactic pattern features; 3)Feature fusion module, which fuses

syntactic pattern features with specific targets based on an at-
tention mechanism; and 4)stance classifier.

Encoder
Given a sentence x towards the specific target t, where t =
{wi}|mi=1 consists of m words and x = {wi}|ni=1 consists of n
words1. To take full advantage of contextual information, we
adopt BERT as the encoder fθ(·).

z,X = fθ(input) = BERT(input) (1)

where the input can be a single x, t or (x, t), a combination
of the two. X = [v1,v2, . . . ,v|input|] ∈ R|input|×dm is the feature
matrix from the last hidden layer of the encoder outputs, and
|input| is the length of the input. vi is the last hidden layer
vector corresponding to the i-th input token. dm is the dimen-
sion of the hidden layer feature representation. z∈Rdm stands
for the semantic aggregate representation of the input, that is,
the representation of the special token [CLS] in BERT.

Contrastive Learning based on Dual-view Graph
Dual-View Graphs Construction The expression of text
semantics results from the coupling of multiple meta-features
(Cope, Beaver, & Fintel, 2013), and it is crucial for UTSD
task to obtain the target-invariant and shared features. Here,
we focus on the syntactic patterns that affect the semantic ex-
pression of sentences, which is naturally target-invariant and
manifests as a graph structure. Therefore, we decompose the
sentence into two views, the syntactic representation graph

1In this paper, we will use SpaCy toolkit to generate the depen-
dency tree of a input sentence. In order to ensure the alignment of
SpaCy and Bert, we will take the word segmentation result of SpaCy
as the input of Bert.
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and the semantic representation graph, to represent the text
features from the perspective of target-invariant and target-
specific features, respectively.

First, we construct graphs for each sentence based on syn-
tactic dependency trees2 to capture the dependencies between
words in the sentences. The A = Rn×n for the adjacency ma-
trix of each sentence can be expressed as:

Ai, j =

{
1, x(wi,w j)
0, otherwise (2)

where Ai, j represents adjacency matrix between i-th row and
j-th column , and x(wi,w j) indicates that the word wi in the
syntactic dependency tree of the sentence x is connected to the
word w j with edge. Here, for simplicity, we define the adja-
cency matrix as a symmetric matrix (i.e., Ai, j = A j,i). Fol-
lowing (Welling & Kipf, 2016), we set that each word node
has a self-looping edge (i.e., Ai,i = 1).

Secondly, since text syntax does not depend on keywords
or topic words related to any target, to focus on the syn-
tactic patterns, we use KeyBert (Grootendorst, 2020) to ex-
tract the keywords in the sentence x and mask the keywords
with the particular token [MASK] to obtain the auxiliary sen-
tence x̃. At the same time, we reverse the mask to keep
the keywords of the sentence, while the non-keywords are
masked with a special token [MASK] to obtain the other
auxiliary sentence x̂, aiming to focus more on the expres-
sion of the target-specific content. Based on the above data
preprocessing operations, our training set and testing set are
adjusted as Ds = {us

i = (ts
i ,x

s
i , x̃

s
i , x̂

s
i ,yi)}|Ns

i=1and Dd = {ud
i =

(td
i ,x

d
i , x̃

d
i , x̂

d
i )}|

Nd
i=1.

Finally, the sentences masking keywords x̃ and the adja-
cency A form the ”syntactic representation graph”. The sen-
tences masking non-keywords x̂ and the adjacency matrix A
form the ”semantic representation graph”. Each word of a
sentence is a node in the graph whose features are the word-
level feature of the last layer by encoding.

X̃(0) = [ṽ0, ṽ1, . . . , ṽn] = fθ(x̃)[1]

X̂(0) = [v̂0, v̂1, . . . , v̂n] = fθ(x̂)[1]
(3)

where X̃(0) ∈ Rn×dm , X̂(0) ∈ Rn×dm are the initial feature ma-
trices of the ”syntactic representation graph” and ”semantic
representation graph”, respectively, and ṽi, v̂i correspond to
the feature vectors of the nodes in the two views, respectively.

Syntactic Representation Based on Graph Contrastive
Learning The ”syntactic representation graph” helps us to
learn target-invariant syntactic pattern features that are nat-
urally target-invariant and transferable. Acquiring syntactic
pattern features with good discriminative ability is the key
to affecting stance classification. Since contrastive learning
has the advantage of distinguishing ability in feature space
and has been effective in many fields, we formulate the pro-
cess of learning based on ”syntactic representation graph” as

2In this work, we use spaCy toolkit for generating dependency
tree of the input sentence: https://spacy.io/.

a self-supervised graph contrastive learning problem. Further,
we construct positive and negative examples of contrastive
learning from node attribute-level enhancement and network
topology-level enhancement.

Data augmentation 1) node-attribute-level augmentation.
(Gao, Yao, & Chen, 2021) considers that any deletion or alter-
ation of a word will harm the data augmentation performance
and takes dropout as the data augmentation of the minimal
form of text representation. So, we feed a sentence into the
encoder twice, and the meaning of the two representations ob-
tained is identical, which can be considered as a pair of posi-
tive samples. In contrast, the other samples in the same batch
are taken as negative samples. Specifically, given the encoder
fθ(·,m) with dropout mask m, we encode the sentence x twice
with different dropout masks m, m′ and convey positive sam-
ple pairs {X̃, X̃′}. 2) network-topology-level augmentation.
To adapt to the diversity and irregular language expressions
of social media, for each sample, we randomly remove 1%
of the edges in the syntactic dependency tree to enhance the
graph and obtain the positive sample pairs of the adjacency
matrix {A,A′}.

Given an mini-batch input B = {ui}Nb
i=1, where Nb is the

size of the mini-batch, after data augmentation, the mini-
batch for contrastive learning is doubled to B ′, which size
is 2Nb. For each sample expressed in the feature matrix and
adjacency matrix, we refer to

{
(X̃,A),(X̃′,A′)

}
as a positive

sample pair. In contrast, the other 2Nb −2 samples in B ′ are
negative samples about the positive sample pair.

Syntactic pattern representation We feed the feature ma-
trix X̃ and the normalized adjacency matrix Â of the ”syntac-
tic representation graph” into the GCN (Graph Convolutional
Network) (Welling & Kipf, 2016) to learn the target-invariant
syntactic feature matrix in the context.

X̃(l+1) = GCN(X̃(l);A) = σ(ÂX̃(l)W(l)) (4)

where X̃(l) is the syntactic feature matrix of the l layer
convolution. Â = D(− 1

2 )AD(− 1
2 ), D is the degree matrix,

Dii = ∑ j Ai j. σ(·) is ReLU nonlinear activation function.
W(l) ∈ Rdm×dm are trainable parameters.

Further, the target t is encoded as z̃ = fθ(t)[0], and we use
a retrieval-based attention mechanism(C. Zhang, Li, & Song,
2019) to learn the relationship between syntactic feature and
the specific target.

α j =
exp(β j)

∑
n
k=1 exp(βt)

β j = (Wqz̃)T (WkX̃ j)

(5)

where α j is the attention of j-th node feature in syntactic fea-
ture matrix to the z̃, T represents the transpose operation of
the vector, and Wq,Wk ∈ Rds×dm are the learnable parame-
ters. Further, we compute the fusion features that represent
the syntactic expression patterns.

f̃ = ATN(t, X̃) =
n

∑
k=1

αk(WvX̃k) (6)
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where Wv ∈ Rds×dm is the learnable parameter and f̃ ∈ Rds .
Contrastive Learning We define a neural network projec-

tion head h = gψ( f ) = W (2)σ(W (1) f ), which maps the fea-
ture vectors to the space for calculating the loss of contrastive
learning, where W (1) and W (2) are trainable parameters. For
each sample, the contrastive loss is expressed as:

ℓi =−log
esim(h̃i,h̃′i)/τ

∑
2Nb
j=11 j ̸=i · esim(h̃i,h̃′j)/τ

(7)

where 1 j ̸=i is an indicator function, sim(u,v) = uT v/∥u∥∥v∥
indicates the cosine similarity of vectors u and v normalized
by L2, τ is a temperature parameter that controls the penalty
intensity for hard samples in contrastive learning. Thus, the
contrastive learning loss for each mini-batch is:

LCL =
−1
2Nb

∑
i∈B ′

ℓi (8)

Global Semantic Preservation based on Interactive
GCN
Global semantic features are essentially the result of some fu-
sion of target-invariant features and target-specific features,
which correspond to the ”syntactic representation graph” and
”semantic representation graph” in FEGCL, respectively. To
avoid the prediction instability caused by feature distortion,
inspired by (Liang et al., 2021), we utilize GCN-based dual-
view interactive fusion to reconstruct the global semantic fea-
tures and ensure that the reconstructed feature distribution is
consistent with the original feature distribution. Here, we take
z = fθ(x)[0] as the original global semantic feature, and the
interaction fusion features are defined as:

X̃(l+1) = GCNs(X̃(l),A)

Z̃(l+1) = GCNt(X̃(l+1),A)

X̂(l+1) = GCNt(X̂(l),A)

Ẑ(l+1) = GCNs(X̂(l+1),A)

(9)

where GCNs,GCNt are the graph convolution modules for
”syntactic representation graph” and ”semantic representa-
tion graph”, respectively. Z̃(l+1) is the result of merging syn-
tactic pattern representation into semantic representation, and
Ẑ(l+1) is the result of merging semantic representation into
syntactic pattern representation. Additionally, we read out
the reconstructed feature by average pooling, defined as:

z′ = Meanpool(
Z̃(l+1)+ Ẑ(l+1)

2
) (10)

We maintain the distribution consistency between the orig-
inal global semantic features and the reconstructed semantic
features based on the KL divergence.

ℓR
i = KL[p(zi)||p(z′i)] (11)

Thus, the learning objective for global semantic preserva-
tion is:

LR =
1

Nb

Nb

∑
i=1

ℓR
i (12)

Stance Classifier

To give full play to the role of target-invariant and target-
specific features in stance classification, we enhance the orig-
inal sentence feature z with the syntactic pattern feature f̃ ,
which is easy to transfer from different targets. Furthermore,
we use a fully-connected layer with softmax normalization to
generate the probability distribution of stance detection:

ŷi = softmax(Wo( f̃i ⊕ zi)+bo) (13)

where ŷi ∈ Rdp is predicted stance probability distribution
for the input sample ui, dp is the dimension of stance labels,
Wo ∈ Rdp×(dm+ds) and bo ∈ Rbp are learnable parameters, ⊕
represents the concatenation.

Finally, we train the classifier by cross-entropy loss be-
tween the predicted distribution ŷ and the ground-truth dis-
tribution y of each sample in mini-batch:

Lcls =−
Nb

∑
i=1

dp

∑
j=1

y j
i logŷ j

i (14)

Table 1: The data statistics of VAST dataset.

VAST Train Dev Test
#Samples 13477 2062 3006

#Unique Comments 1845 682 786
# Distinct Topics 4641 497 759
#Zero-shot Topics 4003 383 600

Table 2: The data statistics of WT-WT dataset.

DataSet Target Favor Against Neutral

WT-WT

CA 2469 518 5520
CE 773 253 947
AC 970 1969 3098
AH 1038 1106 2804

Learning Objective

The learning objective is to train the model by jointly opti-
mizing the supervised stance classification loss Lcls, the self-
supervised graph contrastive learning loss LCL and the global
semantic perservation loss LR. The overall target L can be
formulated as the sum of three losses:

L = Lcls +αLCL +βLR +λ∥Θ∥2 (15)

where α, β are tunable hyper-parameters, Θ denotes all
trainable parameters in the model, and λ denotes the L2-
regularization coefficient.

2109



Table 3: Performance comparison of unseen targets stance detection. Bold face indicates the best result of each column and
underlined the second-best. The results with ∗ represent our implementation.

Models WT-WT(Cross-target) VAST(Zero-shot)
AC AH CA CE Pro Con Neu All

BiCond 64.9 63.0 56.5 52.5 44.6 47.4 34.9 42.8
CrossNet 65.1 62.3 59.1 54.4 46.2 43.4 40.4 43.4

SEKT - - - - 50.4 44.2 30.8 41.8
TOAD 59.2∗ 62.0∗ 58.1∗ 57.8∗ 42.6 36.7 43.8 41.0
BERT 67.1 67.3 56.0 60.5 54.6 58.4 85.3 66.1

BERT-GCN - - - - 58.3 60.6 86.9 68.6
BERT-DAN 72.2∗ 74.1∗ 73.5∗ 70.4∗ 60.6∗ 58.4∗ 89.3∗ 69.4∗

TPDG 74.2 73.1 66.8 65.6 - - - -
PT-HCL 76.7 76.3 73.1 69.2 61.7 63.5 89.6 71.6

FEGCL(ours) 75.4 77.5 74.3 73.9 59.8 65.8 89.4 71.7

Experiment
Datasets and Evaluation Metrics
To verify the effectiveness of our model on unseen targets, we
used VAST (Allaway & Mckeown, 2020) dataset for the zero-
sample stance detection and WT-WT (Conforti et al., 2020)
dataset for cross-target stance detection, respectively.

VAST is a public dataset for zero-shot stance detection,
which is composed of a large number of targets. The statistics
of the dataset are shown in Table 1. We compute the Macro
F1-Score for each label to measure the model’s performance.

WT-WT is a financial dataset that is used to detect the atti-
tudes of M&A operations among companies. There are four
targets in WT-WT, namely CVS AET (CA), CI ESRX (CE),
ANTM CI (AC), and AET HUM (AH). The statistics of the
dataset are shown in Table 2. We use the average of the Favor
and Against Macro F1-Scores to evaluate the performance of
our model. Following (Conforti et al., 2020), we adopt an
evaluation setup of leave-one-target-out and randomly divide
the seen target data into the training set and validation set ac-
cording to the ratio of 85:15.

Baselines
We select several baselines with good performance to com-
pare with FEGCL. These include BiLSTM-based mod-
els such as BiCond (Augenstein, Rocktäschel, Vlachos, &
Bontcheva, 2016), CrossNet (Xu, Paris, Nepal, & Sparks,
2018b), and SEKT (B. Zhang et al., 2020); a model based
on adversarial learning: TOAD (Allaway et al., 2021); a
model based on graph neural network: TPDG (Liang et al.,
2021); BERT-based models: BERT (Devlin, Chang, Lee,
& Toutanova, 2019), BERT-GCN (Liu, Lin, Tan, & Wang,
2021b) and BERT-DAN (the BERT version of DAN(Xu et al.,
2020)); contrastive learning based model: PT-HCL (Liang et
al., 2022).

Implementation and Reproducibility
All programs are implemented using python 3.9.13 and py-
torch 1.12.1 with CUDA 11.8 in an Ubuntu 20.04.5 with an

nvidia 3090 GPU.
For data augmentation, we adopt keybert (Grootendorst,

2020) to extract the keywords of texts and select 30% of
all keywords to mask for every sentence. We use a pre-
trained uncased bert-base (Devlin et al., 2019) as an encoder
with 768-dimensional embedding. We train our model for
15 epochs, using the Adam (Kingma & Ba, 2015) optimizer
with a learning rate of 2e-5. The mini-batch size is set to 32.
The hyper-parameters for contrastive learning is τ = 0.14 and
dropout probability p = 0.3. The hyper-parameters combina-
tion for the total loss is α = 0.2 and β = 0.5.

Experimental Results
Main Experimental Results
Table 3 shows the experimental results of our model and base-
lines for cross-target and zero-shot tasks. FEGCL results in
all scenarios are significantly better than the baselines.

For the cross-target stance detection on WT-WT dataset,
we can see that TPDG has achieved good results due to the
use of graph structure to mine some pragmatic information.
Our model improves by 4.7% in F1-Score compared to the
PT-HCL model based on contrastive learning, showing that
our model based on the graph contrastive learning can effec-
tively extract high-quality target-invariant features and thus
improve the ability of cross-target stance detection. Finally,
Our model achieves a better performance in most cases.

We also validate the zero-shot stance detection in the VAST
dataset. We can see that the BERT-based models has bet-
ter results compared with the traditional LSTM-based model,
which indicates that the BERT is able to capture more valu-
able semantic information from datasets. Further, mod-
els such as PT-HCL, which introduce contrastive learning,
further improve the performance of stance detection. And
FEGCL model achieves the best results in most of the re-
sults, which shows that our dual-view graph-based contrastive
learning can effectively model target-invariant syntactic fea-
tures, thus promoting feature transfer between seen and un-
seen targets.
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Table 4: Experimental results of ablation study. A check in-
dicates that the model uses the appropriate module. When
MKeys is unchecked, the words in the sentence are masked
by 10% at random.

MKeys CL Recon Cross-target Zero-shot
AC AH CA CE ALL

✓ ✓ 68.5 70.0 62.8 61.2 68.2
✓ ✓ 73.9 75.8 71.1 70.6 69.2
✓ ✓ 74.8 76.2 73.8 73.8 70.2
✓ ✓ ✓ 75.4 77.5 74.3 73.9 71.7

Ablation Study

We designed several variants of the EFGCL model to ana-
lyze the effect of each component of our method and different
combinations through ablation experiments. MKeys denotes
the module for masking keywords; when this module is not
selected, it represents masking words randomly. CL indicates
the graph contrastive learning module and Recon denotes the
global semantic preservation module.

The results of ablation study are shown in table 4. We can
see that both the removal of graph contrastive loss and the
global semantic reconstruction loss significantly degrade the
performance of the model. Therefore, both learning objec-
tives are critical to our model. We find that models with-
out masking keywords in a targeted way have a significant
degradation in prediction performance, indicating that tar-
geted masking target-specific keywords are crucial. In con-
trast, targeted mask keywords can shield target-specific in-
formation without destroying the syntactic structure, which
is beneficial to learning target-invariant syntactic pattern fea-
tures. In addition, removal of the graph contrastive learn-
ing module CL also leads to a decrease in prediction per-
formance, which shows that the features obtained from con-
trastive learning can effectively enhance the model learning
quality. Similarly, the global semantic reconstruction mod-
ule Recon also affects the quality of feature learning, and re-
moval still leads to a decrease in prediction performance.

Visualization Analysis

Analysis of Syntactic Representation To analyze how the
contrastive learning module in our model plays a role in im-
proving the quality of the learned representations. Taking
AH in WTWT as an example, we randomly selected 500 in-
stances from the training set and test set, respectively, and
visualized the syntactic pattern representations by T-SNE. As
shown in the figure 2, the distribution of ”syntactic pattern
representation ” in the WT-WT dataset without AH (i.e., the
training set) overlaps mostly with the feature representation
of AH (i.e., the testing set), indicating that the syntactic pat-
tern features learned in the training data can effectively cover
the testing data and thus obtain a good feature migration ef-
fect.

Figure 2: Visualization of syntactic representation learned by
FEGCL. The blue and orange colors indicate the distribution
of the syntactic pattern features of the training and testing
sets, respectively.

(a) Training data. (b) Testing data.

Figure 3: Visualization of FEGCL classification ability in the
training data (a) and testing data (b).

Analysis of Classification Again using the WTWT dataset
as an example, we further demonstrate the classification ca-
pability of the proposed model. We randomly selected 500
samples from the training and test sets, respectively, and pre-
sented the t-SNE visualization of the classification presenta-
tion. As shown in Figure 3, for samples with different stances
in the training set, our FEGCL can distinguish them well. For
samples with different stances in the training set, our FEGCL
can distinguish them well. FEGCL also achieves satisfac-
tory classification results on the testing set, indicating that
our model has good generalization ability.

Conclusion

In this paper, we propose a novel unified framework model
for the unseen target stance detection, which models the syn-
tactic and semantic representations affecting the textual pose
representation by constructing a dual-view graph through a
keyword masking approach, respectively. We further em-
ploy unsupervised graph contrastive learning to learn target-
invariant features (i.e., syntactic pattern features) from syn-
tactic representation graphs and fuse them with specific tar-
gets as augmented features based on an attention mechanism
as the primary source of transferable knowledge. Mean-
while, global semantic feature maintenance based on interac-
tive GCN ensures the validity of the learned features and pro-
motes prediction stability. Experimental results of unseen tar-
gets show that our model significantly improves performance
and achieves the best results, demonstrating the excellent gen-
erality of our model.

2111



Acknowledgements
This work is supported by the Key R&D Program of Guang-
dong Province No.2019B010136003, the National Natu-
ral Science Foundation of China No.62172428, 62006143,
61732004, 17320222 and the Natural Science Foundation of
Shandong Province of China No.ZR2020MF152.

References
Allaway, E., & Mckeown, K. (2020). Zero-shot stance detec-

tion: A dataset and model using generalized topic represen-
tations. In Proceedings of the 2020 conference on empir-
ical methods in natural language processing (emnlp) (pp.
8913–8931).

Allaway, E., Srikanth, M., & Mckeown, K. (2021). Adversar-
ial learning for zero-shot stance detection on social media.
In Proceedings of the 2021 conference of the north amer-
ican chapter of the association for computational linguis-
tics: Human language technologies (pp. 4756–4767).
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