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Abstract

We present a machine learning based model that can predict the electronic structure of quasi–

one–dimensional materials while they are subjected to deformation modes such as torsion and

extension/compression. The technique described here applies to important classes of materials

systems such as nanotubes, nanoribbons, nanowires, miscellaneous chiral structures and nano–

assemblies, for all of which, tuning the interplay of mechanical deformations and electronic fields

— i.e., strain engineering — is an active area of investigation in the literature. Our model incor-

porates global structural symmetries and atomic relaxation effects, benefits from the use of helical

coordinates to specify the electronic fields, and makes use of a specialized data generation process

that solves the symmetry-adapted equations of Kohn-Sham Density Functional Theory in these

coordinates. Using armchair single wall carbon nanotubes as a prototypical example, we demon-

strate the use of the model to predict the fields associated with the ground state electron density

and the nuclear pseudocharges, when three parameters — namely, the radius of the nanotube, its

axial stretch, and the twist per unit length — are specified as inputs. Other electronic properties

of interest, including the ground state electronic free energy, can be evaluated from these predicted

fields with low-overhead post-processing, typically to chemical accuracy. Additionally, we show

how the nuclear coordinates can be reliably determined from the predicted pseudocharge field us-

ing a clustering based technique. Remarkably, only about 120 data points are found to be enough

to predict the three dimensional electronic fields accurately, which we ascribe to the constraints

imposed by symmetry in the problem setup, the use of low-discrepancy sequences for sampling,

and efficient representation of the intrinsic low-dimensional features of the electronic fields. We

comment on the interpretability of our machine learning model and anticipate that our framework

will find utility in the automated discovery of low–dimensional materials, as well as the multi-scale

modeling of such systems.

I. INTRODUCTION

Over the last decade, machine learning (ML) models have percolated into all areas of

science and engineering. Indeed, data-driven research is already an important part of the
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medical sciences [1–3], chemistry [4, 5], and engineering fields like manufacturing [6, 7], ap-

plied thermodynamics [8, 9], and miscellaneous others (see e.g. [10–13]). The recent interest

in these techniques has been driven by the improvement in the machine learning algorithms

themselves, as well as an exponential growth in computation power, and the abundance of

data. Additionally, data analysis tasks such as regression, classification and dimensionality

reduction, which are commonly used across all areas of science, are easily handled by ma-

chine learning algorithms by their innate design [14, 15], and this has contributed to the

wide applicability of machine learning techniques.

Machine learning methods have also shown great promise for various materials physics

problems [16–23]. In particular, the use of high-throughput Density Functional Theory

(DFT) [24, 25] calculations in conjunction with machine learning techniques, has attracted

much attention as a powerful tool for materials discovery [26–30]. A large section of the

research in this direction so far, has been aimed at predicting specific material properties

and screening novel materials for targeted applications such as energy storage. This includes

electronic properties like the band gap, chemical properties like adsorption and formation

energies, and mechanical properties like Young’s modulus and fracture toughness [11, 31–

38]. A common feature of most of these predicted material properties is that they are

low–dimensional — usually, simple scalars. An alternative to these approaches is to use ma-

chine learning to directly predict electronic fields such as the ground state electron density

for atomic configurations of interest. This is appealing since such fields contain all the infor-

mation for predicting various material properties — at least in principle, and the machine

learning model provides a way to bypass expensive DFT calculations which can compute

these fields. Recent work in this direction includes [39–51]. The large majority of these

contributions have focused on molecular systems (e.g. hydrocarbon chains and clusters),

while a few have considered bulk materials. The current contribution can be viewed as an

extension of the aforementioned efforts of machine learning based prediction of electronic

fields to broader classes of nanomaterials — specifically, quasi-1D nanostructures. Notably, a

separate strand of work has also explored improving Density Functional Theory predictions

themselves, by trying to learn the elusive Hohenberg-Kohn functional [25] or by improving

exchange correlation functionals used in Kohn-Sham theory [40, 52–55]. This latter class of

developments will not have much bearing on the discussion that follows below.

Although machine learning based prediction of the electronic fields appears to be an at-

3



tractive option for the aforementioned reasons, the high–dimensional nature of the fields

usually makes it necessary to generate large amounts of data for model training and valida-

tion purposes. Additionally, since the models require a description of the atomic environ-

ments as input, it becomes necessary to choose a cutoff radius for limiting the size of the

environments, or to focus on small sized systems, in order to make the models tractable.

Furthermore, a careful choice of the atomic environment descriptors needs to be made to en-

force symmetry and locality properties [46]. From this perspective, the current contribution

is quite distinct in that global structural symmetries in lieu of environmental descriptors are

utilized here, and strains are employed as model inputs. Our approach is related in spirit

to [50] where the authors investigated machine learning models for the electronic fields in a

hexagonal close packed crystalline material.

We present here a machine learning model that can predict the electronic structure of

quasi-one-dimensional materials as they are subjected to strains commensurate with their

geometries. One of the key motivations of our work is that the complex interplay of elec-

tronic fields and mechanical deformations in low–dimensional materials is an active area of

investigation in the literature [56–62], and therefore, it is desirable to have machine learning

models where strain parameters can be mapped to electronic fields for such systems. Addi-

tionally, the techniques described here are likely to find use in the discovery of novel phases

of low–dimensional chiral matter [63] and multiscale modeling [64]. The data generation

process for the ML model here is based on a recently formulated electronic structure cal-

culation technique, that exploits the global symmetries of quasi-one-dimensional structures,

and enables Kohn-Sham DFT calculations for such systems using a few representative atoms

in a symmetry adapted unit cell [65–71]. This computational method, called Helical Density

Functional Theory (Helical DFT), solves the symmetry adapted Kohn-Sham equations in

so-called helical coordinates to yield electronic fields of interest, and is able to accommo-

date deformation modes such as extension, compression and torsion, commonly associated

with tubular or wire-like nanostructures. Atomic relaxation effects as a response to the

applied strains are automatically included, by driving the Hellman-Feynman forces [72] to

zero. In order to map strain parameters to resultant electronic fields, we utilize a two-step

machine learning model, motivated by recently developed techniques used to predict the

high–dimensional deformation fields of multi walled carbon nanotubes [73]. Specifically, we

use Principal Component Analysis (PCA) to perform dimensionality reduction of the elec-
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tronic fields, and a neural network to learn in the reduced space. Using armchair single-wall

carbon nanotubes as an example, we demonstrate that the ML model accurately predicts

the ground-state electron density and the nuclear pseudocharge fields when the radius of the

nanotube, its axial stretch, and the twist per unit length are provided as inputs. We have

also developed a novel technique based on clustering that allows us to determine the nuclear

coordinates from the ML model predicted nuclear pseudocharge field, and we demonstrate

the superior performance of this method when compared to alternatives. Other quantities

of interest, including ground state energies and symmetry-adapted band diagrams can be

readily computed from the ML model predicted fields through low-overhead postprocessing

steps. The strategy of predicting smoothly varying ground state fields such as the elec-

tron density, and obtaining energies from this field, instead of predicting the latter directly,

appears to work better in practice [40, 50]. In a similar manner, computation of the elec-

tronic bands using a non-self-consistent calculation involving the machine-learning based

Hamiltonian (i.e., diagonalization of a symmetry adapted Kohn-Sham Hamiltonian, with

the effective potential arising from machine learning predicted fields) is more straightfor-

ward when compared to prediction of the band diagram directly, as a function of the inputs.

This is due to the complexities in the structure of the latter [74, 75], including e.g., the

appearance of band crossings associated with insulator-metal transitions.

In our example, only about 160 simulations were performed, out of which around 120

are used for training purposes. Yet, ground state energies could be typically predicted to

chemical accuracy (i.e., to better than 1.6 milli-Hartree per atom, or 1-kcal/mol), band gap

predictions were generally accurate to 0.02 eV, while the band gap location was predicted

accurately every time. This suggests that the predictions of three-dimensional electronic

fields themselves are rather accurate even with this limited training data, a fact also di-

rectly borne out by the low normalized root mean square errors in these quantities. The

high accuracy of the present ML model is likely related to (i) the constraints imposed by

symmetry in the problem setup, (ii) efficient exploration of the input space through quasi-

random low-discrepancy sequences, and (iii) significant reduction in the dimensionality of

the electronic fields. Indeed, only 7 and 15 principal component modes were found to be

sufficient to capture most of the variations in the ground state electron density and the

nuclear pseudocharge fields, respectively, which reinforces points (i) and (iii) above. We also

observed that the electronic fields and post-processed quantities are accurately predicted
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for inputs whose values were not used during training, thus suggesting that our model can

predict anywhere in the input space, even beyond the training data. Notably, the machine

learning surrogate model is much cheaper computationally — while the DFT calculation

can take up to hundreds of CPU hours (in order to include atomic relaxation effects through

ab initio geometry optimization), the machine learning model prediction can be done in a

fraction of a second, and the subsequent post-processing steps (including prediction of band

diagrams) can be typically performed in about 30 to 40 minutes of wall time.

The rest of the paper is organized as follows. We first explain the scheme of the ab

initio simulations, which are used to obtain the training data for our machine learning

model. Details regarding the system under consideration and the governing equations are

presented in Section II. This is followed by an overview of our machine learning model.

Specifically, details of the dimension reduction of the electronic fields, neural network based

regression, and a new approach to predict atomic coordinates are explained in Section III.

Post-processing of machine learning predicted electronic fields to evaluate various energy

components, band structures and atomic coordinates is explained in Section IV. Next, we

validate the machine learning model and quantify its accuracy in Section V. We also comment

on the model interpretability. We end with our conclusions and a discussion of future research

directions.

II. METHODOLOGY: FIRST PRINCIPLES CALCULATIONS

In this section, we describe the system setup, key aspects of the first principles simulation

method (Helical DFT). The atomic unit system with me = 1, ℏ = 1, 1
4πϵ0

= 1 will be used

throughout, unless otherwise mentioned.

For the rest of the paper, eX, eY, eZ will denote the standard orthonormal basis of

R3. Vectors in three dimensions will be denoted using lowercase boldface letters, while

3 × 3 matrices will be denoted using uppercase boldface. Cartesian, cylindrical and helical

coordinates will be denoted as (x, y, z), (r, ϑ, z), and (r, θ1, θ2), respectively, and the relation

between these is:

r =
√
x2 + y2 , θ1 =

z

τ
,

θ2 =
1

2π
arctan2 (y, x)− α

z

τ
=

ϑ

2π
− α

z

τ
. (1)
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Here, α is related to the twist in the system as explained below.

A. System specification and global symmetries

We begin by providing a description of the geometry of the quasi-one-dimensional systems

under study, and the associated computational domains. As a prototypical system, we

consider a nanostructure aligned and infinite in extent along eZ . Since the system of interest

is quasi-one-dimensional, it is of limited extent in the eX-eY plane. These conditions imply

that the system can be embedded in a cylinder with axis eZ (or annular cylinder, if the

system is tubular — as considered here), of infinite height and finite radius, and this region

of space will be referred to as the global simulation domain. The structures considered in

this work may be undeformed, or more generally, they may include axial deformation (i.e.,

stretch or compression) along eZ, and/or torsional deformation about the same axis. As

pointed out in the literature, helical and cyclic symmetries can be used to describe such

systems conveniently [66, 69, 76–80]. Thus if the atoms of the system have positions:

S = {p1,p2,p3, · · · : pi ∈ R3} , (2)

then we may identify a discrete group of isometries:

G =
{
Υm,n =

(
R(2πmα+nΘ)|mτeZ

)
: m ∈ Z, n = 0, 1, . . . ,N− 1

}
, (3)

and a finite collection of atoms (called simulated atoms or representative atoms) with coor-

dinates:

P = {r1, r2, r3, . . . , rM : ri ∈ R3} , (4)

such that the structure can be described as the orbit of the group G on the set P , i.e.,

S =
⋃
m∈Z

n=0,1,...,N−1

M⋃
i=1

R(2πmα+nΘ)ri +mτ eZ . (5)

Here, Υm,n is an isometry operation (i.e., rigid body motion) consisting of the rotation

matrix R(2πmα+nΘ) with axis eZ and translation vector mτeZ. It acts on an arbitrary point

x ∈ R3 by rotating it through the angle 2πmα+nΘ about the axis of the nanostructure, while

simultaneously translating it bymτ about the same axis. The quantityN is a natural number
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that captures any (N-fold) cyclic symmetries in the nanostructure, and the angle Θ = 2π/N.

The parameter τ is related to the axial pitch of the structure and it can capture extensions

and compressions about the axis, while the scalar α is related to the rate of applied or

intrinsic twist in the structure, measured as β = 2πα/τ . For the structures considered here,

we have 0 ≤ α < 1, with α = 0 representing untwisted structures. For undeformed armchair

carbon nanotubes, the value of τ as suggested by the “roll-up construction” [77, 81] is
√
3a,

where a is the interatomic bond-length of graphene (Figure 1). Note that the numbers

m ∈ Z and n ∈ {0, 1, . . . ,N − 1} introduced above serve to label the group elements of G

(i.e., the isometries Υm,n).

As pointed out in [66, 69], a key advantage of the above formulation is that with the knowl-

edge of the relevant symmetry group, any quasi-one-dimensional material can be represented

efficiently by means of the representative atoms alone — usually, just a few are adequate,

and the behavior of the system under deformations (small or large) can be obtained by

minimizing the system’s free energy with respect to the coordinates of the representative

atoms. The Helical Density Functional Theory (Helical DFT) technique described below,

provides a computational framework for carrying out this procedure.

B. Helical Density Functional Theory (Helical DFT)

We use Helical Density Functional Theory (Helical DFT) [66, 69] to compute the elec-

tronic fields associated with the (possibly deformed) quasi-one-dimensional nanostructures

of interest in this work. To accommodate the global symmetries of the system under study,

Helical DFT solves the symmetry adapted equations of Kohn-Sham DFT within a funda-

mental domain (or symmetry adapted unit cell) that encapsulates the representative atoms.

In the context of this work, provided that the simulated atoms have radial coordinates be-

tween Rin and Rout, a suitable fundamental domain is the following region (expressed in

cylindrical coordinates):

D =
{
(r, ϑ, z) ∈ R3 : Rin ≤ r ≤ Rout,

2παz

τ
≤ ϑ ≤ 2παz

τ
+Θ, 0 ≤ z ≤ τ

}
. (6)

Due to the global symmetries of the system described above, the eigenstates of the Kohn-

Sham Hamiltonian, and other quantities related to its spectrum can be labeled using the

characters of the group (i.e., its complex one dimensional irreducible representations). For
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m ∈ Z and n ∈ {0, 1, 2, ...,N− 1}, these are [65, 66, 82, 83]:

Ĝ =
{
e2πi

(
mη+nν

N

)
: η ∈

[
−1

2
,
1

2

)
; ν = {0, 1, . . . ,N− 1}

}
. (7)

Accordingly, Helical DFT uses (η, ν) to label the eigenvalues, the eigenvectors, and the

electronic occupations. For j ∈ N, the symmetry adapted Kohn-Sham equations over the

fundamental domain (i.e. x ∈ D) are:

HKS ψj(x; η, ν) = λj(η, ν)ψj(x; η, ν) ,H
KS = −1

2
∆ + Vxc + Φ+ Vnl , (8)

with the eigenstates ψj(x; η, ν) satisfying the Helical Bloch conditions:

ψj(Υm,n ◦ x; η, ν) = e−2πi
(
mη+nν

N

)
ψj(x; η, ν) . (9)

In the above, HKS denotes the Kohn-Sham operator, Vxc denotes the exchange correlation

potential, Φ denotes the net electrostatic potential arising from the electrons and the nuclear

pseudocharges (i.e., a combination of the Hartree and electron-nucleus interaction terms),

and Vnl denotes the non-local pseudopotential operator. The field Φ obeys the following

Poisson problem in terms of the electron density ρ and the nuclear pseudocharge field b:

−∆Φ = 4π
(
ρ+ b

)
. (10)

The non-local pseudopotential operator can be expressed in Kleinman-Bylander form [84]

as:

Vnl =
M∑
i=1

∑
p∈Γi

γi,pχ̂i,p(·; η, ν; ri) χ̂i,p(·; η, ν; ri) , (11)

with χi,p, γi,p and Γi denoting the atom-centered projection functions (associated with the

ith atom), the corresponding normalization constants, and the total set of projectors for

the atom, respectively. Within Helical DFT, for a given set of atoms in the fundamental

domain, the nuclear pseudocharge field b and the non-local pseudopotential operator Vnl are

computed explicitly, along with a suitable starting guess for the electron density ρ. Following

these computations, the symmetry adapted Kohn-Sham equations (eq. 8) are solved self-

consistently [85]. At self-consistency, the free energy per unit fundamental domain and the

Hellman-Feynman forces on the atoms may be computed following the expressions presented

in [66, 69].
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It is important to point out at this stage that construction of the symmetry adapted Kohn-

Sham Hamiltonian requires knowledge of the atomic coordinates within the fundamental

domain, due to the explicit dependence of the operator Vnl on the latter. Thus, unless

all-electron calculations are being performed, it is not possible to compute the Kohn-Sham

eigenstates via a simple diagonalization step, even if the electron density and the nuclear

pseudocharge fields are known. As discussed later (Section III C), we address this issue in

this work by means of an unsupervised learning technique that can pick out the atomic

coordinates from the nuclear pseudocharge field, which in turn can be used to set up the

operator Vnl.

C. Use of helical coordinates

The fundamental domain D assumes the form of a cuboid [Rin, Rout] × [0, 1] × [0, 1/N]

in helical coordinates. Helical DFT uses a higher order finite difference scheme in these

coordinates to discretize and solve the governing equations [66, 69]. Thus, the electronic

fields computed by the method are available over a set of grid points (corresponding to the

finite difference mesh) in the fundamental domain.

In addition to converting the complicated geometry of the fundamental domain to a simple

cuboidal geometry for simulations, helical coordinates allow for additional simplifications in

the data generation process. First, irrespective of the nanotube radius and the level of

torsional and axial deformation imposed, the helical coordinates of an atom within the

fundamental domain are such that θ1 and N θ2 remain constant, as long as relaxation effects

are negligible. Thus, even when relaxation effects are not small, this property can be used to

provide good starting guesses to the structural relaxation procedure. Second, for nanotubes

of any radii undergoing relatively small torsional or extensional distortions, the total number

of grid points (and hence the size of the vector used for describing the electronic fields) can

be kept constant, with relatively small changes to the overall accuracy of the calculations.

To see this, we denote Nr,Nθ1 ,Nθ2 as the number of grid points along the r, θ1 and θ2

directions, respectively. The electronic fields are then represented as vectors in dimension

Nr × Nθ1 × Nθ2 , and the mesh spacings corresponding to these discretization choices are:

hr =
Rout −Rin

Nr

, hθ1 =
1

Nθ1

, hθ2 =
1/N

Nθ2

(12)
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The overall mesh spacing h = max
(
hr, τhθ1 , 2π(

Rin+Rout

2
)hθ2

)
dictates the accuracy of the

calculation. In the radial direction, by enforcing a constant amount of vacuum padding

around the tubes, the mesh spacing hr (and hence Nr) can be kept constant with respect to

the tube diameter. In the axial direction, small changes to τ with respect to its equilibrium

value (due to imposed strains) do not affect the overall calculation accuracy appreciably, as

long as Nθ1 is large enough to accommodate the largest value of τ considered. Finally, in

the θ2 direction, assuming the nanotube is placed halfway between Rin and Rout, the effect

of change in Rin+Rout

2
is offset by the corresponding change in cyclic group order N, thus

helping keep the product (Rin+Rout

2
)hθ2 constant. Thus the same value of Nθ2 can be chosen

irrespective of the tube diameter.

D. Other details of first principles calculations

All Helical DFT calculations described in this work use a 4-atom fundamental domain

as shown in Figure 1. To enable expeditious generation of data, calculations are done in

two steps. First, ab initio geometry optimization calculations are done for a given level of

axial and torsional strains by using h = 0.3 Bohr, and by sampling 15 k-points in the η

direction. These discretization choices are sufficient to produce chemically accurate forces

and ground state energies for the Troullier-Martins norm conserving pseudopotential [86]

used to model the carbon atoms in this work [69]. Atomic relaxation is carried out using

the Fast Intertial Relaxation Engine [87], and the structures are relaxed till each atomic

force component drops below 0.001 Ha/Bohr. Next, for each relaxed structure, we redo

a self-consistent calculation to generate the electronic fields data for the machine learning

model, using the finest discretization parameters that could be reliably afforded within

computational resource constraints. This corresponds to a mesh spacing of h = 0.25 Bohr

(resulting in Nr×Nθ1×Nθ2 ≈ 60,000) and 21 k-points in the η-direction. Due to the use of the

above two-step procedure to generate the data, the machine learning model automatically

incorporates atomic relaxation effects in response to applied strains.

For all ab initio calculations, we used the Perdew-Wang parametrization [88] of the Local

Density Approximation [24], a 12th order finite difference discretization scheme [66, 89–95],

vacuum padding of 11 Bohrs in the radial direction and 1 milli-Hartree of smearing using

the Fermi-Dirac distribution.
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a

3a

3a

eZ

Roll-up direction

FIG. 1: Roll-up construction of an undeformed armchair carbon nanotube, starting from a

graphene sheet. The 4 atoms shown in the shaded region are used for the data generation

process using Helical DFT. The parameter a represents the planar interatomic distance of

1.407 Angstrom.

III. METHODOLOGY: MACHINE LEARNING MODEL FOR PREDICTION OF

THE ELECTRONIC FIELDS

This section describes the proposed Machine Learning (ML) model that aims to predict

the electronic structure (high–dimensional) of quasi–one–dimensional materials under tor-

sional and axial loads. The tubular structures considered in this work can be characterized

by their radius — which is related to the degree of cyclic symmetry present in the structure,

and the position of the atoms within the fundamental domain. Given strain parameters

related to axial and torsional loads that the structure might be subject to, these atomic

positions can be determined by minimizing the system’s energy with respect to them. Thus,

the trio of parameters Ravg — the nanotube radius (or equivalently, the average radial co-

ordinate of the atoms in the fundamental domain), α — the twist parameter, and τ —

the axial pitch parameter, serve to specify a particular nanotube, along with the imposed

torsional and axial strains. Accordingly, we let H denote the map from the space consisting

of system and loading parameters (Ravg, α, τ) to the electronic fields ρ, b of the deformed
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nanotubes:

H : {Ravg, α, τ} → {ρ, b} (13)

The objective of this work is to approximate this map H using a machine learning model.

Inputs of this map Ravg, α and τ are scalars, while the outputs ρ (r, θ1, θ2) and b (r, θ1, θ2)

are high–dimensional discretized scalar fields (expressed in helical coordinates).

Approximating the map H directly through a supervised machine learning algorithm

(such as a Neural Network (NN)) is infeasible since the output quantities ρ (r, θ1, θ2) and

b (r, θ1, θ2) are very high–dimensional. For instance, with the discretization choices adopted

in this work, the field ρ (r, θ1, θ2) is represented by a vector of dimension close to 60,000

(see Section II). The difficulty in predicting such high–dimensional outputs using machine

learning models is referred to as curse of dimensionality. Specifically, the number of discrete

cells required to discretize the output space grows exponentially with its dimensionality, and

an exponentially large quantity of training data is then needed to ensure that the cells in

the output space are accurately mapped from the input space [14].

In the present work, we circumvent this problem by using Principal Component Analysis

(PCA) to reduce the dimensions of the electronic fields. Subsequently, the low–dimensional

representation of the electronic fields is learned via neural networks in a supervised manner.

This two-step approach, i.e., dimensionality reduction followed by learning in the reduced

space, allows the prediction of the high–dimensional quantities such as electronic fields while

reducing the data required for training. Schematic of the two-step ML model introduced

above is given in Fig. 2. Recently, a similar approach has been found to have excellent

accuracy in high–dimensional predictions related to purely mechanical problems [73, 96].

In the following sections, we detail various important aspects of the above ML model and

also describe an auxiliary clustering based technique that allows us to determine the nuclear

coordinates from the ML model predicted nuclear pseudocharge field.

A. Design of Experiments to Explore the Input Space

We now describe the use of Design of Experiments (DoE) [97, 98] techniques for efficient

sampling in the input space. As described above, the triplet of input parameters {Ravg, α, τ}

specify a particular nanotube and the applied strains. The number of possible combinations

with these three input variables can be quite large even if finite bounds are emplaced for these

13



Ab initio 
Simulations

System

CoPCs

 CoPCs1. Geometry Parameters
2. Loading Conditions

             Neural Network

Electronic fields

Dimensionality
Reduction

Principal Components 
& Coefficients of 

Principal Components

Electron Density Nuclear Pseudocharges

FIG. 2: Schematic of the present Machine Learning (ML) model and the data generation

process via DFT simulations. The firm arrows show the steps for data generation and

training, and the dashed arrows show the steps for prediction via the ML model.

variables. Given the relatively high cost of DFT simulations for the deformed nanotubes, it

is infeasible to simulate nearly all possible combinations in the input space. Purely random

sampling of the input space is not desirable either, since it may require a large number

of sampling points to learn the pattern in the data accurately [99–101]. To address this

challenge, we generate sequences of quasi-random sampling points in the input space to

reduce the number of simulations required for training an accurate ML model.

Quasi-random sampling: Space-filling designs can be used to explore the input domain ef-

fectively since they sample the space uniformly without assuming any prior knowledge of the

problem [99, 102]. Commonly used space-filling designs include low discrepancy sequences

[103, 104], good lattice points [105], Latin Hypercube Sampling [106] and Orthogonal Latin

Hypercube sampling [107]. These methods are often evaluated based on their measure of

uniformity [100, 108, 109], and such criteria suggest that Optimal Latin hypercube sampling

[110] and Sobol sequences [104, 111] offer a great balance between uniform and random

sampling. In this work, we have chosen Sobol sequences (low discrepancy quasirandom

sequences), to sample the input space. The main advantage of this technique is that the

samples generated via this procedure are spread out over the input variables space non-

uniformly, but cover the space evenly [112], thus allowing efficient exploration of the input

space. An additional benefit is that as the Sobol sequence progresses, the input variables
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space is refined successively. This latter feature allows us to add simulations to the training

in a systematic manner, till the desired accuracy is achieved in the ML model. Further

details of the sampling procedure used are provided in Appendix A.

B. Dimensionality Reduction of the Electronic Fields and Regression in the Re-

duced Dimension

Dimensionality Reduction of the Electronic Fields: We reduce the high dimensionality of

the electronic fields using Principal Component Analysis (PCA) [113–116]. PCA reduces the

dimensionality of the data in an unsupervised manner. PCA reduces the dimensionality of

the data by projecting it onto a lower–dimensional space such that the maximum statistical

information within the data is retained. The basis vectors for this low–dimensional space are

uncorrelated with each other and are called the principal components. Thus, PCA enables

dimensionality reduction while minimizing the information loss.

To elaborate further, given the data points , PCA allows one to obtain a lower dimensional

approximation x̃i ∈ RK , such that, K < d, and:

x̃i =
K∑
j=1

cijvj + µ . (14)

Here, µ =
1

n

n∑
i=1

xi is the sample mean, the orthonormal vectors vj are the principal com-

ponents (PCs) and the scalars cij are the coefficients of the principal components (CoPCs).

Importantly, the PCs (vj) depend on the entire dataset rather than being associated with a

particular data point; therefore, all the points in the original dataset can be defined in terms

of distinct cij values, but the same vj. The value of K depends on the degree of variance of

the data that needs to be captured. We perform PCA on the electronic field (ρ and b) – data

generated by the DFT simulations. Specifically, in Helical DFT, the discretized grid of the

fundamental domain of electronic fields has 89 points along the radial direction, 19 points

along the θ1 direction and 35 points along the θ2 direction. Given this discretization, the

total number of grid points in the fundamental domain is 59,185. The electronic fields are

therefore represented as a nearly 60,000 dimensional vector by the DFT simulations. PCA

enables us to represent these high-dimensional electronic fields in terms of a few CoPCS

only (7 and 15 for ρ and b, respectively, as described in Section VA).
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Regression for the Electronic Fields in the Reduced Dimension: We employ Neural Net-

works (NN) [14, 117] to perform regression for the electronic fields in the reduced dimension.

The choice of NN is motivated by our previous work on the ML based modeling of complex

rippling deformation fields of low-dimensional nanostructures [73]. The NN architecture

consists of the input layer, multiple hidden layers, and the output layer. The neurons of

the hidden layers contain a weighted linear transform of neurons in the previous layer acted

upon by a nonlinear activation function. During the training phase of the model, the neu-

ral network learns (in a supervised manner) the map between input and output spaces by

finding the weights of these linear transforms such that it can accurately predict output for

a given input. We use NNs to predict the coefficients of the principal components (CoPCs)

of the electronic fields for a given system and loading parameters. We deploy two different

neural networks N1 and N2 to predict CoPCs for ρ and b respectively, which use the same

input parameters. In the input layer, we have three neurons, for the input parameters (i)

Ravg , (ii) α and (iii) τ . The neurons of the output layer correspond to the CoPCs (cij).

Note that the number of CoPCs depends on the desired variance to be captured in the data.

Inference via the trained ML model involves the following two steps. First, the CoPCs are

predicted for a given input using the neural network. Second, the predicted CoPCs are used

to obtain the higher dimensional electronic fields using the principal components following

Eq. 14. These two steps inference procedure via the ML model are shown in Fig. 2.

C. Prediction of Nuclear Coordinates from Pseudocharge Fields

As mentioned earlier, calculation of the Kohn-Sham Hamiltonian arising from ML pre-

dicted fields requires knowledge of the nuclear coordinates so that the non-local part of the

pseudopotential operator may be constructed (see Section II B). In this section we deal with

the problem of obtaining these coordinates as a function of the tube geometry and loading

parameters, i.e., {Ravg, α, τ}.

One possible approach [50] is to directly train a neural network with these parameters

as inputs and the desired nuclear coordinates as outputs. In our experience, however, this

approach does not appear to work particularly well (see Appendix C), and the amount of

training data that was found to be adequate for predicting the electronic fields ρ and b

accurately, was found to result in unacceptable levels of error while predicting the nuclear
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coordinates. This led us to devise a new strategy for determining the nuclear coordinates

from the ML predicted nuclear pseudocharge field b(x), since this field is readily predicted

with relatively high accuracy (Section VB), and it already contains the nuclear coordinate

information in principle. Our proposed strategy to find nuclear coordinates is based on a

clustering approach and identifies the nuclear coordinates from the nuclear pseudocharge

field in an unsupervised manner.

We make the observation that the nuclear pseudocharge field over the fundamental do-

main is a superposition of the individual atomic pseudocharges i.e., b(x) =
M∑
i=1

bi(x). Fur-

thermore, each atomic pseudocharge field is spherically symmetric and atom centered (i.e.

bi(x) ≡ bi(|x − ri|)), and under usual circumstances, also non-overlapping. This suggests

that a clustering based approach that can identify agglomerations of positive charges arising

from individual atoms might be fruitful, and the desired nuclear coordinates can then be

determined as cluster centers. Clustering algorithms are widely employed to divide datasets

into smaller subgroups in an unsupervised manner, such that the data points in each sub-

group share some common attributes [14]. One of the most widely used and successful

clustering algorithms is DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) [118, 119]. This technique creates clusters for volumes with a high density of points,

and treats the points which lie in very low-density volumes as outliers. DBSCAN offers ad-

vantages over other clustering algorithms like k−nearest neighbors, since it does not require

prior knowledge of the number of clusters present in the data, it can find out any arbitrarily

shaped clusters and it is robust against errors induced by the outliers. In the present case,

this means that when applied to the nuclear pseudocharge data, DBSCAN should be able to

form clusters around every nucleus in the fundamental domain, without the total number of

nuclei being specified apriori. However, we found that a direct application of DBSCAN to

the pseudocharge field fails to determine the nuclear coordinates accurately. In the following,

we identify two reasons for this failure and develop procedures to overcome them.

First, the fundamental domain is effectively periodic in the θ1 and θ2 directions. However,

clustering algorithms are not typically aware of domain boundary conditions, as a result of

which, pseudocharges associated with atoms close to the domain edges may result in the

identification of clusters for which the cluster centers are not at the nuclear coordinates. This

issue is readily addressed by expanding the fundamental domain into a supercell, applying
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the clustering procedure to the periodically replicated pseudocharge field in the supercell,

and finally, retaining the cluster centers found to lie within the fundamental domain. Sec-

ond, some atomic pseudocharges (such as the one associated with the Troullier Martins

pseudopotential for Carbon used in this work), while being radially symmetric, may exhibit

multiple peaks, when plotted as a function of atom center distance (see Figure 3). This can

cause the clustering algorithm to identify multiple clusters near a single nucleus and the

centers of these clusters will not coincide with the nuclei. To overcome this challenge we

propose a map (T ) that truncates the pseudocharge field b to retain only the data around

the first peak (see Figure 3):

T : b(r, θ1, θ2) → b̄(r, θ1, θ2), b̄(r, θ1, θ2) =

b(r, θ1, θ2), if b(r, θ1, θ2) > ct

0, if b(r, θ1, θ2) ≤ ct

(15)

The only quantitative information needed for implementing this map is the height of the

second peak ct, which is readily available for the pseudopotentials used to produce the

training data. The DBSCAN procedure, when applied on the truncated field b̄ can readily

identify the nuclear pseudocharge density cluster around each nucleus. Nuclear coordinates

are subsequently computed as centers of these clusters.
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FIG. 3: Atomic pseudocharge as a function of distance (in Bohr) from the atom for the

Troullier-Martins pseudopotential for Carbon used in this work. The dashed red line

indicates the truncation level employed before the DBSCAN procedure is used.

Together, the above set of strategies leads to a robust and efficient method for obtaining

the nuclear coordinates as a function of the ML model inputs. The entire procedure outlined

above executes within a few seconds of wall time on a desktop and is able to determine the

nuclear coordinates to acceptable levels of accuracy in every case (see Table II). Comparison

of the accuracy of our clustering based approach, with that of nuclear coordinate predictions

18



using a standard neural network are presented in Appendix C.

1-1 0

FIG. 4: Cluster formation from nuclear pseudocharge field to determine nuclei position. A

slice of the pseudocharge field at the average radial coordinate of the atoms in the

fundamental domain is shown. Red clusters show the positive charge around the nucleus

and the black dots are nuclei. The pseudocharge field on the fundamental domain is

expanded to a supercell to avoid domain edge effects, a truncation is implemented to

discard secondary peaks in the atomic pseudocharges, the DBSCAN procedure is then

applied on the supercell and finally, the nuclear coordinates within the fundamental

domain are identified.

IV. POST-PROCESSING OF ML PREDICTED ELECTRONIC FIELDS

In this section, we describe the postprocessing steps used for computing quantities of inter-

est from the machine learning model predicted fields and atomic coordinates. The machine

learning model produces electronic fields ρML(x) and bML(x) that includes self-consistency

and atomic relaxation effects. Within the ML model, however, we do not explicitly enforce

any constraints regarding the net charges associated with these fields. Although in practice

these constraints seem to be automatically obeyed by the model — at least approximately

(see Table I within the section on Results), we find it useful to scale the ML predicted fields

for postprocessing purposes [120], as shown below:

ρScaled(x) = ρML(x)× Ne´
D ρ

ML(x) dx
,

bScaled(x) = bML(x)× −Ne´
D b

ML(x) dx
. (16)

Using these scaled fields, we compute the net electrostatic potential Φ via iterative solution

of eq. 10 using preconditioned GMRES [121] iterations. The exchange correlation potential
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Vxc is directly computed from the electron density. Next, we use a clustering based un-

supervised learning technique (see Section III C) to pick out the nuclear coordinates from

the nuclear pseudocharge field and use it to set up the non-local pseudopotential operator

Vnl. Thereafter, we diagonalize the Kohn-Sham Hamiltonian (eq. 8) resulting from these

machine learning predicted quantities, to obtain the Kohn-Sham eigenstates. We use a

combination of Generalized Preconditioned Locally Harmonic Residual (GPLHR) [122] and

Arnoldi Iterations [123] to carry out the diagonalization, and initialize the calculations us-

ing random wavefunction vectors. The Fermi level of the system is subsequently determined

from the Kohn-Sham eigenvalues by enforcing the constraint of having a fixed number of

electrons within the fundamental domain. From all this information, band structure depen-

dent quantities, such as the value of the band gap and its location in (η, ν) space, can be

calculated.

Using the aforementioned post-processed quantities, the ground state free energy per unit

fundamental domain may be calculated as [69]:

F = Ekin + Exc + Enl + Eel − TeS , (17)

with the terms on the right hand side denoting the electronic kinetic energy, the exchange

correlation energy, the non-local pseudopotential energy, the electrostatic energy and the

electronic entropy contribution at temperature Te, respectively. Alternately, a more accurate

estimate for the ground state free energy per unit fundamental domain may be obtained using

the Harris-Foulkes functional [124, 125]:

FHF = Eband + Exc − Ẽxc + Ẽel + Esc − Te S . (18)

In the above, the first term on the right hand side is the electronic band energy:

Eband = 2

ˆ 1
2

− 1
2

1

N

N−1∑
ν=0

∞∑
j=1

λj(η, ν) gj(η, ν) dη , (19)

in which gj(η, ν) denotes the electronic occupations. The term Exc denotes the exchange

correlation energy, while:

Ẽxc =

ˆ
D
Vxc(ρ(x))ρ(x) dx . (20)

The term Ẽel is related to electrostatic interactions and has the form:

Ẽel =
1

2

ˆ
D

(
b(x)− ρ(x)

)
Φ(x) dx . (21)
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Finally, Esc accounts for nuclear pseudocharge self-interactions and overlap corrections [67],

while the last term is related to the electronic entropy contribution. Notably, in the above

breakdown for the Harris-Foulkes energy, Exc and Ẽxc depend solely on the electron den-

sity field, Esc depends on the nuclear coordinates and the nuclear pseudocharge field, the

electrostatic term Ẽel depends on both the electron density and nuclear pseudocharge fields,

while Eband depends on the Kohn-Sham operator eigenvalues (i.e., its dependence on ρ and

b is implicit). Therefore, monitoring these terms in addition to FHF allows us to estimate

the accuracy of the machine learning based predictions of ρ, b and other post-processed

quantities (such as the eigenstates), in the energetic sense (see Section V for more details).

V. RESULTS

We now present the predictions of the machine learning (ML) model for armchair carbon

nanotubes under torsional and axial loading. These are compared against Helical DFT

simulations to quantify the ML model’s accuracy and efficacy. Notably, the inference process

from the trained ML model is orders of magnitude faster compared to the cost of the ab

initio simulations using Helical DFT. While the ML model requires 0.003 seconds and 0.009

seconds to predict the ρ and b fields respectively (average times on a desktop with a 2.2

GHz Intel Xeon Gold processor), a typical ab initio structural relaxation calculation using

Helical DFT can stretch into hundreds of CPU hours. Post-processing of the ML predicted

electronic fields (to calculate band structures, energies, etc.) can be typically performed in

about 30 to 40 minutes of wall time. Training of the neural networks for ρ and b requires

about 12 and 15 minutes, respectively, measured using the same hardware setup.

A. Principal Component Analysis and Neural Networks

Principal Component Analysis Results: As the first step in our two-step ML model, we

utilize PCA to obtain reduced dimensional representations for the outputs of the map H.

To reconstruct the original electronic fields with minimum reconstruction error, we capture

99.99% variance of the data. As shown later (Section VC), this is generally sufficient

for obtaining electronic ground state energies to chemical accuracy and also adequate for

reproducing band structures correctly. For capturing this level of variance in the data, we

21



required only 7 PCs in case of ρ and 15 PCs in case of b (Figure 5).

FIG. 5: Cumulative percentage of variance vs Principal components for ρ (left) and b

(right). The red dashed line shows 99.99% variance.

Neural Network: As the second step in our two-step ML model, two Neural Networks

N1 and N2 are trained to predict CoPCs corresponding to ρ and b, respectively. Since 7

PCs in case of ρ and 15 PCs in case of b are required to capture 99.99% variance of the

data, the number of neurons in output layers is 7 for N1 and 15 for N2. Following our

architecture optimization strategy (elaborated in Appendix B) we choose 6 hidden layers of

150 neurons each for N1 and 2 hidden layers of 150 neurons each for N2. We use Rectified

Linear Unit (ReLU) as an activation function for both networks. Mean Squared Error(MSE)

is utilized as a loss function along with the elastic net regularization [126], and the Adam

optimizer [127] with a learning rate of 0.001 was employed. Before the training phase, each

input parameter column was scaled to zero mean and unit variance, thus standardizing the

input features. 75% of the total data points were utilized for training (123 data points),

10% were utilized for validation (16 data points), and the remaining 15% were utilized for

testing (25 data points). Further details of the neural network, including a discussion of the

hyperparameters, and learning curves are provided in Appendix B.

B. Prediction of electronic fields by the ML model

We now discuss the overall performance of the machine learning model for the prediction

of the electronic fields. The Pearson correlation coefficient (R) between the predicted and

actual electronic fields at each point of the discretized domain for the test data was found to

be 0.9949 and 0.9983 for ρ and b, respectively. In addition to the test data points described
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FIG. 6: Parity plots for (a) test data of ρ (R = 0.9949), (b) test data of b (R = 0.9983).

above, we have chosen three additional test data points where the input parameters were

partially unseen during the training (i. Ravg = 49.51Bohr, α = 0.002, τ = 4.5052Bohr;

ii. Ravg = 35.55Bohr, α = 0.00125, τ = 4.6052Bohr; iii. Ravg = 53.32Bohr, α = 0.0015,

τ = 4.5552Bohr). For each of these three test cases, there is one input variable whose value

was not used in the training data (e.g. data point with τ and α values present in the training

data but the value of Ravg not present in the training data). Finally, we have randomly

selected two additional test data points where none of the three input variables were seen

by the ML model during training (i. Ravg = 49.51Bohr, α = 0.00125, τ = 4.5552Bohr;

ii. Ravg = 30.46Bohr, α = 0.00075, τ = 4.6552Bohr). These additional test data points

with partial or wholly unseen input parameters help assess the ML model’s capability to

generalize beyond training data. Machine Learning predicted and actual (DFT) electronic

fields for one of the test data points with all unknown input parameters are compared in

Fig. 7.

We quantify the error in the predicted electronic fields through the normalized root mean

square error (NRMSE) [50]:

NRMSE =

√
1
d

∑d
i=1 (ρ

DFT
i − ρML

i )
2

|max(ρDFT)−min(ρDFT)|
(22)

Here max(·) and min(·) denote maximum and minimum over the fundamental domain and d

is the dimension of the data (∼ 60, 000). NRMSE for b is calculated similarly. The NRMSE

for various categories of test data points, including cases with partial or wholly unseen

inputs, are presented in Table I. The low NRMSE values on the test data are indicative

of the general accuracy of the ML model. In particular, low NRMSE values for the input
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FIG. 7: Comparison between ML predicted and DFT simulation obtained electronic fields

for a test data point with all unknown input parameters (Ravg = 49.51Bohr, α = 0.00125,

τ = 4.5552Bohr). A slice of the electronic fields at the average radial coordinate of the

atoms in the fundamental domain is shown. The error is computed as |ρDFT−ρML|
|max(ρDFT)−min(ρDFT)| ,

similarly for b. Here, max(·) and min(·) denote maximum and minimum over the

fundamental domain.

conditions beyond the training data establish the generalization capacity of the model.

In addition to evaluating the NRMSE values, we monitored the integrals of ρML and

bML over the fundamental domain. For a neutral system with Ne electrons within the

computational unit cell, the electron density and the nuclear pseduocharge fields obey the

normalization conditions

ˆ
D
ρ(x) dx = Ne and

ˆ
D
b(x) dx = −Ne respectively. Since these

constraints were not built into the ML model, they allow additional quality checks on the ML

predicted fields to be performed. As shown in Table I, the errors associated with deviations

from these constraints are quite low (0.000625 particles or lower, per electron), indicating

high quality predictions of the electronic fields by the ML model.
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Case NRMSE (ρ)
∣∣Ne −

´
D ρML(x)dx

∣∣ NRMSE (b)
∣∣(−Ne)−

´
D bML(x)dx

∣∣
Average for test data set 2.8× 10−4 3.2× 10−3 5.6× 10−4 5.4× 10−3

Random test data point

Ravg = 40.64 , α = 0.0015, τ = 4.7052
2.8× 10−4 9.2× 10−3 2.8× 10−4 8.6× 10−3

Test data point with unknown Ravg

Ravg = 49.51 , α = 0.002, τ = 4.5052
1.3× 10−4 5.2× 10−4 2.1× 10−4 2.5× 10−3

Test data point with unknown α

Ravg = 35.55 , α = 0.00125, τ = 4.6052
2.5× 10−4 1.2× 10−3 1.9× 10−4 5.6× 10−3

Test data point with unknown τ

Ravg = 53.32 , α = 0.0015, τ = 4.5552
1.6× 10−4 4.2× 10−3 2.5× 10−4 8.6× 10−3

Test data point with unknown Ravg, α, τ

Ravg = 49.51 , α = 0.00125, τ = 4.5552
2.1× 10−4 4.3× 10−3 4.8× 10−4 3.1× 10−3

Test data point with unknown Ravg, α, τ

Ravg = 30.46 , α = 0.00075, τ = 4.6552
2.3× 10−4 3.0× 10−3 2.8× 10−4 2.8× 10−3

TABLE I: Table showing NRMSE for ML predicted ρ and b for various test cases. Also

shown are errors in the integrals of electronic fields over the fundamental domain. Ravg

and τ values are in Bohr.

C. Prediction of nuclear coordinates, energies and band structure

Finally, we post-process the ML predicted electronic fields for various test data points

to obtain nuclear coordinates, electronic properties and energy components of interest. We

compute the errors in these quantities for a random test data point, as well as the afore-

mentioned five test cases for which the inputs were partially or wholly unseen by the ML

model during training (Table II). In general, the errors in the total ground state energy, as

computed through the Harris-Foulkes functional (eq. 18) are found to be appreciably smaller

than the chemical accuracy threshold (1.6×10−3 Ha/atom), except for one of the cases which

had an unseen value of α. Considering the various components of the Harris-Foulkes energy,

we see that the highest accuracies in the ML predictions are associated with the exchange

correlation term Exc, possibly due to the sole dependence of this quantity on the electron

density, which itself is predicted rather accurately. The energy component Ẽxc (eq. 18) also

has a very similar behavior and is not shown in Table II. The nuclear self-energy and cor-

rection terms which depend only on the nuclear pseudocharge field are also predicted with

25



high accuracy. The electrostatic term which depends on both the nuclear pseudocharge field

and the electron density, and the electronic band energy, which depends on the Kohn-Sham

eigenvalues are seen to be associated with somewhat lower accuracy predictions, particularly

for the test data points which had values of α and/or τ unseen by the ML model. However,

even in these cases, the errors are less than 3.0 × 10−3 Ha/atom, and error cancellation

leads to overall accurate ground state energy predictions. The ability to predict ground-

state energies of deformed quasi-one-dimensional structures (while having atomic relaxation

effects already included) with first principles accuracy, at a small computational cost is one

of the great advantages of the proposed ML model, thus leading to its potential use in the

multiscale modeling of low-dimensional systems [64].

The unsupervised learning procedure used for picking out nuclear coordinates is also found

to be quite accurate, with typical errors (measured as the maximum error in the Cartesian

coordinate components of all atoms in the fundamental domain) of the order of 0.02 to 0.03

Bohrs. The accuracy in the prediction of these coordinates is also reflected in the overall

accuracy of the ML predicted Kohn-Sham Hamiltonian, which in turn, affects the quality

of electronic band diagrams and other eigenstate-dependent quantities computed from the

Hamiltonian. We found strikingly good agreement between ML predicted and Helical DFT

band diagrams for the test data points considered here, with a typical case (associated with

wholly unseen inputs) demonstrated in Fig 8. Undeformed armchair carbon nanotubes are

metallic [95, 128] but develop an oscillatory band gap as a function of imposed twist [69, 128].

The band gap (computed here as the difference between the smallest eigenvalue above the

Fermi level and the largest eigenvalue below the Fermi level as the symmetry indices (η, ν)

are varied) is particularly error prone since it is the difference of two quantities. Additionally,

as the tube is deformed, the location and nature (i.e., direct vs. indirect) of the band gap is

expected to change [69]. However, the ML predicted location of the band gap was correct

for every test case and its value was correct to about 0.02 eV or better, in almost every

test case. In this regard, our approach to predicting band structure dependent quantities

by means of a post-processing step applied to the ML predicted electronic fields appears

to be especially effective. In contrast, as shown in Appendix D, direct prediction of such

quantities using a neural network which takes in the input parameters (Ravg, α, τ), can be

error prone — particularly, for the relatively small amount of data that was required for

accurate prediction of the electronic fields themselves. Overall, the ability of our approach to
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accurately and efficiently predict the electronic structure of low-dimensional materials as a

function of imposed deformation, opens up the use of such techniques for strain-engineering

applications [56, 57, 61].

Case

Ground state Exch. Corr. Electrostatic Nuclear self energy & Band Band Atomic

energy energy term correction term Energy gap coordinates

FHF Exc Ẽel Esc Eband ri

(Ha/atom) (Ha/atom) (Ha/atom) (Ha/atom) (Ha/atom) (eV) (Bohr)

Random test data point
9.0× 10−4 4.1× 10−5 7.1× 10−5 1.5× 10−4 9.9× 10−4 0.017 0.026

Ravg = 40.64 , α = 0.0015, τ = 4.7052

Test data point with unknown Ravg:
6.7× 10−4 1.9× 10−5 4.2× 10−4 4.3× 10−4 6.7× 10−4 0.018 0.028

Ravg = 49.51 , α = 0.0020, τ = 4.5052

Test data point with unknown α
3.6× 10−3 8.9× 10−5 2.1× 10−3 3.2× 10−4 1.2× 10−3 0.042 0.019

Ravg = 35.55 , α = 0.00125, τ = 4.6052

Test data point with unknown τ
2.2× 10−4 5.4× 10−5 2.7× 10−3 4.7× 10−5 2.9× 10−3 0.008 0.023

Ravg = 53.32 , α = 0.0015, τ = 4.5552

Test data point with unknown Ravg, α, τ
6.5× 10−4 7.4× 10−5 1.9× 10−3 1.8× 10−4 1.4× 10−3 0.008 0.022

Ravg = 49.51 , α = 0.00125, τ = 4.5552

Test data point with unknown Ravg, α, τ
1.35× 10−4 8.0× 10−5 1.8× 10−3 4.1× 10−4 1.3× 10−3 0.002 0.034

Ravg = 30.46 , α = 0.00075, τ = 4.6552

TABLE II: Errors in various post-processed quantities. Refer to eq. 18 and related

discussion for interpretation of the various energetic terms. Ravg and τ values are in Bohr.

We attribute the high accuracy of the model here to the accuracy in both dimensionality

reduction and learning through NNs. The fact that during training, the model uses only

about 120 data points and that chemical accuracy requirements are met during prediction

even for unseen input test cases, are particularly noteworthy and prove the effectiveness and

generalizability of our model. Also, as pointed out earlier, in addition to being accurate, the

proposed ML model is significantly more computationally efficient than DFT simulations.

We also anticpate that the approach described here, i.e., obtaining complex electronic struc-

ture dependent quanties through post-processing of ML predicted electronic fields, instead

of predicting such quantities through ML directly, is going to find utility in computational

studies related to the polarization and transport properties of low-dimensional systems.
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FIG. 8: Comparison of symmetry adapted band diagrams produced by the original DFT

method and the machine learning model (with post processing) for the unknown test data

point with Ravg = 49.51 Bohr, α = 0.00125 and τ = 4.5552 Bohr. The agreement appears

excellent and the post–processed ML model is also able to precisely predict the location of

the band–gap (at η = 1
3
, ν = 2) as well as its value (0.128 eV from Helical DFT) to about

6% accuracy in this case. Note that λF denotes the system’s Fermi level.
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D. Interpretation of PCA modes

The number of PCs required in this problem is significantly less than the original di-

mensions of the electronic fields data (∼ 60,000), thus indicating that these quantities are

mostly confined to subspaces of much lower–dimension. The presence of these hidden lower–

dimensional features, and the significant reduction of dimensionality of the data through

PCA, in turn, implies that just a few CoPCs have to be predicted as a function of the input

parameters by the second step of the ML model. This helps account for the fact that such

predictions can be made with relatively little training data, as discussed earlier. Remarkably,

just the first couple of PCs appear sufficient to capture well over 90% of the variance in both

ρ and b. Figure 9 shows these two PCA modes for each quantity visualized using helical

coordinates, specifically in a θ1−θ2 plane located at the center of the simulation domain. As

expected, the PCs of ρ and b capture the most significant aspects of the variations in these

quantities, with the modes of ρ reflecting changes in charge density along the carbon-carbon

bonds, and those of b capturing shifts in the nuclear positions.

FIG. 9: First two principal components for ρ (top) and b (bottom). A slice of the PCA

modes at the average radial coordinate of the atoms in the fundamental domain is shown.

To elaborate on the above interpretations, we first recall that (see Section IIC) in the

absence of relaxation effects, an atom within the fundamental domain has the same values

of θ1 and N θ2, regardless of the tube radius or the level of axial/torsional strain imposed

(as before, N denotes the cyclic symmetry group order). Consequently, for all values of
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the input parameters, the nuclei are expected to be located in the same relative positions

in a θ1 − θ2 planar plot, if atomic relaxation effects can be ignored. In the practice, upon

imposition of strain, the nuclei re-adjust their positions to minimize the system energy

during the structural relaxation procedure, leading to somewhat different values of the helical

coordinates associated with their pseudocharge centers, than would be suggested by purely

geometrical considerations. The PCA modes for b illustrated in Figure 9 appear to be

capturing this “motion” of the pseudocharge centers (i.e., nuclear coordinates) associated

with the relaxation procedure. Furthermore, due to the changes in the nuclear positions,

the carbon-carbon bond lengths change, and the PCA modes for ρ appear to be capturing

changes in the electron density along these bonds while they are stretched or compressed

due to the imposed strains. Notably, these bonds are at angles with respect to the θ1 − θ2

axes (see Figure 1 and top row of Figure 7), leading to the tilted appearance of the electron

density lobes observable in Figure 9. Finally, the presence of more wiggles in the plots for

the PCA modes for b, as compared to those for ρ can be explained by observing that at a

discrete level, the latter is a smoother quantity. Specifically, the discretized b field can have

sharper local jumps since it is the sum of individual atom centered pseudocharges, while ρ is

more smeared out (also see top row of Figure 7). Indeed, this difference in relative degrees

of smoothness at the discrete level probably contributes to the different number of PCA

modes for these quantities needed to capture the same level of variance in the data (Figure

5).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This work proposes a machine learning model, which predicts electronic fields of quasi-

one-dimensional materials under torsional and axial loads. We have demonstrated the utility

of the technique by predicting the electron density and the nuclear pseudocharges for arm-

chair carbon nanotubes as a function of the tube geometry and applied strains. The data

generation process of the ML model uses a specialized symmetry adapted version of Kohn-

Sham Density Functional Theory that is particularly well suited for the problem geometries

and loading conditions considered here. The machine learning model has several salient

features as we now summarize. First, to populate the input space, quasi–random low–

discrepancy sequences (Sobol sequence) are employed and DFT simulations are performed
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at these inputs to generate the data for training of the machine learning model. This strat-

egy allows for obtaining an accurate machine learning model with a minimal number of data

points (123 training simulations in this case). Second, a two–step approach is taken to predict

electronic fields. This involves dimensionality reduction of electronic fields followed by su-

pervised learning in the reduced space. This two–step approach enables accurate prediction

of high–dimensional electronic fields. The proposed ML model is remarkably accurate even

for test cases with geometry and loading conditions that were not seen by the model during

training. Moreover, the ML model is several orders of magnitude faster than the specialized,

efficient Helical DFT technique used here for data generation. Third, a new technique based

on a density–based clustering approach is developed to determine the atomic coordinates

from the nuclear pseudocharges field predicted by the machine learning model. The atomic

coordinates so obtained, are used to compute the non-local part of pseudopotentials that

appear in the Kohn-Sham Hamiltonian, which would not have been possible otherwise. The

electronic fields predicted by the machine learning model are postprocessed to obtain band

structures, band gaps, total energies, and various energy components.

We anticipate that machine learning models of the type developed here, will find use in

computational investigations of strain engineering in low-dimensional systems and the multi-

scale modeling of the electromechanical response of such systems. One of the key advantages

of the current ML model is its incorporation of symmetries commonly associated with quasi-

one-dimensional systems, which makes it easier to explore the composition-structure space

of such materials [76, 77]. Therefore, we anticipate that in conjunction with techniques for

DFT calculations of large scale systems [129, 130], the current ML model and its extensions

are likely to help in the exploration of novel phases of chiral matter [63, 131] and composi-

tionally complex nanotubes [132]. Development of machine learning models that can capture

atomic species specific features, as well as ones that can perform the post-processing steps

associated with calculations of quantities such as energy components and band diagrams,

serve as worthy directions for future research.
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Appendix A: Data Generation

Data generation for Machine Learning: We use the following bounds for the input

space in order to generate the data: Ravg ∈ [20.32 , 101.60 ] Bohr, α ∈ [0, 0.0025] and

τ ∈ [4.4052, 4.8052] Bohr. This corresponds to choosing armchair CNTs with cyclic sym-

metry group orders between 16 and 80, i.e., with radii in the experimentally relevant 1 to

5 nanometer range. The increments in α and τ are 0.0005 and 0.1 Bohr, respectively. The

maximum applied torsional strain of about 3.86 degrees/nm — close to the regime in which

torsional instabilities may start to appear [77], and the maximum axial strain considered

here is about 4.3%. Helical DFT simulations were performed in the input space follow-

ing Sobol sequencing. Note that, the Sobol sequence would not always generate a sample

point that is feasible for simulations, given the discrete nature of the nanotube radius. For

such cases, we have carried out simulations at the nearest feasible value of Ravg and strain

parameters.

To achieve the desired accuracy in the prediction of the electronic fields with the minimum

number of DFT simulations we start with a set of points guided by the Sobol sequence.

Subsequently, we add simulations in smaller sets (referred to as Sobol sets here) to the

training data, till we attain the desired accuracy in the prediction of electronic fields. Our

first set consists of 85 simulations followed by 48 and 31 simulations in the second and third

sets, respectively. As mentioned in Section IIIA these three sets of simulations successively

39



refine the input space. Fig. 10 shows NRMSE for test data obtained when the ML model

was trained using these three Sobol sets cumulatively. The first bar denotes test set NRMSE

when only set I (85 data points) was used; the second bar denotes test set NRMSE when

sets 1 and 2 (85+48 data points) were used; the third bar denotes test set NRMSE when

sets 1,2 and 3 (85+48+31 data points) were used. Note that for each of these cases, 15% of

the data available to the ML model was used for testing.

FIG. 10: Mean of NRMSE for test data when the machine learning model is trained using

Sobol sets. (Left) Error bars for ρ, (Right) Error bars for b.

Appendix B: Training of Neural Networks

The Learning curves for the neural networks N1 (for ρ) and N2 (for b) are presented in

Fig. 11. The loss function used to train the neural networks is computed on CoPCs and is

given in Eq. B1 below. Hyperparameter Optimization and Regularization
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FIG. 11: (a) Learning curve for N1, (b) Learning curve for N2.

The proposed machine learning model contains various parameters associated with the NNs
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that can affect the model’s overall accuracy and performance. In particular, so-called hy-

perparameters associated with controlling the learning process need to be tuned. Important

hyperparameters for our model include the architectures for NNs, the activation function,

the learning rate, and the number of iterations. We discuss each of these below.

Architecture: The predictive capability of a NN and the accuracy obtained in the pre-

diction depends on the number of hidden layers and the number of neurons in the hidden

layers. We optimized the number of hidden layers and number of neurons per layer using

the grid search method [133]. Fig. 12 shows the test error for N1 and N2 trained for varying

number of layers and varying number of nodes per layer. For N1, six layers of 150 neurons

each yielded the least test error, and for N2, two layers of 150 neurons each yielded the least

test error.
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FIG. 12: (Top) Test error (×10−5) for various architectures of N1 (trained for ρ), (Bottom)

Test error (×10−4) for various architectures of N2 (trained for b.)

Activation Function: We used Rectified Linear Unit (ReLU) as an activation function

for both neural networks N1 and N2. This choice avoids problems of vanishing or exploding

gradients encountered by other common activation functions like Sigmoid, Tanh [134, 135].

Learning Rate: The learning rate was set to 0.001 as suggested in [127]. Other parameters
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pertinent to the Adam optimizer were set at suggested values [127] based on good results

for other machine learning problems (β1 = 0.9, β2 = 0.999, ϵ = 10−8).

Number of Iterations: In order to avoid overfitting and help ensure good generalization

performance of the ML model, we used early stopping [136, 137]. We stopped the training

when the validation loss does not improve over a specific number of patience epochs. We

employed patience epochs of 1000, and the maximum number of epochs was set to 200000.

Elastic net regularization: Along with early stopping, we used elastic net regularization

to avoid overfitting. This technique is a combination of L1 and L2 regularization methods

[126], and overcomes the individual drawbacks of each. The loss function including L1 and

L2 regularization can be written as:

J̃ (y,N (x, w̄))= J (y,N (x, w̄)) + λ1||w̄||1+λ2||w̄||2 , λ1, λ2 ∈ R . (B1)

Here, J (y,N (x, w̄)) is the mean squared error over the true outputs y and the neural

network (N ) predicted outputs y′ = N (x, w̄). Furthermore, w̄ are the weights and biases of

N , x is the input, and ||w̄||1 and ||w̄||2 are the L1 and L2 regularization terms, respectively.

We have used λ1 = λ2 = 10−5 for both N1 and N2.

Appendix C: Comparison of the Clustering and Neural Network Approaches to

Obtaining the Nuclear Coordinates

We compare our clustering based approach to determine atomic coordinates with a neural

network that was trained to predict the atomic coordinates directly from the inputs : Ravg, α

and τ . We found that the error (distance between actual atomic coordinates and predicted

atomic coordinates) was significantly higher in the case of the neural network model than

the DBSCAN based approach proposed here. The errors in atomic coordinates using the

neural network approach and our clustering approach are shown in Fig 13. The superior

performance of the clustering based approach is likely related to the ability of the method

to make use of the specific structure of the b field (i.e., it is the superposition of a set of

non-overlapping, atom-centered, spherically symmetric charge distributions), as opposed to

the neural network model which does not incorporate such information.
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FIG. 13: Error in predicted atomic coordinates (in Bohr), i.e., the distance between true

and predicted nucleus positions, using a neural network and the DBSCAN based clustering

approach.

Appendix D: Comparison of our approach with a direct Neural Network based

prediction of the band gap location

It is well known [69, 128] that the location of the band gap in an armchair carbon

nanotube shifts in the (η, ν) space, as the tube is distorted. For small twists in particular,

the bandgap continues to be a direct one and remains at η = 1
3
, while transitioning to

different values of the cyclic symmetry index ν. We show in Table III below that for the

same amount of training data, this behavior is correctly captured by our method of predicting

band structure dependent quantities (i.e., carrying out a low-overhead postprocessing step

on the ML predicted smooth electronic fields), in contrast to a direct neural network based

prediction.
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Case
ν for VBM ν for CBM

DFT Our Approach NN DFT Our Approach NN

Random test data point

Ravg = 40.64 , α = 0.0015, τ = 4.7052
2 2 1.76 2 2 1.82

Test data point with unknown Ravg

Ravg = 49.51 , α = 0.0020, τ = 4.5052
3 3 3.35 3 3 3.15

Test data point with unknown α

Ravg = 35.55 , α = 0.00125, τ = 4.6052
1 1 1.06 1 1 1.12

Test data point with unknown τ

Ravg = 53.32 , α = 0.0015, τ = 4.5552
3 3 2.91 3 3 2.86

Test data point with unknown Ravg, α, τ

Ravg = 49.51 , α = 0.00125, τ = 4.5552
2 2 2.06 2 2 2.06

Test data point with unknown Ravg, α, τ

Ravg = 30.46 , α = 0.00075, τ = 4.6552
0 0 0.4 0 0 0.36

TABLE III: Comparison of our approach (ML model followed by postprocessing) with

direct neural network (NN) based prediction of cyclic symmetry index (ν) associated with

band-gap location. VBM denotes the valence band maximum and CBM denotes the

conduction band minimum. DFT denotes reference first principles results calculated using

Helical DFT. Ravg and τ values are in Bohr.
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