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Improved approximation and visualization of the correlation 
matrix

Jan Graffelmana,b,*, Jan de Leeuwc

aDepartment of Statistics and Operations Research, Universitat Politècnica de Catalunya
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cDepartment of Statistics, University of California Los Angeles

Abstract

The graphical representation of the correlation matrix by means of different multivariate statistical 

methods is reviewed, a comparison of the different procedures is presented with the use of an 

example data set, and an improved representation with better fit is proposed. Principal component 

analysis is widely used for making pictures of correlation structure, though as shown a weighted 

alternating least squares approach that avoids the fitting of the diagonal of the correlation matrix 

outperforms both principal component analysis and principal factor analysis in approximating a 

correlation matrix. Weighted alternating least squares is a very strong competitor for principal 

component analysis, in particular if the correlation matrix is the focus of the study, because 

it improves the representation of the correlation matrix, often at the expense of only a minor 

percentage of explained variance for the original data matrix, if the latter is mapped onto the 

correlation biplot by regression. In this article, we propose to combine weighted alternating least 

squares with an additive adjustment of the correlation matrix, and this is seen to lead to further 

improved approximation of the correlation matrix.
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SUPPLEMENTARY MATERIAL
R-package Correlplot:
R-package Correlplot (version 1.0.7) contains code to calculate the different approximations to the correlation matrix and to 
create the graphics shown in the article. The package contains all data sets used in the article. R-package Correlplot has a 
vignette containing a detailed example showing how to generate all graphical representations of the correlation matrix (GNU zipped 
tar file).
Approximations:
The file APPROXIMATIONS.PDF contains the approximations to the correlation matrix of the Heart attack data. Each table in the 
supplement gives the sample correlations above the diagonal, and the approximations obtained with a particular method on and/or 
below the diagonal (PDF file).
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1 Introduction

The correlation matrix is of fundamental interest in many scientific studies that involve 

multiple variables, and the visualization of the correlation coefficient and the correlation 

matrix has been the focus of several studies. Hills (1969) proposed multidimensional scaling 

(MDS), using distances to approximate correlations. Rodgers and Nicewander (1988) review 

multiple formulas for the correlation coeffient, showing visualizations that use slopes, angles 

and ellipses. Murdoch (1996) proposed to visualize correlations using a table of elliptical 

glyphs. Friendly (2002) proposed corrgrams that use color and shading of tabular displays 

to represent the entries of a correlation matrix. Trosset (2005) developed the correlogram, 

which capitalizes on approximation of correlations by cosines. Obviously, a correlation 

matrix can be visualized in multiple ways, using different geometric principles. In the 

statistical environment R ( R Core Team 2022), visualizations by means of vector diagrams 

or biplots can be obtained using the R packages FactoMineR ( Lê et al. 2008) and 

factoextra ( Kassambara and Mundt 2020; Kassambara 2017); corrgrams can be made 

with the R packages corrgram ( Wright 2021) and corrplot ( Wei and Simko 2021). The 

visualization of the correlation matrix by means of a principal component analysis (PCA) 

is facilitated by many statistical programs, among them the R packages FactoMineR and 

factoextra. Figure 1 shows two popular pictures of the correlation matrix of the myocardial 

infarction or Heart attack data ( Saporta 1990), a colored tabular display or corrgram (Fig. 

1A) and correlation circle (i.e., a correlation biplot, Fig. 1B) obtained by PCA.

Both plots reveal two groups of positively correlated variables (( CI, SI) and ( Pulse, DBP, 
PA, VP, logPR)) with negative correlations between the groups. In this article we focus 

on the visualization of correlations by means of vector and scatter diagrams, refraining 

from coloured tabular representations as in Figure 1A. Despite the popularity of the 

correlation circle, from a statistical point of view, PCA gives a suboptimal approximation 

of the correlation matrix. PCA provides a least-squares low-rank approximation to the data 
matrix (centred or standardized), and the visualization of the correlation matrix can be 

seen as a by-product of the analysis, but not its main goal. Principal factor analysis (PFA) 

and correlograms ( Trosset 2005) are multivariate methods more specifically designed for 

approximation and visualization of the correlation matrix. The main point of this article 

is to emphasize and illustrate the improvements offered by these and other methods and 

to stimulate their use over just using standard PCA for representing correlations. Also, as 

argued in the Discussion section, the correlation matrix requires goodness-of-fit measures 

that are different from ones shown in Figure 1B.

2 Materials and methods

In this section we briefly summarize methods for the visualization of the correlation 

matrix using a well-known multivariate data set, the Heart attack data ( Saporta 1990, 

pp. 452-454). The original data consists of 101 observations of patients who suffered a 

heart attack, and for which seven variables are registered: the Pulse, the cardiac index 

( CI), the systolic index ( SI), the diastolic blood pressure ( DBP), the pulmonary artery 

pressure ( PA), the ventricular pressure ( VP) and the pulmonary resistance ( logPR). 

Pulmonary resistance was log-transformed in order to linearize its relationship with the other 
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variables. We successively address the representation of correlations by principal component 

analysis (PCA), the correlogram (CRG), multidimensional scaling (MDS), principal factor 

analysis (PFA) and weighted alternating least squares (WALS). An additive adjustment to 

the correlation matrix is proposed to improve its visualization by PCA and WALS.

2.1 Principal component analysis

Principal component analysis is probably the most widely used method to display 

correlation structure by means of a vector diagram as given in Figure 1B. A correlation-

based PCA can be performed by the singular value decomposition of the standardized data 

matrix (Xs, scaled by 1 ∕ n)

1
nXs = UDsV′, (1)

where the left singular vectors are identical to the standardized principal components, and 

the right singular vectors are eigenvectors of the sample correlation matrix R since

R = 1
nXs ′Xs = VDs

2V′ = VDλV′, (2)

where the eigenvalues of the correlation matrix are the squares of the singular values. The 

vectors (arrows) in the correlation circle are given by G = VDs, and represent the entries of 

the eigenvectors scaled by the singular values. A well-known property of this vector diagram 

is that cosines of angles θij between vectors approximate correlations, as from GG′ = R it 

follows that

cos(θij) = gi
′gj

‖gi‖‖gj‖ ≈ rij, (3)

where gi is the ith row of G. This equation holds true exactly in the full space when using 

all eigenvectors, but only approximately so if a subset of the first few (typically two) is 

used. Alternatively, one can use a PCA biplot ( Gabriel 1971) to approximate the correlation 

matrix. We define a biplot as a joint display of the rows and the columns of a matrix that 

is optimal in a (weighted) least squares sense. In biplots it is common practice to use scalar 

products to approximate the entries of a data matrix of interest; the entries of the matrix 

are approximated by the length of the projection of one vector onto another, multiplied 

by the length of the vector projected upon. The PCA biplot of the data matrix (centred 

or standardized), with observations represented by dots and variables by vectors, is most 

well-known, though PCA also allows the approximation of the correlations by using scalar 

products between vectors. In the case of a correlation matrix, we have, using Eq. (2),

rij ≈ gi
′gj = cos(θij)‖gi‖‖gj‖ = ‖pi‖‖gj‖, (4)

where pi is the projection of gi onto gj. Biplots have been developed for all classical 

multivariate methods, and several textbooks describe biplot theory and provide many 

examples ( Gower and Hand 1996; Yan and Kang 2003; Greenacre 2010; Gower et al. 
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2011). A goodness-of-fit measure, based on least-squares, of the correlation matrix is given 

by

tr(R ′ R)
tr(R ′ R) = λ1

2 + λ2
2

∑i = 1
p λi

2
, (5)

where R is the rank two approximation obtained from Eq. (2) by using two eigenvectors 

only. We note that this measure is based on the squares of the eigenvalues, as detailed in the 

seminal paper by Gabriel (1971), whereas the eigenvalues themselves are used to calculate 

the goodness-of-fit of the centered data matrix (See Section 3).

2.2 The correlogram

The correlogram, proposed by Trosset ( 2005), explicitly optimizes the approximation of 

correlations in a two or three dimensional subspace by cosines, by minimizing the loss 

function

σ(θ) = ‖R − C(θ)‖2 with C(θ)jk = cos(θj − θk), (6)

where θ = (0, θ2, …, θp) is a vector of angles with respect to the x axis, one for each variable, 

the first variable being represented by the x axis itself. Equation (6) can be minimized 

numerically, using R’s function nlminb of the standard R package stats ( R Core Team 

2022). In a correlogram, vector length is not used in the interpretation, and all variables are 

therefore represented by vectors that emanate from the origin, and that have unit length, 

falling all on a unit circle (see Figure 2B). A linearized version of the correlogram was 

proposed by Graffelman (2013).

2.3 Multidimensional scaling

Hills (1969) proposed to represent correlations by distances using MDS, and suggested 

to transform correlations to distances by using the transformation dij = 2(1 − rij), after 

which they are used as input for classical metric multidimensional scaling ( Mardia et 

al. 1979, Chapter 14), also known as principal coordinate analysis (PCO; Gower (1966)). 

As a historical note, in order to reproduces Hills’ result, one actually needs to use the 

transformation dij = 2(1 − rij), implying Hills’ article referred to the squared distances. 

Importantly, with this transformation the relationship between correlation and distance is 

ultimately non-linear. Using this distance, tightly positively correlated variables will be 

close (dij ≈ 0), and tightly negatively correlated variables will be remote (dij ≈ 2), whereas 

uncorrelated variables will appear at intermediate distance (dij ≈ 2). Obviously, the diagonal 

of ones of the correlation matrix will always be perfectly fitted with this approach. In 

MDS, goodness-of-fit is usually assessed by looking at the eigenvalues. However, in this 

case the squared eigenvalues will be indicative of the goodness-of-fit of the double-centered 
correlation matrix, not of the original correlation matrix. In order to assess goodness-of-fit 

in terms of the root mean squared error (RMSE), as we will do for other methods, we 

will use the distances fitted by MDS (in two dimensions), and backtransform these to 

obtain fitted correlations in order to calculate the RMSE. A classical metric MDS of 

Graffelman and de Leeuw Page 4

Am Stat. Author manuscript; available in PMC 2024 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlations transformed to distances by Hills’ transformation is equivalent to the spectral 

decomposition of the double-centered correlation matrix, which can be obtained from 

the ordinary correlation matrix by centering columns and rows with a centering matrix 

H = I − (1 ∕ p)11′. For the double-centered correlation matrix Rdc, we have that

Rdc = HRH = (1 ∕ n)HXs ′XsH = Z′Z, (7)

with Z = (1 ∕ n)XsH. It follows that Rdc is positive semidefinite, with rank no larger 

than p − 1, and consequently, a configuration of points whose interpoint distances exactly 

represent the correlation matrix in at most p − 1 dimensions can always be found ( Mardia et 

al. 1979, Section 14.2).

2.4 Principal factor analysis

The classical orthogonal factor model for a p-variate random vector x, is given by x = Lf + e, 

where L is the matrix of p × m factor loadings, f the vector with m latent factors, and e a 

vector of errors. This model can be estimated in various ways. Currently, factor models are 

mostly fitted using maximum likelihood estimation, which also enables the comparison of 

different factor models by likelihood ratio tests.

PFA is an older iterative algoritm for estimating the orthogal factor model ( Johnson and 

Wichern 2002; Harman 1976). It is based on the iterated spectral decomposition of the 

reduced correlation matrix, which is obtained by subtracting the specificities from the 

diagonal of the correlation matrix. A classical factor loading plot is in fact a biplot of the 

correlation matrix, since the factor model implicitly decomposes the correlation matrix as

R = LL′ + Ψ, (8)

where Ψ is the diagonal matrix of specificities (variances not accounted for by the common 

factors). A low-rank approximation to the correlation matrix, say of rank two, is obtained 

by R = LL′ after estimating the two-factor model. This approximation is known to be better 

than the approximation offered by PCA, for it avoids the fitting of diagonal of the covariance 

or correlation matrix ( Satorra and Neudecker 1998).

2.5 Weighted alternating least squares

In general, a low-rank approximation for a rectangular matrix X can be found by weighted 

alternating least squares, by minimizing the loss function

σ(A, B) = ∑
i = 1

n
∑
j = 1

p
wij(xij − ai ′bj)2, (9)

where ai is the ith row of A, bj the jth row of B, W a matrix of weights and where we seek 

the factorization X = AB′. The unweighted case (wij = 1) is solved by the singular value 

decomposition ( Eckart and Young 1936). Keller (1962) also addressed the unweighted 

case, and explicitly considered the symmetric case. Bailey & Gower (1990) considered the 

symmetric case with differential weighting of the diagonal. A general-purpose algorithm 
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for the weighted case based on iterated weighted regressions (‘‘criss cross regressions”) 

was proposed by Gabriel and Zamir (1979); Gabriel (1978) also presented an application 

in the context of the approximation of a correlation matrix, where we have that X = R. 

Pietersz and Groenen (2004) present a majorization algorithm for minimizing Eq. (9) for 

the correlation matrix. The fit of the diagonal of the correlation matrix can be avoided by 

using a weight matrix W = J − I, where J is a p × p matrix of ones, and I a p × p identity 

matrix. This weighting gives weight 1 to all off-diagonal correlations and effectively turns 

off its diagonal by assigning it zero weight. An efficient algorithm and R code for using 

WALS with a symmetric matrix has been developed by De Leeuw (2006). The WALS 

approach can outperform PFA, for not being subject to the restrictions of the factor model. 

Communalities in factor analysis cannot exceed 1, which implies that the rows of the matrix 

of loadings L are vectors that are constrained to be inside, or in the limit, on the unit circle. 

In practice, PFA and WALS give the same RMSE if all variable vectors in PFA fall inside 

the unit circle, but WALS achieves a lower RMSE whenever a variable vector reaches the 

unit circle in PFA. This typically happens when a variable, in terms of the factor model, 

has a communality of one, or equivalently, zero specifity, a condition known as a Heywood 
case in maximum likelihood factor analysis ( Johnson and Wichern 2002; Heywood 1931). 

In WALS, the length of the variable vectors is unconstrained, and vectors can obtain a length 

larger than one if that produces a better fit to the correlation matrix. Indeed, if a factor 

analysis produces a Heywood case, then this indicates that a representation of the correlation 

matrix by WALS that outperforms PFA is possible.

2.6 Weighted alternating least squares with an additive adjustment

We propose a modification of the WALS procedure in order to further improve the 

approximation of the correlation matrix. By default, all vector diagrams (i.e. biplots) of 

the correlation matrix have vectors that emanate from the origin, the latter representing zero 

correlation for all variables; the fitted plane is constrained to pass through the origin. This 

does generally not provide the best fit to the correlation matrix. We propose an additive 
adjustment to improve the fit of the correlation matrix. By using an additive adjustment δ, 

the origin of the plot no longer represents zero correlation but a certain level of correlation. 

Consequently, the scalar products between vectors represent the deviation from this level. 

The optimal adjustment (δ) and the corresponding factorization of the adjusted correlation 

matrix can be found simultaneously by minimizing the loss function

σ(A, B, δ) = ∑
i = 1

n
∑
j = 1

p
wij(xij − δ − ai ′bj)2, (10)

where the notation is again kept general (for rectangular X; in this article X = R
and n = p). The adjustment amounts to subtracting an optimal constant δ from all 

entries of the correlation matrix, and factoring the so obtained adjusted correlation 

matrix Ra = R − δJ = AB′. The minimization can be carried out using the R program 

wAddPCA program developed by de Leeuw (https://jansweb.netlify.app/), and included 

in the Correlplot package for the purpose of this article. For a correlation matrix, 

the minimization does, in general, yield A ≠ B, though unique biplot vectors for each 
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variable are easily obtained by a posterior spectral decomposition: AB′ = VDV′ = GG′ with 

G = VD1 ∕ 2. The weighted least-squares approximation to R is then given by δJ + GG′, and 

the WALS biplot is made by plotting the first two columns of G; the origin of that plot 

represents correlation δ (See Figure 3D).

We note that the additive adjustment is different from the usual column (or row) centering 

operation, employed by many multivariate methods like PCA, consisting of the subtraction 

of column means (or row means) from each column (or respectively, each row). It is also 

different from the double centering operation, used in MDS, that subtracts row and column 

means, but adds the overall mean. The adjusted correlation matrix preserves the property 

of symmetry. The additive adjustment can also be used in the unweighted approximation 

of the correlation matrix by the iterated spectral decomposition of Ra, calculating δ on each 

iteration as δ = tr((R − GG′)J) ∕ p2, G containing the scaled eigenvectors of Ra (analogously 

to Eq. 2) in which case it can improve the fit to the correlation matrix obtained by PCA (See 

Figure 3B for an example), though this will not solve PCA’s problem of fitting the diagonal. 

It is thus most appealing to use the additive adjustment in the weighted approach.

3 Results

We present some examples of biplots of correlation matrices obtained by PCA and by 

using WALS with the δ adjustment. First, we successively apply all methods reviewed in 

the previous section to the Heart attack data, whose correlation matrix is given in Table 

1, and compare them in terms of goodness-of-fit. Second, we provide some additional 

illustrative examples, using the Aircraft data ( Gower and Hand 1996), the Swiss banknote 

data ( Weisberg 2005) and an artificial equicorrelation matrix.

3.1 Heart attack data

We use the root mean squared error (RMSE) of the off-diagonal elements of the correlation 

matrix given by rmse = 1
1
2p(p‐1)

∑i < j rij‐r ij
2 as a measure of fit for those methods that do 

not aim to approximate the diagonal (PFA and WALS), whereas we will include the diagonal 

for those methods that do try to fit the diagonal (PCA, CRG and MDS). The panel plot 

in Figure 2 shows the results for PCA, CRG, MDS, PFA, WALS and WALS with scalar 

adjustment δ.

Figure 2A shows a PCA biplot of the correlation structure, where correlations are 

approximated by the scalar products between vectors. The RMSE when using scalar 

products is 0.1808, whereas the RMSE obtained in PCA by cosines is 0.2945. Figure 2B 

shows the correlogram for the Heart attack data, which capitalizes on the representation by 

cosines. This representation decreases the RMSE to 0.2671 in comparison with cosines in 

PCA. Figure 2C shows an MDS plot of the correlation structure. To facilitate interpretation, 

intervariable distances larger than 2 are marked with dotted lines to stress that they 

represent negative correlations. Variables that are not connected thus have a positive 

correlation. The plot indicates that SI and CI are positively correlated, and that these 

variables have negative correlations with all other variables. The plot also shows that PA, 
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DBP and PR form a positively correlated group. Figure 2D shows the factor loading plot 

obtained by PFA; this achieves a considerably lower RMSE of 0.0755 for not fitting the 

diagonal. Note that variable CI reaches the unit circle.

In Figure 2E we show the WALS biplot, which also avoids fitting the diagonal, but is also 

freed from the constraints of the factor model. Variable CI is now seen to slightly move out 

of the unit circle. The RMSE of WALS is the lowest of all methods in comparison with 

all previous methods; its RMSE is slightly below the RMSE obtained by PFA (0.075519 

versus respectively 0.075523). Maximum likelihood factor analysis of the data produces 

a Heywood case, with precisely CI achieving a communality of 100%. When an additive 

adjustment is used, we obtain δ = − 0.2706. The corresponding biplot is shown in Figure 

2F. With the adjustment, CI appears to stretch further, and the obtuse angles between the 

pair CI and SI and the remaining variables become smaller. The scalar adjustment further 

reduces the RMSE of the approximation to 0.06622, providing the best approximation to the 

correlation matrix.

The effect of the proposed adjustment is illustrated in more detail in Figure 3, by using 

biplot axis calibration ( Graffelman and van Eeuwijk 2005), for both PCA and WALS. 

Calibration of a biplot axis refers to the process of drawing tick marks with numeric 

labels along (mostly oblique) biplot vectors. Calibration can be used to illustrate the biplot 

interpretation rules, and to highlight a particular variable of interest. The earliest example 

of biplot calibration stems from Gabriel and Odoroff (1990); formulae for carrying out the 

calibration have been developed by several authors ( Gower and Hand 1996; Graffelman and 

van Eeuwijk 2005; Gower et al. 2011). In the R environment, calibration can be carried out 

with the package calibrate. In all panels of Figure 3, variable SI has been calibrated in 

order to show the change in interpretation, and the calibrated scale for SI is shifted towards 

the margin of the plot ( Graffelman 2011) to improve the visualization. Note that in the 

analyses with the δ adjustment (panels B and D), the origin of the scale for SI is no longer 

zero, but shifted by δ, as is emphasized by the projection of the origin onto the calibrated 

scale. The origin of the plot, where the biplot vectors emanate from, is represented by the 

values δ = 0.14 and δ = − 0.27 for panels B and D respectively. The sample correlations of SI 
with all other variables and the approximations by the different types of analysis are shown 

in Table 2; generally WALS with the adjusted correlation matrix most closely approximates 

the sample correlations, and has the lowest RMSE. The RMSE of all variables are shown in 

Table 3; this shows that WALS considerably lowers the RMSE in comparison with PCA and 

that the representation of variable Pulse benefits from using the adjustment.

Finally, we map observations onto the WALS correlation biplot by regression, as shown in 

Figure 4B, and compare the results with those obtained by PCA in Figure 4A. In PCA, 

the goodness-of-fit of the standardized data matrix is calculated from the eigenvalues and 

is 0.736; the goodness-of-fit of the correlation matrix (including the diagonal), calculated 

from the squared eigenvalues is 0.913. The correlation matrix thus has better fit than the 

standardized data matrix (see Discussion). In PCA, both principal components contribute 

to the goodness-of-fit, and these contributions neatly add up. Figure 4A shows the 

contributions of both axes to both the representation of the standardized data matrix (0.560 

+ 0.176 = 0.736) and to the correlation matrix 0.832 + 0.082 = 0.913. For WALS, the 
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goodness-of-fit of the standardized data matrix is 0.729, only slightly below the maximum 

achieved by PCA. The scores of the patients for the principal components in Figure 4A have 

been scaled by multiplying by 1 ∕ χ2
2(0.95) = 0.409; this way the unit circle drawn for the 

variables coincides exactly with the 95% contour of a multivariate normal density for the 

principal components. PCA actually provides a double biplot, since the projections of dots 

onto vectors approximates the (standardized) data matrix, and the projections of vectors onto 

vectors approximates the correlation matrix.

The WALS solution has different properties. First of all, there is no nesting of axes, i.e. the 

first dimension obtained of a two-dimensional approximation is different from the single 

dimension obtained in a one-dimensional solution. Moreover, extracted axes are generally 

not uncorrelated. The goodness-of-fit of the correlation matrix is best judged by the RMSE 

of the off-diagonal correlations. In PCA the RMSE is 0.181 if the diagonal is included. By 

using WALS, the RMSE is more than halved, giving 0.0755 or 0.0662 if the adjustment is 

used. In this case, one could say the WALS solution halves the RMSE of the correlations 

at the expensive of sacrificing less than 1% of the goodness-of-fit of the standardized data 

matrix in comparison with PCA. WALS reduces the RMSE of all variables with respect 

to PCA (see Table 3), VP, PA, DBP and Pulse in particular. In the WALS biplot, the 

vectors for Pulse and VP appear shorter, reducing the exaggeration observed in PCA of 

the correlations of these two variables with DBP and PA, and CI and SI respectively. The 

Supplementary Materials provide approximations of the correlation matrix obtained by all 

methods discussed.

3.2 Aircraft data

The Aircraft data consists of four variables, the specific power ( SPR), the flight range 

factor ( RGF), the payload ( PLF) and sustained load factor ( SLF), registered for 21 

fighter aircrafts. This data has been described and analysed by Gower and Hand (1996). 

We here focus on the correlations between these four variables. Figure 5A shows the biplot 

of the correlation matrix obtained by a PCA of the standardized data. The RMSE of the 

representation of the correlation matrix (ones on the diagonal included) is 0.1362. If we 

apply WALS with the additive adjustment, we obtain an estimate for δ that is almost 

zero (3.3e-05), indicating that for this data, there is no benefit in using the adjustment. 

The corresponding biplot is shown in Figure 5B, and has a RMSE that is very small 

(0.0003), meaning the correlation structure is virtually perfectly represented in this two 

dimensional display. All variable vectors fall within the unit circle. For this case, the WALS 

representation is equivalent to the factor loading plot obtained in PFA. The biplot vectors 

obtained by WALS are shorter, which translates into smaller scalar products and therefore 

lower estimates of the correlation coefficients. Because PCA tries to fit the diagonal of the 

correlation matrix, it tends to stretch the biplot vectors towards unit length, and thereby 

exaggerates the correlations between the variables.

3.3 Swiss banknote data

The Swiss banknote data consists of six measurements of different size aspects of a 

banknote: the top margin ( Top) and the bottom margin ( Bottom) surrounding the image, 

the diagonal of the image on the banknote ( Diagonal), the left and right height of the 
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banknote ( Left and Right respectively) and the horizontal length ( Length) of the banknote. 

The original data consists of counterfeits and non-counterfeits (a hundred of each), of which 

we use the counterfeits only. Figure 6A shows the PCA correlation circle, and Figure 6B 

the correlation circle obtained by WALS with zero weights for the diagonal and using the δ
adjustment. By using WALS we obtain a considerable lower RMSE (0.0467), and the origin 

of the WALS biplot represents a correlation of δ = 0.07. To facilitate the interpretation of the 

WALS biplot, zero correlation is marked on the biplot vector of each variable with a black 

dot and the positive part of the correlation scale is shown in blue. Variable Bottom appears 

stretched outside the unit circle with respect to PCA; the data set would have a produced a 

Heywood case in ML factor analysis. PCA and WALS biplots show two quite interpretable 

dimensions in the data: an apparent banknote size dimension represented by the outer size 

measurements Left, Right and Length, and an vertical centring of the image dimension 

represented by the opposition between Top and Bottom. Detailed RMSE statistics for each 

variable in Table 4 show all variables improve their representation when the WALS biplot is 

used. The largest improvement is due to avoiding the fit of the diagonal of the correlation 

matrix. The PCA biplot exaggerates the negative correlation between Top and Diagonal, and 

also exaggerates the positive correlations of the group ( Left, Right and Length). In general, 

WALS reduces the estimates of the correlations obtained by PCA towards zero. When a rank 

three approximation to the correlation matrix is considered, the RMSE obtained by PCA 

with three principal components decreases to 0.1447, whereas WALS obtains an almost 

perfect representation of R with a RMSE below 0.0002.

3.4 The equicorrelation matrix

We analyze a 10 × 10 equicorrelation matrix with a correlation of 0.5 between all pairs 

of variables. The PCA and WALS biplots are shown in Figure 7. The RMSE of the 

approximation obtained with two principal components is 0.1414, whereas for WALS a 

the approximation of the correlation matrix turns out to be perfect (RMSE=0). Though 

we use two dimensional plots in Figure 7, we show a rank one approximation for WALS, 

which already achieves a perfect approximation to R. Quite obviously, the perfect rank one 

approximation is obtained by 10 coincident biplot vectors with norm rij = 0.7071. Note that 

in order to achieve zero RMSE in PCA, all 10 dimensions would be needed. Again, PCA is 

hampered by having to fit the diagonal of ones of the correlation matrix.

4 Discussion

Principal component analysis is widely used for making graphical representations, 

correlation circles, better termed biplots, of a correlation matrix. However, as shown in this 

article, the approximation to the correlation matrix offered by using the first two dimensions 

extracted by PCA is suboptimal, and a weighted alternating least squares algorithm that 

avoids the fitting of the diagonal outperforms PCA and other approaches. It is commonplace 

to analyse and visualize a quantitative data matrix by PCA, but it is questionable if that is 

really the best way to proceed. Indeed, it is shown with an example that an approximation of 

the correlation matrix by WALS and adding the observations to the biplot of the correlation 

matrix posteriorly by regression may be more interesting than PCA itself, because it 

capitalizes on the display of the correlation structure, possibly at the expense of only 
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sacrificing a minor portion of explained variance of the data matrix. The WALS algorithm 

is powerful and deserves more attention; we suggest it as the default method for depicting 

correlation structure. The various approaches detailed in the article are all available in 

the R environment combined with the Correlplot R package. The examples shown in 

the article shows the largest reduction in RMSE is obtained by turning off the diagonal 

of the correlation matrix; an additional but smaller gain results from using the proposed 

adjustment. The adjustment, when different from zero, changes the interpretation rules of 

the biplot: orthogonal vectors no longer correspond to correlation zero, but to correlation δ. 

Consequently, biplot vectors with sharp and obtuse angles no longer necessarily correspond 

to positive and negative correlations. To facilitate interpretation, marking the zero on the 

biplot vector is therefore recommended (See Figure 6B). More practical data analysis, 

and eventually some simulation studies, will provide more insight on the benefit of the 

adjustment.

In a correlation-based PCA, the first eigenvalue is always larger or at worst equal to 1, 

as the first component will have a variance larger than that of one standardized variable. 

Trailing eigenvalues are smaller than 1, because the eigenvalues sum to p, the number of 

variables. Consequently, when eigenvalues are squared, the relative contribution of the first 

dimension increases. This implies that PCA generally does a better job at representing 

the correlation matrix than it does at representing the standardized data matrix, as is also 

the case for the Heart attack data studied in this paper, at least if the diagonal of ones is 

included. The ‘‘variables plot” of the FactoMineR and factoextra R packages report, 

on its axes, the explained variability of the standardized data matrix, not of the correlation 

matrix (See Figure 1B), for which the squared eigenvalues (Fig. 4A, second entry on each 

axis) are needed. Ultimately, to report the goodness-of-fit (or error) of the approximation 

to the correlation matrix, the off-diagonal RMSE is the preferred measure for avoiding the 

innecessary approximation of the ones, and for being directly interpretable as the average 

amount of error in the correlation scale.

Principal components are usually centered, therefore have zero mean, they are orthogonal 

and uncorrelated. The axes extracted by the WALS algorithm generally do not have these 

properties. A centering of the WALS solution is not always convenient, because scalar 

products are not invariant under the centering operation, and centering the solution can 

therefore worsen the approximation. The scores obtained by WALS can, if desired, be 

orthogonalized by using the singular value decomposition; this has been used for most 

WALS biplots shown in this article.

The elegance and power of the WALS algorithm resides in its generality, as it encompasses 

most, if not all, types of analysis considered in this article. PCA can be performed by 

applying the WALS algorithm (Eq. (9)) to the column-centred data matrix. Hills (1969) 

MDS of the transformed correlations can be carried out by WALS of a double-centred 

correlation matrix.

With regard to the preprocessing of the correlation matrix prior to analysis, obvious 

alternatives to using the proposed δ adjustment are column (or row) centering or a double 

centering operation prior to biplot construction. Column (or row) centering alone is not 
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recommended, because this yields a non-symmetric transformed correlation matrix. For 

biplot construction, the singular value decomposition of this matrix would be needed, 

leading to different biplot markers for rows and for columns. Consequently, each variable 

would be represented twice, by both a column and a row marker that differ numerically, 

leading to a more dense plot that is less intuitive to interpret. A double centering of the 

correlation matrix retains symmetry, but due to the double centering operation the origin no 

longer has a unique interpretation and represents a different value for each scalar product. 

If double centering is applied, then the representation of the correlations by distances, 

as proposed by Hills (1969), is more convenient than the use of scalar products. The 

proposed additive adjustment retains symmetry and preserves the use of the scalar product 

for interpretation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Displays of the correlation matrix of the Heart attack data obtained in R by using 

the corrplot, FactoMineR and factoextra packages. A: Colored tabular display or 

corrgram. B: Correlation circle or correlation biplot. See Section 2 for the abbreviations of 

the names of the variables.
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Fig. 2. 
Visualizations of correlation structure, using the Heart attack data. A: PCA biplot of the 

correlation matrix; B: Trosset’s correlogram; C: MDS map, with negative correlations 

indicated by dotted lines. D: Biplot obtained by PFA. E: Biplot obtained by WALS. F: 

Biplot obtained by WALS with scalar adjustment δ. The RMSE of the approximation is 

given between parentheses in the title of each panel.
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Fig. 3. 
Adjustment of the correlation matrix. All biplots have a calibrated correlation scale for SI. 
A: PCA biplot; B: PCA biplot using the δ adjustment; C: WALS biplot; D: WALS biplot 

using the δ adjustment. The interpretation of the biplot origin is shown by its projection (in 

red) onto the calibrated scale. Black dots on biplot vectors correspond to zero correlation 

for the corresponding variable. The interpretation of the black dot for SI is shown by its 

projection (in green) onto the calibrated scale. For positive δ, biplot vectors are extended 

beyond the biplot origin towards their zero point. For negative δ, tails of biplot vectors are 

colored in red for the negative part of the correlation scale.
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Fig. 4. 
Comparison of the double biplots of PCA and WALS. A: PCA biplot, reporting goodness-

of-fit of both data and correlation matrix on each axis using eigenvalues. B: WALS biplot 

(without δ adjustment).

Graffelman and de Leeuw Page 17

Am Stat. Author manuscript; available in PMC 2024 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Biplots of the correlation matrix of the Aircraft data. A: PCA biplot B: WALS biplot. The 

RMSE of the approximation is given in the title of each panel.
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Fig. 6. 
Biplots of the Swiss banknote data. A: PCA biplot B: WALS biplot. The RMSE of the 

approximation is given in the title of each panel.
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Fig. 7. 
Biplots of a 10 × 10 equicorrelation matrix. A: PCA biplot B: WALS biplot. Variable labels 

for the WALS biplot are not shown, as the 10 vectors coincide.
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Table 1

Correlation matrix of the Heart attack data.

CI SI VP Pulse logPR DBP PA

CI 1.000 0.887 −0.282 −0.112 −0.839 −0.361 −0.269

SI 0.887 1.000 −0.201 −0.503 −0.833 −0.483 −0.405

VP −0.282 −0.201 1.000 −0.085 0.318 0.285 0.244

Pulse −0.112 −0.503 −0.085 1.000 0.287 0.399 0.370

logPR −0.839 −0.833 0.318 0.287 1.000 0.761 0.716

DBP −0.361 −0.483 0.285 0.399 0.761 1.000 0.928

PA −0.269 −0.405 0.244 0.370 0.716 0.928 1.000
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Table 2

Sample correlations (r(SI, i)) of SI with all other variables, and estimates of the sample correlations according to 

four biplots. The bottom line gives the RMSE of SI for each method. For PCA, the RMSE calculation includes 

the correlation of SI with itself, for WALS, it does not.

PCA WALS

r(SI, i) δ = 0 δ = 0.14 δ = 0 δ = − 0.27

R Ra R Ra

Pulse −0.503 −0.264 −0.316 −0.271 −0.340

CI 0.887 0.818 0.905 0.894 0.889

SI 1.000 0.814 1.017 0.842 0.557

DBP −0.483 −0.609 −0.597 −0.514 −0.497

PA −0.405 −0.544 −0.546 −0.440 −0.430

VP −0.201 −0.416 −0.092 −0.252 −0.330

logPR −0.833 −0.867 −0.717 −0.848 −0.823

RMSE (SI) 0.160 0.116 0.099 0.086
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Table 3

RMSE of all variables for four methods. The bottom line gives the overall RMSE for each method. For PCA, 

the RMSE calculation includes the correlations of the variables with themselves whereas for WALS these are 

excluded.

PCA WALS

δ = 0 δ = 0.14 δ = 0 δ = − 0.27
R Ra R Ra

Pulse 0.2469 0.1618 0.1345 0.0948

CI 0.0945 0.1078 0.0482 0.0530

SI 0.1598 0.1158 0.0988 0.0857

DBP 0.1212 0.1540 0.0242 0.0239

PA 0.1390 0.1828 0.0196 0.0218

VP 0.3103 0.1336 0.0877 0.0883

logPR 0.0564 0.1275 0.0329 0.0521

All 0.1808 0.1426 0.0755 0.0662
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Table 4

RMSE of all variables for four methods. The bottom line gives the overall RMSE for each method. For PCA, 

the RMSE calculation includes the correlations of the variables with themselves.

PCA WALS

δ = 0 δ = 0.16 δ = 0 δ = 0.07
R Ra R Ra

Length 0.2725 0.2734 0.0380 0.0170

Left 0.1624 0.1172 0.0616 0.0440

Right 0.1661 0.1855 0.0608 0.0641

Bottom 0.0665 0.0986 0.0071 0.0109

Top 0.2084 0.1080 0.0355 0.0186

Diagonal 0.3352 0.2890 0.0826 0.0790

All 0.2192 0.1949 0.0533 0.0466

Am Stat. Author manuscript; available in PMC 2024 April 11.


	Abstract
	Introduction
	Materials and methods
	Principal component analysis
	The correlogram
	Multidimensional scaling
	Principal factor analysis
	Weighted alternating least squares
	Weighted alternating least squares with an additive adjustment

	Results
	Heart attack data
	Aircraft data
	Swiss banknote data
	The equicorrelation matrix

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Table 1
	Table 2
	Table 3
	Table 4



