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ABSTRACT 1 
The solution algorithms for the family of flow distribution problems, which include (1) 2 

the trip distribution problem of travel forecasting, (2) the OD estimation from link counts 3 

problem, and (3) the trip matrix disaggregation problem, are usually based on the Maximum 4 

Entropy (ME) principle. ME-based optimization problems are hard to solve directly by 5 

optimization techniques due to the complexity of the objective function. Thus, in practice, 6 

iterative procedures are used to find approximate solutions. These procedures, however, cannot 7 

be easily applied if additional constraints are needed to be included in the problem.  8 

In this paper a new approach for balancing trip matrices with application in trip matrix 9 

disaggregation is introduced.  The concept of generating the most similar distribution (MSD) 10 

instead of the Most Probable Distribution of Maximum Entropy principle is the basis of this 11 

approach. The goal of MSD is to minimize the deviation from the initial trip distribution, while 12 

satisfying additional constraints. This concept can be formulated in different ways. Two MSD-13 

based objective functions have been introduced in this paper to replace the ME-based objective 14 

function. One is the Sum of Squared Deviations MSD (SSD-MSD), and the other is Minimax-15 

MSD. While SSD-MSD puts more emphasis on maintaining the base year trip shares as a whole, 16 

Minimax-MSD puts more emphasis on maintaining the share of each individual element in the 17 

trip table.  18 

The main advantage of replacing the entropy-based objective functions with any of these 19 

functions is that the resulting problems can include additional constraints and still be readily 20 

solved by standard optimization engines. In addition, these objective functions could produce 21 

more meaningful results than entropy-based functions in regional transportation planning studies, 22 

as shown in the case study and some of the examples in the paper. Several examples and a case 23 

study of the California Statewide Freight Forecasting Model (CSFFM) are presented to 24 

demonstrate the merits of using MSD-based formulations.  25 

 26 

Keywords: trip distribution, maximum entropy, trip matrix disaggregation, Most Similar 27 

Distribution 28 

  29 

  30 
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INTRODUCTION 1 
The trip distribution problem is a familiar component of passenger and freight 2 

transportation planning models. It may appear in the form of trip matrix disaggregation for sub-3 

region analysis, trip table generation based on traffic counts, or trip matrix balancing to match 4 

forecasts of zonal productions and attractions. The most widely used methods in each of these 5 

cases are directly or implicitly based on Maximum Entropy (ME) theory. This principle implies 6 

that in the absence of prior information, the probability distribution which best represents the 7 

current state of knowledge is the one with the largest entropy. In other words, if there are no 8 

preferences among various outcomes, then all the possible outcomes are assumed to have 9 

uniform probability (1).  10 

ME-based formulations are too complex to be directly solved by optimization engines. 11 

Multiple iterative methods founded on ME theory have been developed to solve different forms 12 

of the trip distribution problem and have been widely used due to their ease of computation and 13 

fast convergence rate. However, the restrictive framework of the iterative procedures doesn’t 14 

allow an exhaustive use of the information in hand.  15 

Given the significant increase in computational speeds and wide-spread availability of 16 

powerful open source optimization packages, the long-held “benefits” of ME-based methods no 17 

longer outweigh their possible errors in final trip distribution results.  It is time to evaluate the 18 

impacts of using ME-based methods on final trip distribution results and potentially use 19 

alternative methods that make use of all the available accessory data sources. This area of 20 

research has received little attention to the best of the authors’ knowledge. 21 

The goal of this paper is to investigate alternative methods by which to approach the trip 22 

distribution problem, with a focus on its application in freight transportation. Two alternative 23 

models are proposed to estimate or adjust trip tables in situations where ME-based methods may 24 

not be applicable or provide valid results. The proposed models can be easily handled by 25 

available optimization packages, include modal accessibility constraints, and maintain 26 

consistency with aggregate observed trip tables while also minimizing deviations from original 27 

trip shares when estimating balancing factors for future trip tables.  28 

We believe that the theoretical arguments made in this paper and the practical 29 

significance of using the alternative models combined implies that these models could be 30 

suitable to be used in practice where appropriate.  31 

In the next section, methods used to solve distribution models with a focus on ME 32 

methods are reviewed. This is followed by an examination of the impacts of ME assumptions on 33 

trip table estimation including example cases and presentation of proposed models. Finally, the 34 

California Statewide Freight Forecasting Model (CSFFM) is presented as an important 35 

application of the proposed methods. 36 

LITERATURE REVIEW 37 
In the transportation literature, the term distribution models generally refers to the 38 

methods used in the second step of the Four Step Model for travel forecasting, where the total 39 

number of trips beginning and ending in each zone is known and the goal is to find the number 40 

of trips between each pair of zones. In a matrix representation, the objective is to populate the 41 

cells of a matrix given row and column marginal values. 42 

In this paper, this family of models is extended to include not only those estimated from 43 

marginal values of the matrix itself, but also those methods that use any other available 44 

information at any level for estimation, that is both estimating at coarser levels based on detailed 45 
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data, as in traffic OD estimation, or estimating at finer levels based on aggregate data as in 1 

matrix disaggregation. Based on this definition, the “matrix disaggregation problem” and the 2 

“OD estimation problem” can be categorized as distribution problems.  3 

ME-based models have been the method of choice when working with limited 4 

information to find the most likely solution amongst many alternates and have been widely used 5 

in distribution models. These three defined problems deemed the “distribution problem” will be 6 

presented in detail with an emphasis on the solution methods that use ME. 7 

The first problem is the estimation of a trip table where forecast productions and 8 

attractions and a base year trip table are available. Each zone may have two different growth 9 

factors for in- and out-bound trips. To obtain the future trip table a number of iterative methods 10 

have been proposed. The most well-known of these methods were developed by (and named 11 

after) Furness (2) and Fratar (3). It was later shown that the Furness model can be derived from a 12 

doubly constrained optimization problem using ME as the objective function. 13 

Gravity models are one of the first theory-based methods to be used for trip distribution 14 

modeling. Assuming that the total productions and consumptions by all the zones in the network 15 

are known, gravity models distribute these marginal values in trip tables estimating the most 16 

likely number of trips between each origin and destination, given known impedance values for 17 

each OD pair. Wilson (4) derived the classic gravity model from the Lagrangian form of an 18 

optimization problem using the ME objective function and production and attraction constraints. 19 

A number of authors have attempted to formulate more general versions of the classical gravity 20 

model. For example, Fang and Tsao (5) generalized the classical gravity model to a “self-21 

deterrent” gravity model by adding a “congestion term” to the exponent in the formulation of 22 

gravity model. Additionally, De Grange et al. (6) included a term in the exponent to account for 23 

accessibility to destinations. 24 

Another theoretical model for trip distribution is the intervening opportunities model. 25 

This model was initially proposed by Stouffer (7), but the theoretical formulation known today 26 

was developed by Schneider (8). The basic idea behind the intervening opportunities model is 27 

that destination choice is not explicitly related to distance, but rather to the accessibility to 28 

opportunities that can satisfy the trip’s purpose. The main difference between the intervening 29 

opportunities model and the gravity model is in the use of the distance variable. While in the 30 

latter model distance is a continuous variable, it is treated as an ordinal variable in the former 31 

model. The intervening opportunities model is not widely used by practitioners, due to the less 32 

well known and more complicated theoretical basis, and lack of suitable software. Wilson (4) 33 

also showed that the intervening opportunities model can be derived from an ME-based 34 

formulation. 35 

While aggregate distribution models are estimated at the zonal level, disaggregate 36 

approaches are estimated at the individual household level. As opposed to aggregate approaches 37 

where the output of the distribution model is the number of trips between zones, disaggregate 38 

methods estimate the probability that an individual chooses a specific destination to satisfy the 39 

need for an activity. Discrete choices models are usually used for the purpose of disaggregate 40 

estimation of trip distribution (9). Wilson (10) also showed that multinomial logit models can be 41 

derived from an ME-based optimization. 42 

The next problem is matrix disaggregation. In transportation modeling, fine disaggregate 43 

level data can be expensive or impractical to obtain, so many transportation models are 44 

calibrated at coarser, aggregate levels and then disaggregated using local data. The limited 45 

availability of disaggregate data is a more significant issue in freight transportation due to the 46 
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proprietary nature private sector data that is of interest in freight modeling. The Freight Analysis 1 

Framework (FAF) (11) is the only national publicly available commodity flow database. 2 

However, FAF zones are very aggregate (there are only 123 domestic regions in the last version 3 

of FAF). 4 

Several attempts have been made to disaggregate FAF flows to county or sub-county 5 

levels. For instance, Alam and Majed (12) proposed a methodology to disaggregate the FAF 6 

Truck OD matrices to the county level using proportional allocation techniques based on land 7 

use or employment data at the county level and total truck VMT within that county to facilitate 8 

freight assignment on interstate and state highways. Opie et al.(13) developed several weighting 9 

schemes to disaggregate FAF flows proportionally. The recommended scheme was based on 10 

NAICS 3-digit employment (14). They also used a tri-proportional method to balance the final 11 

disaggregate matrix. Cambridge Systematics (15) and Viswanathan et al. (16) proposed similar 12 

methodologies to divide FAF2 regional commodity flow data for all commodities into county 13 

level flows by commodity. They developed robust linear regression equations to generate total 14 

production and attraction for each county. These regressions were used to guide the development 15 

of factors for each commodity for the disaggregation of freight flow productions and attractions. 16 

ALTERNATIVE MODEL FOR THE TRIP DISTRIBUTION PROBLEM 17 
Two alternative models are proposed to replace the ME-based models that serve as the 18 

basis of the three types of distribution problems introduced above. These alternative methods 19 

will be of interest especially when other data regarding capacity, constraints on transportation 20 

facilities, or aggregate trip matrices are available. However, since the case study in this paper is 21 

about trip distribution and disaggregation, these example models are presented accordingly. 22 

Maximum Entropy (ME) Model for Matrix Balancing 23 
The iterative process proposed by Furness (2), also known as the bi-proportional method, 24 

has been very popular and, in fact, is included in the majority of transportation software 25 

packages as the standard procedure by which to estimate balancing factors for trip distribution 26 

matrices.  Similar to doubly constrained growth factor models, the bi-proportional method 27 

requires target production          and target attraction          estimates, and an initial 28 

trip table      , where Z is the set of zones in the networks.  29 

The iterative solution process produces an approximate solution based on the Lagrangian 30 

of an optimization problem known as the “maximum entropy transportation model” or the 31 

“maximum entropy special interaction model”, presented in Eqs.1.1 to 1.4: 32 

 33 

Min           (   
   

   
  ) Eq. 1.1 

Subject to  

              Eq. 1.2 
              Eq. 1.3 
             Eq. 1.4 
 34 

Although this iterative fitting method has been used widely in transportation, in some 35 

cases there is merit in replacing it with other methods.  36 
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Most Similar Distribution (MSD) Model 1 
In multi-regional transportation analysis, it is common to assume that the entire system is 2 

stable and any relationships, transactions, or flows among regions are in equilibrium. This 3 

concept can be applied to trip distribution by assuming that future trip shares are the same or 4 

close to present trip shares (the shares       for a trip table       can be obtained by normalizing 5 

the trip table to 1, i.e. by dividing the elements of the table by the sum of the table elements,    ). 6 

Under this formulation, instead of maximizing entropy as is the case for ME-based methods, the 7 

goal is to minimize the difference between the      and       trip shares, that is, to generate the 8 

MSD given the production and attraction constraints. The objective function in MSD-based trip 9 

distribution problem can be formulated in different ways depending on the goals of the 10 

researcher and attributes of initial trip distribution. In the following section two formulations are 11 

presented and compared with several examples.  12 

Sum of Squared Deviations MSD (SSD-MSD) 13 

 The first proposed formulation is to minimize sum of the squared deviations between the 14 

estimated future year and base year trip shares. The model formulated for trip distribution in 15 

freight and passenger models is presented in Eqs. 2.1 to 2.5. 16 

 17 

Min          ∑ (   )
 

   Eq. 2.1 

Subject to:  
              Eq. 2.2 
              Eq. 2.3 

    
   

      
 

   

      
        Eq. 2.4 

             Eq. 2.5 
 18 

The     terms in the above formulation are the decision variables and represent the trip 19 

table in the forecast year. Eqs.2.2 and 2.3 ensure that the forecast year production and attraction 20 

constraints are satisfied. Clearly in order for the problem to be feasible, total production should 21 

be equal to total attraction (i.e. ∑     ∑    ).  The     variables measure the difference between 22 

the base and forecasted trip shares. The objective function of the SSD-MSD problem attempts to 23 

minimize sum of the squared deviations between the estimated future year and base year trip 24 

shares. 25 

If constraints 2.3 and 2.4 allow, then the objective function (2.1) is minimized when the 26 

    terms are all equal in value. So the same change in share of two cells in the matrix, say 27 

   =0.01, could have different implications depending on the base year shares. For example, if 28 

the base year share is 0.1,    =0.01 means that the forecast year share is 0.11. Similarly, for a 29 

base year share of 0.01, a    =0.01 means that the future year share is 0.02. In the first case, the 30 

share has changed from 0.1 in the base year to 0.11 in the forecast year, a change of only 10 31 

percent. However, in the second case, the share has changed from 0.01 in the base year to 0.02 in 32 

the forecast year, a change of 100 percent. This is an advantage for regional analysis where zones 33 

with small volumes of flow between them are expected to have more fluctuation in volumes of 34 

flow in the future, compared to zones that already have strong and stable flow between them. 35 

One advantage of having a simple mathematical form of an objective function is that the 36 

constraints of the problem are not restricted to production and consumption constraints. Any 37 
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capacity constraint that can be formulated as a linear function of decision variables or any 1 

relationship between flows of different OD pairs can be easily added to the problem, without 2 

having a considerable impact on the time complexity of reaching the optimal solution. Although 3 

such constraints can also be added to more complicated non-linear objective functions like ME, 4 

solving such non-linear problems via standard optimization packages is not as easy. Usually to 5 

solve such non-linear problems, algorithms are developed based on the Lagrangian form of the 6 

problem and specific optimization techniques such as column generation are used to solve the 7 

resulting sub-problems.  8 

In the next section, a simple numerical example is presented to compare SSD-MSD and 9 

ME closely. The other possible and desired formulation for objective function will be discussed 10 

later in the paper.   11 

Example 1: Comparison of SSD-MSD and ME Assume that there exists one origin and two 12 

destination zones in a network, and the initial value of each cell in the trip table is            13 

           in units of hundred trips (half the production of zone 1 goes to zone 2 and the other 14 

half is intra-zonal flow). Also, for simplicity, the only constraints applied are the non-negativity 15 

constraints. The surfaces of the solution space of the SSD-MSD and ME models are displayed in 16 

Figure 1. 17 

  
1(a) ME solution space 1(b) SSD-MSD solution space 

FIGURE1 Comparing the ME and SDS-MSD solution space 

As shown in Figure 1(b), the second derivative of the SSD-MSD function is a constant, 18 

and therefore          is a symmetric function and its curvature doesn’t depend on the value of 19 

the decision variables, while the curvature of     changes with the decision variables. Clearly in 20 

this case both models are minimized at                    , returning the initial trip shares. 21 

Expanding the example further, the effect of adding constraints to both optimization 22 

problems will be analyzed next. The first constraint added to the problems is             . 23 

Figures 2(a) and 2(b) show the contours of the two objective functions,     and          24 

respectively, with the added constraint. Both problems are minimized at                       25 

(which can be normalized to trip shares of          , maintaining the original trip shares. 26 

Now consider the initial scenario, but with different base year trip table elements 27 

                    . In this scenario, the constraint                is added to both 28 

problems. 29 
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In this case, the two problems do not return the same optimal solution. The dotted blue 1 

lines in Figures 2(c) and 2(d) show the initial trip rates, and the dotted red lines show the optimal 2 

solutions after adding the constraint. The optimal solution by the SSD-MSD model occurs at 3 

           , which can be normalized to trip shares of            , very close to the initial trip 4 

share,(0.8,0.2). The ME model, however, changes the initial trip share from           to 5 

           . In fact, the entropy function leans toward a uniform distribution of changes in 6 

number of trips. 7 

 8 

  
2(a) The ME objective function with constraint 

            

2(b) The SSD-MSD objective function with 

constraint             

  
2(c) The ME objective function with constraint 

              

2(d) The SSD-MSD objective function with 

constraint               

FIGURE2 Example 1: contours of ME and SSD-MSD objective functions under different constraints 

Minimax-MSD 9 

In SSD-MSD, the sum of the squared deviations from the initial trip shares is minimized. 10 

This implies that some cells may experience large deviations while other cells experience little or 11 

no deviation. A less discriminating application of the same principle is performed using the 12 

Minimax objective function. The objective function of this problem minimizes the maximum 13 



Masoud, Ranaiefar, McNally, Rodriguez, Ritchie                                                                     10 

   

deviation of the resulting trip shares from the base year trip shares in the form:                1 

Since an absolute value cannot be handled directly by linear optimization software, mathematical 2 

transformations are needed. The transformed form of the problem is presented in Eq. 3.1 to 3.7. 3 

 4 

 5 

Min                  Eq. 3.1 

Subject to  

              Eq. 3.2 

              Eq. 3.3 

    
   

      
 

   

      
        Eq. 3.4 

       
     

         Eq. 3.5 

       
     

         Eq. 3.6 

       
     

           Eq. 3.7 

 6 

Eqs. 3.2 and 3.3 are the production and consumption constraints. Eq. 3.4 defines     as 7 

the difference between the base year and forecast year trip shares. Eq. 3.5 sets    , to be the 8 

difference between two positive variables,    
  and    

 . This transformation is required to turn the 9 

objective function               into the form   (   
     

 ) . Eq. 3.6 is added to further 10 

simplify the objective function. The term     (   
     

 ) in the objective function is replaced 11 

by    , and Eq. 3.6 is added to ensure that     represents the max value of (   
     

 )s over 12 

all the   and   indices. Lastly, Eq. 3.7 enforces the non-negativity constraints.  13 

Example 2: Application of MSD-based models in OD disaggregation Assume that the 14 

aggregate trip table for a study area comprising two zones (Z1 and Z2) is available and that a 15 

disaggregate sub-regional analysis of the network is required. Assume Z1 is to be divided into 16 

three zones (z1, z2, and z3) and Z2 is to be divided into two zones (z4 and z5) as displayed in 17 

Figure 3(a). A trip table of the disaggregate network with five zones is available from previous 18 

sub-regional studies, and there is reason to believe that the trip shares have not changed in the 19 

intervening time period. Therefore, this trip table represents the base year trip table for an MSD-20 

based optimization problem. The aggregate trip table for Z1 and Z2 and the base year 21 

disaggregate trip table for z1, z2, … , z5 are presented in Figures 3(b) and 3(c).  22 

The goal is to readjust the disaggregate trip table such that it complies with the 23 

corresponding aggregate trip table, while disturbing the base year disaggregated trip shares as 24 

little as possible. Towards this end, the SSD-MSD problem is formulated in Eqs. 4.1 to 4.7.  25 
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Z1 Z2 
 

z1 
z4 

 

z2 

z3 z5 
 

3(a) Update the zoning system in the network 

Zone 1 2 Prod. 

1 10 7 17 

2 8 6 14 

Attr. 18 13 31 
 

Zone 1 2 3 4 5 Prod. 

1 1 3 3 3 1 11 

2 1 2 5 2 5 15 

3 4 1 3 3 4 15 

4 3 2 1 5 1 12 

5 4 3 6 3 3 19 

Attr. 13 11 18 16 14 72 
 

3(b)observed aggregated trip table 3(c) Base year disaggregated trip table 

FIGURE 3.Matrix disaggregation example. Color coded aggregate and disaggregate matrices 

 1 

             ∑ ∑    
 

 

   

 

   
 Eq. 4.1 

Subject to:  

∑ ∑    

 

   

 

   
    Eq. 4.2 

∑ ∑    

 

   

 

   
   Eq. 4.3 

∑ ∑    

 

   

 

   
   Eq. 4.4 

∑ ∑    

 

   

 

   
   Eq. 4.5 

   

  
         

   

  
               ,4,5 Eq. 4.6 

                    ,4,5 Eq. 4.7 

 2 

In Eq. 4.7,      , the sum of the observed trips for Figure 3(b), and      , the sum 3 

of the base trips in Figure 3(c).  4 

The solution is presented in Figure 4(a). Figures 4(b) and 4(c) display the trip shares of 5 

the base and current years, respectively.    s, the difference between these two shares, are 6 

presented in Figure 4(d). The Minimax-MSD formulation for this problem includes constraint 7 

Eqs.4.2 through 4.7 along with the additional constraints in Eqs.5.2, 5.3, and 5.4 shown below. 8 

 

                   
Eq. 5.1 

Subject to:  

     
     

                    Eq. 5.2 

       
     

                    Eq. 5.3 

   
     

                  Eq. 5.4 

Eqs. 4.2-4.7  
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The optimal values of     from solving problem 5 are presented in Figure 4(e). Figure 4 1 

shows that the maximum change in the optimal trip shares generated by Minimax-MSD equals 2 

0.0067, while the maximum change in trip share generated by the SSD-MSD is 0.074. This 3 

shows the primary merit of the Minimax-MSD objective function: all cells carry equal weight. 4 

Zone 1 2 3 4 5 Production 

1 0.44 1.30 1.30 1.17 0.31 4.52 

2 0.44 0.87 2.16 0.74 2.03 6.24 

3 1.73 0.44 1.30 1.17 1.60 6.24 

4 1.26 0.83 0.40 2.38 0.62 5.49 

5 1.69 1.26 2.55 1.50 1.50 8.51 

Attraction 5.57 4.71 7.72 6.95 6.05 31.00 
4(a) solution: current year trip table by SSD-MSD 

Zone 1 2 3 4 5 

1 0.014 0.042 0.042 0.042 0.014 

2 0.014 0.028 0.069 0.028 0.069 

3 0.056 0.014 0.042 0.042 0.056 

4 0.042 0.028 0.014 0.069 0.014 

5 0.056 0.042 0.083 0.042 0.042 

4(b) base year trip shares 

Zone 1 2 3 4 5 

1 0.014 0.042 0.042 0.038 0.010 

2 0.014 0.028 0.070 0.024 0.065 

3 0.056 0.014 0.042 0.038 0.052 

4 0.041 0.027 0.013 0.077 0.020 

5 0.055 0.041 0.082 0.048 0.048 

4(c) current year trip shares by SSD-MSD 

Zone 1 2 3 4 5 

1 0.0003 0.0003 0.0003 -0.0040 -0.0040 

2 0.0003 0.0003 0.0003 -0.0040 -0.0040 

3 0.0003 0.0003 0.0003 -0.0040 -0.0040 

4 -0.0010 -0.0010 -0.0010 0.0074 0.0061 

5 -0.0010 -0.0010 -0.0010 0.0067 0.0067 
 

Zone 1 2 3 4 5 

1 0.0031 0.0067 0.0067 -0.0040 0.0000 

2 0.0067 0.0067 -0.0067 -0.0067 -0.0067 

3 -0.0067 -0.0067 -0.0067 -0.0067 0.0000 

4 0.0000 0.0009 0.0000 0.0067 0.0067 

5 -0.0067 -0.0067 0.0067 0.0067 0.0067 
 

4(d) Optimal      bySSD-MSD 4(e) Optimal      by Minimax-MSD 

FIGURE 4 Comparison of solutions to the SSD-MSD and Minimax-MSD problems 

CASE STUDY: CALIFORNIA STATEWIDE FREIGHT FLOW MATRIX 5 
The MSD model was used in the California Statewide Freight Forecasting Model 6 

(CSFFM) as the only viable method that can address all the modeling concerns of its developers. 7 

CSFFM is a commodity based interregional freight transportation model which focuses on rail 8 

and truck movements. It is based on the FAF3 public data source (11). The model covers 215 9 

Freight Analysis Zones (FAZ) including 96 zones in California and 118 zones outside California 10 

in the United States. In less populated areas, FAZs are represented by counties and in the more 11 

developed central and southern parts of California, FAZs are sub-counties (Figure 5). There are 12 

also 15 commodity groups in the model. Details of data preparation and the commodity 13 

generation process are provided in Ranaiefar et al. (17).  14 

  15 
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5(a) 5 California FAF zones 5(b) 96 proprietary FAZs in CSFFM 

FIGURE 5. CSFFM Zoning System 

CSFFM has a hybrid generation/distribution model. The goal of this model is to 1 

disaggregate FAF flows from five FAF regions in California to 97 FAZs for the base year and 2 

then to forecast flows for years 2020 and 2040 from base year estimations and scenario 3 

assumptions. Initially, in the total generation model the total production and attraction of each 4 

zone for all commodities including imports and exports were estimated simultaneously using 5 

Structural Equations Modeling (SEM) (17, 18). Next, a domestic commodity flow matrix was 6 

estimated by a SEMCOD Model (Structural Equations for Multi-Commodity OD Distribution). 7 

SEMCOD is a spatial interaction econometric model, also known in the transportation literature 8 

as a direct demand model, which combines trip generation and distribution steps in conventional 9 

four-step demand models. It estimates an initial flow matrix for the base year for all commodity 10 

groups simultaneously using SEM techniques. SEMCOD uses demographic, economic, land-use, 11 

and composite impedances between zones to estimate an initial 215 by 215 OD matrix for each 12 

commodity group. The difference between marginals of domestic flow matrices and total 13 

productions and attractions estimated by the total generation model is assumed to represent total 14 

exports and imports, respectively.  15 

SEMCOD and total generation models are estimated independently. An additional 16 

procedure is needed to synchronize these models to (1) ensure consistency with the aggregate 17 

FAF domestic flow matrices and total imports and exports for FAF geographic regions; (2) 18 

ensure that marginals of domestic commodity flow matrices are less than total production and 19 

attraction estimated by the total generation model, and (3) ensure modal accessibility and 20 

capacity constraints are not violated in disaggregated flow matrices. A customized SSD-MSD 21 

model is used to achieve these goals. 22 

FAF is a multi-dimensional commodity flow matrix (one matrix for each commodity 23 

group). These matrices are very sparse. On average 67% of cells are zero or the flow volume is 24 
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less than 1 k-ton/year for each commodity group. Cells with very small flows are subject to 1 

greater measurement error and sampling bias. Also intra-zonal flows account for more than 50% 2 

of the total flows for each commodity group. Given these properties of FAF commodity flow 3 

matrices and available information on modal facilities in each FAZ, using a Furness process to 4 

estimate balancing factors is not suitable. The SSD-MSD model presented in Eq. 6 considers all 5 

the constraints while minimizing the deviation from initial domestic commodity distributions 6 

estimated by the SEMCOD model. 7 

Other data sources used in this study included a detailed California rail carload waybill 8 

sample (19), seaport data from the US Army Corps of Engineers waterborne database (20) and 9 

land port data from the North American Transborder Freight Data (21). 10 

 11 
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The parameters and variables for the SSD-MSD model are explained in Table 1. Note 1 

that lower case   and   refer to FAZs whereas upper case   and   refer to FAF regions. In 2 

addition, “domestic” flows refer to flows inside the United States (excluding import and export) 3 

whereas “total” flows include foreign import and export. Variables   are auxiliary decision 4 

variables and are used to make the formulation more readable.  5 

 6 
TABLE 1 list of parameters and decision variables in problem 6 7 

Notation Description 

List of parameters 

  Set of FAF zones 

  Set of FAZ’s 

  Number of FAZ’s (215) 

     Export for FAZ  ,     

     Import for FAZ  ,     

    Domestic FAF flow between FAF zones   and  ;       

     
  Total production for FAF zone     

     
  Total attraction for FAF zone     

      Total production for FAZ i     obtained from the total generation model 

      Total attraction for FAZ j     obtained from the total generation model 

    Initial trip table between FAZs   and  ;       obtained from SEMCOD 

   
  Rail availability binary;       

   
  Rail flow from FAF zone   to FAF zone  ;       

   
  Water mode availability binary;       

   
  Water flow from FAF zone   to FAF zone  ;       

    Priori probability distribution;       

List of decision variables 

   Total production at FAZi,    

   Total attraction at FAZj,j   

    Domestic flow from FAZi to FAZj       

  
   Difference between the optimal trip shares and the initial trip shares 

   

∑      
     

  
  

Difference between the optimal shares of total production and the initial shares of 

total production 
     

∑       
     

  
  

Difference between the optimal shares of total attraction and the initial shares of 

total attraction values 
     

∑       
     

 8 

For the optimization problem (Eq. 6) to be feasible, it is necessary for Eq. 6.15 to hold: 9 
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The objective function (Eq. 6.1) minimizes the sum of deviations from initial trip shares. 1 

There are three main initial shares involved in CSFFM. The first shares come from the domestic 2 

trips estimated by the SEMCOD model (   
  and     are the variables related to this distribution). 3 

The second and third shares come from the total productions and attractions estimated by the 4 

total generation model. The total productions are represented by    and   
  terms and total 5 

attractions are represented by    and   
  terms. The first term in the objective function has a 6 

coefficient of    for scaling purposes. 7 

Eqs. 6.2 and 6.3 enforce equivalence of the domestic marginal values. Eq. 6.4 ensures 8 

that observed flows between FAF zones are equivalent at the disaggregate level. Eqs. 6.5 and 6.6 9 

ensure that the observed FAF total production and attractions are equivalent. Eqs. 6.7, 6.8 and 10 

6.9 generate auxiliary decision variables ( ) that show the deviation of the optimal domestic, 11 

total production, and total attraction trip shares from their corresponding base trip shares. 12 

In the new zoning system, not all the disaggregated zones (FAZs) contain rail yards, 13 

seaports, or both. Binary parameters    
  and    

  determine the availability of rail and water 14 

modes between zones   and            respectively. Eqs. 6.10 and 6.11 convey that the 15 

proportion of the flow between two FAF zones   and   that moves by the rail or water modes 16 

should go through FAZs     and     that have rail or water accessibility between them. Eqs. 17 

6.12-6.14 are the non-negativity constrains. 18 

Figures 6(a) and 6(d) compare the results of the SSD-MSD and SEMCOD models. The 19 

horizontal axes in these figures show the element IDs of the matrices. The element ID for the 20 

element     of a matrix can be obtained from Eq. 7. 21 

 22 

         
       

         
   Eq. 7 

 23 

The vertical axes of these two figures show the cumulative shares generated by each 24 

model. The shares       for an OD matrix are obtained by dividing the elements of the matrix by 25 

the sum of the matrix elements so that values are normalized between zero and one. For an 26 

element     in the normalized matrix, the cumulative share can be obtained by: 27 

 28 

         
       

           
     Eq. 8 

 29 

Evaluation of Results 30 
An element-by-element comparison of the cumulative shares of the cells in the base trip 31 

table given by the SEMCOD model and the final trip table estimated by SSD-MSD model 32 

provides a visual tool to assess the performance of the SSD-MSD model. Ideally, the two trip 33 

tables would be the same, and the two graphs corresponding to the cumulative shares of the base 34 

and final trip tables would coincide. However, this is not the case in practice due to the presence 35 

of constraints. Figures 6(a) and 6(b) show the cumulative shares given by SEMCOD model and 36 

those generated by the SSD-MSD. Since SSD-MSD should consider the modal accessibility 37 

constraints and consistency with FAF observed flows, the two graphs do not exactly coincide. 38 

Therefore there is a gap between them and the spikes in the graphs, which show the share of the 39 

corresponding elements, are not exactly similar. However, the results are more promising for 40 

commodity group five (6(a)) than commodity group one (6(d)).   41 
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6(a) Domestic cumulative shares  6(d) Domestic cumulative shares 

  
6(b) Total production shares  6(e) Total production shares  

  
6(c) Total attraction shares  6(f) Total attraction shares  

FIGURE 6 Effectiveness of SSD-MSD in maintaining trip shares 
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Figures 6(b), 6(c), 6(e), and 6(f) compare the zonal production and attractions given by 1 

the total generation model and those generated by the SSD-MSD. The horizontal axis in these 2 

figures show the zone IDs (215 FAZs), and the vertical axis show the cumulative shares 3 

generated by the SSD-MSD and total generation models. Here, because there is only one 4 

constraint on zonal productions and attractions (matching FAF observations), the cumulative 5 

shares generated by the SSD-MSD and total generation models show a smaller gap, and follow a 6 

more similar pattern in spikes. 7 

Figure 6 implies that SSD-MSD is in general successful in maintaining the initial 8 

domestic and total trip shares given by the SEMCOD and total generation models. As also shown 9 

in Example 1, MSD-Based Models outperform ME-based models in maintaining the original 10 

distribution. The main merit of SSD-MSD model is the possibility to consider all the modal 11 

accessibility constraints in generating the final trip table. In addition, the final disaggregated trip 12 

table is consistent with aggregate FAF flow tables. 13 

CSFFM could not use iterative procedures such as bi-proportional fitting and still address 14 

the modal accessibility constraints and be consistent with FAF observed flows. Also the size of 15 

the problem prohibited solving an ME-based formulation directly with optimization engines. 16 

Therefore, MSD was the only viable solution for the purposes of this study. The contribution of 17 

the SSD-MSD in this study was not only in generating more desirable results, but in generating 18 

results that could at least satisfy the most basic constraints. 19 

CONCLUSION 20 
A new approach for balancing trip matrices with application in trip distribution and 21 

matrix disaggregation has been introduced.  The concept of generating the most similar 22 

distribution (MSD) instead of Maximum Entropy (ME) principle is the basis of these models. 23 

The goal of MSD is to minimize the deviation from the initial trip distribution, considering 24 

existing constraints. Two MSD-based objective functions, SSD-MSD and Minimax-MSD were 25 

introduced. 26 

ME-based formulations are too complex to be directly solved by optimization engines, 27 

and the restrictive framework of the iterative procedures used to solve them doesn’t allow an 28 

exhaustive use of the information in hand. The main advantage of replacing the entropy-based 29 

models with any of these new models where appropriate is that the resulting problems can 30 

accommodate additional constraints and still be easily solved by optimization engines. In 31 

addition, these models could produce more meaningful results than entropy-based models in 32 

regional transportation planning studies as demonstrated in Example 1 of this paper. 33 

Given the improvements in computational speeds, the authors believe that the theoretical 34 

arguments made in this paper and the practical significance of using the alternative models 35 

combined implies that these models could be suitable to be used in practice where appropriate.  36 

A case study of the California Statewide Freight Forecasting Model (CSFFM) was 37 

presented to show the merits of using MSD-based formulations. In this study balancing factors 38 

for 3 initial trip shares pertaining to the domestic flow, total production, and total consumption at 39 

a fine zonal level were estimated, while respecting the observed flows between the more 40 

aggregate FAF zones, and satisfying the modal accessibility constraints. These goals could not 41 

be addressed in conventional bi-proportional matrix fitting techniques such as the Furness 42 

method. In addition, the size of the problem prohibited solving an ME-based formulation directly 43 

with optimization software. Hence, the MSD-based models were determined to be the only 44 

viable options in this study. Some of the attractive features of using the SSD-MSD model for 45 
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CSFFM were demonstrated by generating and comparing graphs of the cumulative base and 1 

optimal shares.  2 
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