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Abstract

This report discusses the reversal e�ect known as Simpson's paradox from a causal-

theoretic viewpoint. It analyzes the reasons why the e�ect has been (and still is)

considered paradoxical and why its resolution has been so late in coming. The re-

port is extracted from a forthcoming book Causality [Pearl, 2000], and assumes some

familiarity with causal diagrams and the do(�) (or set(�)) notation (e.g., [Pearl, 1995]).

0.1 A Tale of a Non-Paradox

Simpson's paradox [Simpson, 1951; Blyth, 1972], �rst encountered by Pearson in 1899

[Aldrich, 1995], refers to the phenomenon whereby an event C increases the probability

of E in a given population p and, at the same time, decreases the probability of E in ev-

ery subpopulation of p. In other words, if F and :F are two complementary properties

describing two subpopulations, we might well encounter the inequalities

P (EjC) > P (Ej:C); (1)

P (EjC; F ) < P (Ej:C; F ); (2)

P (EjC;:F ) < P (Ej:C;:F ): (3)

Although such order reversal might not surprise students of probability, it is paradoxical

when given causal interpretation. For example, if we associate C (connoting cause) with

taking a certain drug, E (connoting e�ect) with recovery, and F with being a female then|

under the causal interpretation of (2){(3)|the drug seems to be harmful to both males and

females yet bene�cial to the population as a whole (equation (1)). Intuition deems such a

result impossible, and correctly so.

The tables in Fig. 1 represent Simpson's reversal numerically. We see that, overall, the

recovery rate for patients receiving the drug (C) at 50% exceeds that of the control (:C) at

40% and so the drug treatment is apparently to be preferred. However, when we inspect the

separate tables for males and females, the recovery rate for the untreated patients is 10%

higher than that for the treated ones, for males and females both.
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The explanation for Simpson's paradox should be clear to readers of this book, since we

have taken great care in distinguishing seeing from doing. The conditioning operator in prob-

ability calculus stands for the evidential conditional \given that we see," whereas the do(�)

operator was devised to represent the causal conditional \given that we do." Accordingly,

the inequality

P (EjC) > P (Ej:C)

is not a statement about C being a positive causal factor for E, properly written

P (Ejdo(C)) > P (Ejdo(:C));

but rather about C being positive evidence for E, which may be due to spurious confounding

factors that cause both C and E. In our example, for instance, the drug appears bene�cial

Combined E :E Recovery Rate

(a) drug (C) 20 20 40 50%

no-drug (:C) 16 24 40 40%

36 44 80

Males E :E Recovery Rate

(b) drug (C) 18 12 30 60%

no-drug (:C) 7 3 10 70%

25 15 40

Females E :E Recovery Rate

(c) drug (C) 2 8 10 20%

no-drug (:C) 9 21 30 30%

11 29 40

Figure 1: Recovery rates under treatment (C) and control (:C) for males, females, and

combined.

overall because the males, who recover (regardless of the drug) more often than the females,

are also more likely than the females to use the drug. Indeed, �nding a drug-using patient

(C) of unknown gender, we would do well inferring that the patient is more likely to be a

male and hence more likely to recover, in perfect harmony with (1){(3).

The standard method for dealing with potential confounders of this kind is to \hold them

�xed,"1 namely, to condition the probabilities on any factor that might cause both C and E.

In our example, if being a male (:F ) is perceived to be a cause for both recovery (E) and drug

usage (C), then the e�ect of the drug needs to be evaluated separately for men and women

(as in (2){(3)) and then averaged accordingly. Thus, assuming F is the only confounding

factor, (2){(3) properly represent the e�cacy of the drug in the respective populations while

(1) represents merely its evidential weight in the absence of gender information, and the

paradox dissolves.

1The phrases \hold F �xed" and \control for F ," used by both philosophers (e.g. [Eells, 1991]) and statis-

ticians (e.g. [Pratt and Schlaifer, 1988]), connote external interventions and may therefore be misleading. In

statistical analysis, all one can do is simulate \holding F �xed" by considering cases with equal values of

F|that is, \conditioning" on F and :F|an operation that I will call \adjusting for F ."
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0.2 A Tale of Statistical Agony

Thus far, we have described the paradox as it is understood, or should be understood, by

modern students of causality, (see e.g., [Cartwright, 19832; Holland and Rubin, 1983; Green-

land and Robins, 1986; Pearl, 1993; Spirtes et al. 1993; Meek and Glymour, 1994]). Most

statisticians, however, are reluctant to entertain the idea that Simpson's paradox emerges

from causal considerations. The general attitude is as follows: The reversal is real and dis-

turbing, because it actually shows up in the numbers and may actually mislead statisticians

into incorrect conclusions. If something is real then it cannot be causal, because causality

is a mental construct that is not well-de�ned. Thus, the paradox must be a statistical phe-

nomenon that can be detected, understood, and avoided using the tools of statistical analysis.

The Encyclopedia of Statistical Sciences, for example, warns us sternly of the dangers lurking

from Simpson's paradox with no mention of the words \cause" or \causality" [Agresti, 1983].

The Encyclopedia of Biostatistics [Dong, 1998] and The Cambridge Dictionary of Statistics

in Medical Sciences [Everitt, 1995] uphold the same conception.

I know of only two articles in the statistical literature that explicitly attribute the pe-

culiarity of Simpson's reversal to causal interpretations. The �rst is Pearson et al. (1899),

where the discovery of the phenomenon3 is enunciated in these terms:

To those who persist on looking upon all correlation as cause and e�ect, the fact

that correlation can be produced between two quite uncorrelated characters A

and B by taking an arti�cial mixture of the two closely allied races, must come

as rather a shock.

Inuenced by Pearson's life-long campaign, statisticians have refrained from causal talk

whenever possible and, for over half a century, the reversal phenomenon has been treated

as a curious mathematical property of 2 � 2 tables, stripped of its causal origin. Finally,

Lindley and Novick (1981) analyzed the problem from a new angle, and made the second

published connection to causality:

In the last paragraph the concept of a \cause" has been introduced. One possibil-

ity would be to use the language of causation, rather than that of exchangeability

or identi�cation of populations. We have not chosen to do this; nor to discuss

causation, because the concept, although widely used, does not seem to be well-

de�ned. (p. 51)

What is amazing about the history of Simpson's reversal is that, from Pearson et al. to

Lindley and Novick, none of the many authors who wrote on the subject dared ask why

the phenomenon should warrant our attention and why it evokes surprise. After all, seeing

probabilities change magnitude upon conditionalization is commonplace, and seeing such

changes turn into sign reversal (by taking di�erences and mixtures of those probabilities) is

not uncommon either. Thus, if it were not for some misguided yet persistent illusion, what

is so shocking about inequalities reversing direction?

2Cartwright (1983, p. 37) states, though, that the third factor F should be \held �xed" if and only if F

is causally relevant to E; the correct (back-door) criterion is somewhat more involved [Pearl, 1995].
3Pearson et al. (1899) and Yule (1903) reported a weaker version of the paradox in which (2){(3) are

satis�ed with equality. The reversal was discovered later by Cohen and Nagel (1934, p. 449).
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Pearson understood that the shock originates with distorted causal interpretations, which

he set out to correct through the prisms of statistical correlations and contingency tables

(see [Pearl, 1996]). His disciples took him rather seriously, and some even asserted that

causation is none but a species of correlation [Niles, 1922]. In so denying any attention to

causal intuition, researchers often had no choice but to attribute Simpson's reversal to some

evil feature of the data, one that ought to be avoided by scrupulous researchers. Dozens of

papers were written since the 1950s on the statistical aspects of Simpson's reversal; some

dealt with the magnitude of the e�ect [Blyth, 1972; Zidek, 1984], some established conditions

for its disappearance [Bishop et al., 1975; Whittemore, 1978; Good and Mittal, 1987; Wer-

muth, 1987], and some even proposed remedies as drastic as replacing P (EjC) with P (CjE)

as a measure of treatment e�cacy [Barigelli and Scozzafava, 1984]|the reversal had to be

avoided at all cost.

A typical treatment of the topic can be found in the inuential book of Bishop, Fienberg,

and Holland (1975). Bishop et al. (1975, pp. 41{2) presented an example whereby an ap-

parent association between amount of prenatal care and infant survival disappears when the

data are considered separately for each clinic participating in the study. They concluded: \If

we were to look only at this [the combined] table we would erroneously conclude that sur-

vival was related [my italics] to the amount of care received." Ironically, survival was in fact

related to the amount of care received in the study considered. What Bishop et al. meant

to say is that, looking uncritically at the combined table, we would erroneously conclude

that survival was causally related to the amount of care received. However, since causal

vocabulary had to be avoided in the 1970s, researchers like Bishop et al. were forced to use

statistical surrogates such as \related" or \associated" and so naturally fell victim to the

limitations of the language; statistical surrogates could not express the causal relationships

that researchers meant to convey.

Simpson's paradox helps us to appreciate both the agony and the achievement of this

tormented generation of statisticians. Driven by healthy causal intuition, yet culturally

forbidden from admitting it and mathematically disabled from expressing it, they managed

nevertheless to extract meaning from dry tables and to make statistical methods the standard

in the empirical sciences. But the spice of Simpson's paradox turned out to be nonstatistical

after all.

0.3 Causality versus Exchangeability

Lindley and Novick (1981) were the �rst to demonstrate the nonstatistical character of

Simpson's paradox|that there is no statistical criterion that would warn the investigator

against drawing the wrong conclusions or would indicate which table represents the correct

answer.

In the tradition of Bayesian decision theory, they �rst shifted attention to the practical

side of the phenomenon and boldly asked: A new patient comes in; do we use the drug or

do we not? Equivalently: Which table do we consult, the combined or the gender-speci�c?

\The apparent answer is," confesses Novick (1983, p. 45), \that when we know that the

gender of the patient is male or when we know that it is female we do not use the treatment,

but if the gender is unknown we should use the treatment! Obviously that conclusion is

ridiculous." Lindley and Novick then go through lengthy informal discussion, concluding (as
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we did in Section 0.1) that we should consult the gender-speci�c tables and not use the drug.

The next step was to ask whether some additional statistical information could in general

point us to the right table. This question Lindley and Novick answered in the negative by

showing that, with the very same data, we sometimes should decide the opposite and consult

the combined table. They asked: Suppose we keep the same numbers and merely change

the story behind the tables, imagining that F stands for some property that is a�ected by

C|say, patients' blood pressure, as shown in Fig. 2(b).4 By inspecting the diagram in Fig.

2(b), the reader should immediately conclude that the combined table represents the answer

Blood
pressure

F

Treatment
C F

Gender

Treatment

C

Treatment

C

(c)(b)(a)

Recovery E Recovery E Recovery E

F

Figure 2: Three causal models capable of generating the data in Fig. 1. Model (a) dictates

the use of the gender-speci�c tables, whereas (b) and (c) dictate use of the combined table.

we want; we should not condition on F because it resides on the very causal pathway that we

wish to evaluate. (Equivalently, by comparing patients with the same posttreatment blood

pressure, we mask the e�ect of one of the two pathways through which the drug operates to

bring about recovery.)

When two causal models generate the same statistical data (Figures 2(a) and (b) are

observationally equivalent) and in one we decide to use the drug yet in the other not to use

it, it is obvious that our decision is driven by causal and not by statistical considerations.

Some readers might suspect that temporal information is involved in the decision, noting

that gender is established before the treatment and blood pressure afterwards. But this is

not the case; Fig. 2(c) shows that F may occur before or after C and still the correct decision

should remain to consult the combined table (i.e., not to condition on F , as can be seen from

the back-door criterion).

We have just demonstrated by example what we already knew in Section 0.1|namely,

that every question related to the e�ect of actions must be decided by causal considerations;

statistical information alone is insu�cient. Moreover, the question of choosing the correct

table on which to base our decision is a special case of the covariate selection problem

that was given a general solution in Section 3.3 using causal calculus (see [Pearl, 1995]).

Lindley and Novick, on the other hand, stopped short of this realization and attributed the

di�erence between the two examples to a meta-statistical concept5 named of exchangeability,

�rst proposed by De Finetti (1974).

4The example used in Lindley and Novick (1981) was taken from agriculture, and the causal relationship

between C and F was not mentioned, but the structure was the same as in Fig. 2(b).
5By meta-statistical I mean a criterion|not itself discernible from statistical data|for judging the ade-

quacy of a certain statistical method.
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Exchangeability concerns the question of choosing an appropriate reference class, or sub-

population, for making predictions about an individual unit. Insurance companies, for exam-

ple, would like to estimate the life expectancy of a new customer using mortality records of a

class of persons most closely resembling the characteristics of the new customer. De Finetti

gave this question a formal twist by translating judgment about resemblance into judgment

of probabilities. According to this criterion, an (n+1)th unit is exchangeable in property X,

relative to a group of n other units, if the joint probability distribution P (X1; : : : ; Xn; Xn+1)

is invariant under permutation. To De Finetti, the question of how such invariance can be

established was a psychological question of secondary importance; the main point was to cast

the target of this psychological exercise in the form of mathematical expression so that it

could be communicated and discussed in scienti�c terms. It is this concept that Lindley and

Novick tried to introduce into Simpson's reversal phenomenon and with which they hoped

to show that the appropriate subpopulations in the F = female example are the male and

female whereas, in the F = blood pressure example, the whole population of patients should

be considered.

Readers of Lindley and Novick's article would quickly realize that, although these authors

decorate their discussion with talks of exchangeability and subpopulations, what they actu-

ally do is present informal cause-e�ect arguments for their intuitive conclusions. Meek and

Glymour (1994) keenly observed that the only comprehensible part of Lindley and Novick's

discussion of exchangeability is the one based on causal considerations, which suggests that

\an explicit account of the interaction of causal beliefs and probabilities is necessary to under-

stand when exchangeability should and should not be assumed" [Meek and Glymour, 1994,

p. 1013].

This is indeed the case; exchangeability in experimental studies depends on causal un-

derstanding of the mechanisms that generate the data. The determination of whether the

response of a new unit should be judged by previous response of a group of units is pred-

icated upon the question of whether the experimental conditions to which we contemplate

subjecting the new unit are equal to those prevailing while the group was observed. The

reason we cannot use the combined table (Figure 1(a)) for determining the response of a new

patient (with unknown gender) is that the experimental conditions have changed; whereas

the group was studied with patients selecting treatment by choice, the new patient will be

given treatment by decree, perhaps against his or her natural inclination. A mechanism will

therefore be altered in the new experiment, and no judgment of exchangeability is feasible

without �rst making causal assumptions regarding whether the probabilities involved would

or would not remain invariant to such alteration. The reason we could use the combined

table in the blood pressure example of Fig. 2(b) is that the altered treatment selection mech-

anism in that setup is assumed to have no e�ect on the conditional probability P (EjC); that

is, C is assumed to be exogenous. (This can clearly be seen in the absence of any back-door

path entering C.)

Note that the same consideration holds if the next patient is a member of the group

under study (assuming hypothetically that treatment and e�ect can be replicated and that

the next patient is of unknown gender and identity); a randomly selected sample from a

population is not \exchangeable" with that population if we subject the sample to new

experimental conditions. Alteration of causal mechanisms must be considered in order to

determine whether exchangability holds under the new circumstances. And once causal
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mechanisms are considered, separate judgment of exchangeability is not needed.

But why did Lindley and Novick choose to speak so round-about (via exchangeability)

when they could have articulated their ideas directly, by talking openly about causal re-

lations? They partially answered this question: \[causality], although widely used, does

not seem to be well-de�ned." One may naturally wonder how exchangeability can be more

\well-de�ned" than the very considerations by which it is judged! The answer can only be

understood when we consider the mathematical tools available to statisticians in 1981. When

Lindley and Novick write that causality is not well-de�ned, what they really meant is that

causality cannot be written down in any mathematical form to which they were accustomed.

The potentials of path diagrams, structural equations, and Neyman-Rubins's notation as

mathematical languages were generally unrecognized in 1981, for reasons described in Sec-

tions 5.1 and 7.4.3 of this book (see also [Pearl, 1998]). Indeed, had Lindley and Novick

wished to convey their ideas in causal terms, they would have been unable to express math-

ematically even the simple yet crucial fact that gender is not a�ected by the drug and a

fortiori to derive less obvious truths from that fact.6 The only formal language with which

they were familiar was probability calculus and, as we have seen on several occasions in

this book, this calculus cannot adequately handle causal relationships without the proper

extensions..

Fortunately, the mathematical tools that have been developed in the past ten years permit

a more systematic and friendly resolution of Simpson's paradox.

0.4 A Paradox Resolved (Or: What Kind of Machine is Man?)

Paradoxes, like optical illusions, are often used by psychologists to reveal the inner workings

of the mind, for paradoxes stem from (and amplify) dormant clashes among implicit sets of

assumptions. In the case of Simpson's paradox, we have a clash (i) between the assumption

that causal relationships are governed by the laws of probability calculus and (ii) the set of

implicit assumptions that drive our causal intuitions. The �rst assumption tells us that the

three inequalities in (1){(3) are consistent, and it even presents us with a probability model

to substantiate the claim (Figure 1). The second tells us that no miracle drug can ever exist

that is harmful to both males and females and is simultaneously bene�cial to the population

at large.

To resolve the paradox we must either (a) show that our causal intuition is misleading

or incoherent or (b) deny the premise that causal relationships are governed by the laws

of standard probability calculus. As the reader surely suspects by now, we will choose the

second option; our stance here, as well as in the rest of the book, is that causality is governed

by its own logic and that this logic requires a major extension of probability calculus. This

still behooves us to explicate the logic that governs our causal intuition and to show, formally,

that this logic precludes the existence of such a miracle drug.

6Lindley and Novick (1981, p. 50) did try to express this fact in probabilistic notation. But not having

the do(�) operator at their disposal, they improperly wrote P (F jC) instead of P (F jdo(C)) and argued

unconvincingly that we should equate P (F jC) = P (F ): \Instead you might judge that the decision to use

the treatment or the control is not a�ected by the unknown sex, so that F and C are independent." Oddly,

this decision is also not a�ected by the unknown blood pressure and yet, if we write P (F jC) = P (F ) in the

example of Fig. 2(b), we obtain the wrong result.
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The logic of the do(�) operator is perfectly suitable for this purpose. Let us �rst translate

the statement that our miracle drug C has harmful e�ect on both males and females into

formal statements in causal calculus:

P (Ejdo(C); F ) < P (Ejdo(:C); F ); (4)

P (Ejdo(C);:F ) < P (Ejdo(:C);:F ): (5)

We need to demonstrate that C must be harmful to the population at large; that is, the

inequality

P (Ejdo(C)) > P (Ejdo(:C)) (6)

must be shown to be inconsistent with what we know about drugs and gender.

Theorem 1 (The Sure-Thing Principle)7

An action C that increases the probability of an event E in each subpopulation must also

increase the probability of E in the population as a whole, provided that the action does not

change the distribution of the subpopulations.

Proof

We will prove Theorem 1 in the context of our example, where the population is partitioned

into males and females; generalization to multiple partitions is straightforward. In this

context, we need to prove that the reversal in the inequalities of (4){(6) is inconsistent with

the assumption that drugs have no e�ect on gender:

P (F jdo(C)) = P (F jdo(:C)) = P (F ): (7)

Expanding P (Ejdo(C)) and using (7) yields

P (Ejdo(C)) = P (Ejdo(C); F )P (F jdo(C))

+P (Ejdo(C);:F )P (:F jdo(C))

= P (Ejdo(C); F )P (F ) + P (Ejdo(C);:F )P (:F ): (8)

Similarly for do(:C) we obtain

P (Ejdo(:C)) = P (Ejdo(:C); F )P (F )

+P (Ejdo(:C))P (:F ) (9)

Since every term on the right-hand side of (8) is smaller than the corresponding term in (9),

we conclude that

P (Ejdo(C)) < P (Ejdo(:C));

7Savage (1954, p. 21) proposed the sure-thing principle as a basic postulate of preferences (on actions),

tacitly assuming the no-change provision in the theorem. Blyth (1972) used this omission to devise an ap-

parent counterexample. Theorem 6.1 shows that the sure-thing principle need not be stated as a separate

postulate|it follows logically from the semantics of actions as modi�ers of structural equations (or mecha-

nisms). (See Gibbard and Harper (1976) for counterfactual analysis.) Note that the no-change provision is

probabilistic; it permits the action to have an e�ect on individual units as long as the relative sizes of the

subpopulations remains unaltered.
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proving Theorem 1. 2

We thus see where our causal intuition comes from: an obvious but crucial assumption in

our intuitive logic has been that drugs do not inuence gender. This explains why our

intuition changes so drastically when F is interpreted as an intermediate event a�ected by

the drug, as in Fig. 2(b). In this case, our intuitive logic tells us that it is perfectly consistent

to �nd a drug satisfying the three inequalities of (4){(6) and, moreover, that it would be

inappropriate to adjust for F . If F is a�ected by the C, then (8) cannot be derived and

the di�erence P (Ejdo(C)) � P (Ejdo(:C)) may be positive or negative, depending on the

relative magnitudes of P (F jdo(C)) and P (F jdo(:C)). Provided C and E have no common

cause, we should then assess the e�cacy of C directly from the combined table (equation

(1)) and not from the F -speci�c tables (equations (2){(3)).

Note that nowhere in our analysis have we assumed either that the data originate from

a randomized study (i.e., P (Ejdo(C)) = P (EjC)) or from a balanced study (i.e., P (CjF ) =

P (Cj:F )). On the contrary, given the tables of Fig. 1, our causal logic accepts gracefully that

we are dealing with unbalanced study but nevertheless refuses to accept the consistency of

Eqs. (4){(6). People, likewise, can see clearly from the tables that the males were more likely

to take the drug than the females; still, when presented with the reversal phenomenon, people

are \shocked" to discover that di�erences of recovery rates can be reversed by combining

tables.

The conclusions we may draw from these observations are that humans are generally

oblivious to rates and proportions (which are transitory) and that they constantly search for

causal relations (which are invariant). Once people interpret proportions as causal relations,

they continue to process those relations by causal calculus and not by the calculus of pro-

portions. Were our minds governed by the calculus of proportions, Fig. 1 would have evoked

no surprise at all and Simpson's paradox would never have generated the attention that it

did.
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