
UC Riverside
UC Riverside Previously Published Works

Title
Transcriptome Profiling of a Salt Excluder Hybrid Grapevine Rootstock Ruggeri 
throughout Salinity.

Permalink
https://escholarship.org/uc/item/8gk3n2w0

Journal
Plants, 13(6)

ISSN
2223-7747

Authors
Gajjar, Pranavkumar
Ismail, Ahmed
Islam, Tabibul
et al.

Publication Date
2024-03-14

DOI
10.3390/plants13060837
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gk3n2w0
https://escholarship.org/uc/item/8gk3n2w0#author
https://escholarship.org
http://www.cdlib.org/


Citation: Gajjar, P.; Ismail, A.; Islam,

T.; Moniruzzaman, M.; Darwish, A.G.;

Dawood, A.S.; Mohamed, A.G.;

Haikal, A.M.; El-Saady, A.M.;

El-Kereamy, A.; et al. Transcriptome

Profiling of a Salt Excluder Hybrid

Grapevine Rootstock ‘Ruggeri’

throughout Salinity. Plants 2024, 13,

837. https://doi.org/10.3390/

plants13060837

Academic Editors: Geovani Soares

de Lima, Lauriane Almeida dos Anjos

Soares and Francisco Vanies Da

Silva Sá

Received: 3 February 2024

Revised: 5 March 2024

Accepted: 12 March 2024

Published: 14 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Transcriptome Profiling of a Salt Excluder Hybrid Grapevine
Rootstock ‘Ruggeri’ throughout Salinity
Pranavkumar Gajjar 1 , Ahmed Ismail 1,2,3 , Tabibul Islam 4 , Md Moniruzzaman 1 , Ahmed G. Darwish 1,5 ,
Ahmed S. Dawood 6 , Ahmed G. Mohamed 1, Amr M. Haikal 3, Abdelkareem M. El-Saady 7, Ashraf El-Kereamy 2 ,
Sherif M. Sherif 8, Michael D. Abazinge 9, Devaiah Kambiranda 10 and Islam El-Sharkawy 1,*

1 Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M
University, Tallahassee, FL 32308, USA; pranavkumar1.gajjar@famu.edu (P.G.); ahmed.ismail@ucr.edu (A.I.);
md.moniruzzaman@famu.edu (M.M.); ahmed.darwish@famu.edu (A.G.D.);
ahmed.mohamed2@famu.edu (A.G.M.)

2 Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
ashrafe@ucr.edu

3 Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt;
amr.haikal@agr.dmu.edu.eg

4 Plant Sciences Department, University of Tennessee, Knoxville, TN 37996, USA; islamt@utk.edu
5 Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
6 Horticulture Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt;

ahmed8dawood@azhar.edu.eg
7 Fertilization Technology Department, National Research Center (NRC), Cairo 12622, Egypt;

elsaadyam@nrc.sci.eg
8 Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences,

Virginia Tech, Winchester, VA 22602, USA; ssherif@vt.edu
9 School of the Environment, Florida A&M University, Tallahassee, FL 32307, USA; michael.abazinge@famu.edu
10 Department of Plant and Soil Sciences, Southern University Agricultural Research and Extension Center,

Baton Rouge, LA 70813, USA; devaiah_kambiranda@subr.edu
* Correspondence: islam.elsharkawy@famu.edu; Tel.: +1-850-599-8685

Abstract: Salinity is one of the substantial threats to plant productivity and could be escorted by other
stresses such as heat and drought. It impairs critical biological processes, such as photosynthesis,
energy, and water/nutrient acquisition, ultimately leading to cell death when stress intensity becomes
uncured. Therefore, plants deploy several proper processes to overcome such hostile circumstances.
Grapevine is one of the most important crops worldwide that is relatively salt-tolerant and prefer-
entially cultivated in hot and semi-arid areas. One of the most applicable strategies for sustainable
viticulture is using salt-tolerant rootstock such as Ruggeri (RUG). The rootstock showed efficient
capacity of photosynthesis, ROS detoxification, and carbohydrate accumulation under salinity. The
current study utilized the transcriptome profiling approach to identify the molecular events of RUG
throughout a regime of salt stress followed by a recovery procedure. The data showed progres-
sive changes in the transcriptome profiling throughout salinity, underpinning the involvement of
a large number of genes in transcriptional reprogramming during stress. Our results established a
considerable enrichment of the biological process GO-terms related to salinity adaptation, such as
signaling, hormones, photosynthesis, carbohydrates, and ROS homeostasis. Among the battery of
molecular/cellular responses launched upon salinity, ROS homeostasis plays the central role of salt
adaptation.

Keywords: grapevine rootstock; Ruggeri; photosynthesis; carbohydrates; ROS detoxification; salinity;
transcriptome profiling

1. Introduction

Salt stress negatively contributes to agriculture worldwide and, hence, represents
one of the major threats to plant productivity. Salt accumulation in soil solution results
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in ionic anxiety (sodium–Na+ and chloride–Cl−), osmotic stress (physiological drought),
and the interaction between both pressure types [1–3]. Further, salinity could be escorted
by other stresses such as heat and/or drought. In addition, similar to other biotic/abiotic
stresses, salinity leads to oxidative stress as the generation of excessive reactive oxygen
species (ROS) [4,5]. Approximately 65–87% of the global crop production is annually lost
due to plant stresses through which salinity only affects more than 833 million hectares
worldwide, most notably in (semi)-arid regions [6,7]. It hinders plant growth and de-
velopment by impairing critical biological processes such as photosynthesis, energy, and
water/nutrient acquisition that ultimately culminate in cell death when stress intensity
becomes uncured [8,9].

To survive under salinity, plants have to respond effectively by recruiting a set of
proper actions [3,8]. The rapid access of NaCl into the root system triggers a battery of
signal cascades that act in harmony with cellular secondary messengers such as Ca2+, H+,
ROS, and plant hormones. Moreover, the rise of NaCl at the cellular level can act to a certain
extent as a cheap osmolyte to counteract NaCl-imposed osmotic stress, hence turning a foe
into a friend [2,10,11]. However, such a rapid influx of NaCl must be restricted to prevent
its cellular accumulation, along with the fast decline in leaf stomatal conductance to restrict
water loss [12]. Furthermore, NaCl must be effluxed out of the cell, compartmentalized into
the vacuole, and damped inside old leaves [8]. Likewise, plants have evolved other efficient
machinery to maintain redox homeostasis and osmotic balance. For instance, ROS detoxi-
fication is achieved by engaging antioxidant enzymes (e.g., superoxide dismutase-SOD,
catalase-CAT, glutathione reductase-GR, glutathione peroxidase, and ascorbate peroxidase-
APX) and non-enzymatic antioxidants, including stilbenes, flavonoids, carotenoids, and
sugar alcohols [13,14]. Similarly, osmotic adjustment can be executed by accumulating os-
molytes (osmoprotectants) such as proline, proline betaine, glycine betaine, alanine betaine,
pipecolate betaine, hydroxyproline betaine, trehalose, and polyols [15].

Grapevine (Vitis vinifera) is one of the most important crops worldwide. The United
States was the world’s third-largest grape cultivator in 2023, with roughly 6.9 million
tons (www.worldpopulationreview.com; accessed on 5 March 2024). Grapes are relatively
salt-tolerant, known for their higher sensitivity to Cl− toxicity than Na+ [16]. The hot and
semi-arid areas are the grapes’ preferentially cultivated regions, where soil salinization is
predicted to be exaggerated due to global climate change [17]. Unfortunately, some 25–73%
of current Mediterranean grapevine-growing regions are at risk of becoming uncultivable
due to soil desertification, a climate-change-related process in which different types of
water-related stresses (e.g., salinity and drought) can coexist [18]. Hence, their production
is challenged by several types of plant stresses, most notably water-related stresses [19].
Several practical measures are taken to alleviate the negative impacts of stresses such as salt-
and drought-related damages. For instance, economically important salt-sensitive cultivars
are grafted on rootstocks derived from salt-tolerant sand grape (V. rupestris) and winter
grape (V. berlandieri) [16,20]. In our previous study, we evaluated the physiological impacts
of salinity on two grape hybrid rootstocks, 140 Ruggeri (V. berlandieri × V. rupestris) and
Millardet et de Grasset 420A (V. berlandieri × V. riparia) [21]. They were considered highly
competent salt excluder rootstocks that reduce salt accumulation in the leaves and berries of
their grafted scions [22,23]. We showed that RUG maintains higher photosynthetic capacity
under salinity and, accordingly, accumulates more sugars [21]. In the current study, we
extend our efforts to understand the molecular events that occurred throughout a regime of
salt stress followed by re-watering. Therefore, transcriptomic data was generated to address
in time-resolved detail the response of grapevine rootstock RUG to salinity and recovery
treatments. The pairwise comparisons between transcriptome profiles of salt-stressed
on non-stressed RUG showed substantial changes in transcriptomic profiles, particularly
after 24 h and 48 h. The employment of the WGCNA system biology approach linked
the transcriptome data with the previously published results [21] (i.e., carotenoids, Fru,
TSS, GPX, SOD, and Pro) demonstrated a considerable enrichment of Biological process
GO terms (BP GOs) related to salinity adaptation in the positively correlated modules
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M1 and M11. For instance, the BP GOs of hormones (e.g., “hormone-mediated signaling
pathway” and “ethylene-activated signaling pathway”), polysaccharide (e.g., “cell wall
polysaccharide metabolic process”), photosynthesis (e.g., “chlorophyll metabolic process”,
“chlorophyll biosynthetic process”, “carotenoid metabolic process”, “pigment metabolic
process”, and “pigment biosynthetic process”), and ROS detoxification (e.g., “superoxide
metabolic process”, “response to superoxide”, “removal of superoxide radicals”, “cellular
response to superoxide”, “cellular response to oxygen radical”, and “response to reactive
oxygen species”) were highly represented in both modules. The considerable enrichment
of BP GO terms for signaling, hormones, photosynthesis, carbohydrates, ROS homeostasis,
and other stress-related terms in M1 and M11 modules and their associated K-means
clusters pointed to a battery of molecular/cellular responses established during salt stress.
However, the ROS homeostasis activity stemmed from a wide range of gene-encoding
proteins of different pathways, highlighting the central roles of ROS detoxification and
homeostasis mechanisms in salt adaptation. This work would help in promoting the
generation of new salt-adapted rootstocks to better cope with global climate changes.

2. Results
2.1. Global Changes in RUG Transcriptome during Salt Stress

In the current study, we investigated the changes in the transcriptome profile of
RUG rootstock throughout salinity and recovery procedures to acquire an overview of the
associated molecular events underlying its physiological responses. All collected samples
were used for the RNA-seq experiment, excluding 8 h salt stress and 8 days recovery. Unless
otherwise specified, the sampling order R1–R8 will refer to the sampling time; control, 0 h,
0.5 h, 2 h, 24 h, 48 h, 4 d, and 12 d, respectively.

The sequenced, pair-ended 24 libraries (3 biological replicates × 8-time points) re-
sulted in 620.1 Gb of high-quality clean data ranging from 21.1 Gb to 35.3 Gb per repli-
cate. The clean reads were aligned to the V. vinifera reference genome sequence and
projected to its transcriptome using STAR, which resulted in an 84.2% to 90.8% mapping
rate (Table S1) [24,25]. Subsequently, the output transcriptomic coordinates files were
quantified by Salmon in alignment mode [26]. Samples hierarchical clustering showed pro-
gressive changes in their transcript abundance during salt stress (Figure S1). Likewise, the
principal component analysis (PCA) exhibited high consistency among transcript profiles
that were separated along two main components. The first component (PC1) was account-
able for 66% of the variance and was associated with the course of salinity (Figure 1A).
The second component (PC2) was responsible for 20% of the variance and was essentially
linked to the effect of recovery and sampling time. Interestingly, when the two recovery
samples (R7 and R8) were excluded, the PC1 increased by 14% and, therefore, represented
80% of the variance (Figure 1B). Contrary, the PC2 diminished by half, signifying 10% of
the variance. The data confirmed that salinity causes the primary source of variance with
more than 65%, while the recovery treatment counteracts its impact by ~10–14%. However,
other factors, such as sampling time and/or the circadian clock, impact the variance by
10% only.

Seven pairwise transcriptome comparisons between each consecutive time point of
salinity and recovery (R2–R1, R3–R2, R4–R3, R5–R4, R6–R5, R7–R6, or R8–R7) resulted in
13,214 and 6736 redundant and non-redundant differentially expressed genes (DEGs) with
PFDR < 0.05 and log2fold change > ±1.5, respectively (Table S2). The total non-redundant
DEGs (6736) were approximately equal to the number of redundant up- (6505) and down-
regulated (6709) transcripts. Interestingly, ~52% of the non-redundant DEGs (3492 out of
6736) showed up- or down-regulation at one of the studying points (Figure 1C). In addition,
the total and exclusive number of DEGs, and the up- and down-regulated transcripts in
each comparison differed significantly throughout stress (Figures 1C,D, S2 and S3). For
instance, the R5–R4 comparison showed the highest number of up- (2627) and down-
regulated (2019) transcripts, which roughly represented one-third of the total number of
redundant DEGs (Figure 1D). Similarly, the highest number of unique DEGs (1385), and
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the up- (1574) and down-regulated (1661) genes, respectively, was also detected in the
R5-R4 comparison (Figures 1C, S2 and S3). Contrary, the R7–R6 comparison displayed
the lowest total number of redundant DEGs (353), while R4–R3 exhibited the smallest
number of non-redundant DEGs (35) (Figure 1C,D). The data showed that there were a
large number of genes involved in transcriptional reprogramming during salinity, most
notably at 24 h–48 h of stress, confirming the previous physiological results where RUG
accumulated higher amounts of the photosynthetic pigments (total chlorophyll–Chl-T and
chlorophyll a–Chl-a) and the soluble sugar (e.g., total soluble sugar (TSS), glucose (Glu),
fructose (Fru), and sucrose (Suc)), but ROS-related compounds at 48 h only (mainly proline
and SOD) [21].

2.2. Cluster-Based Analysis Showed Dynamic Transcript Abundance during Salinity

To investigate the temporal pattern of significantly expressed genes throughout stress
and recovery, the unsupervised clustering approach “K-means clustering” was used to par-
tition transcripts into specific accumulation profiles. The analysis classified the 12,760 non-
redundant expressed genes into 15 clusters, which could be manually fitted into six groups
(Figures 2A and S4 and Table S3). In all cases; however, the kinetic patterns of the transcript
abundance within each group were not completely identical. The first group (I) includes
clusters K5 and K10, in which transcript abundance peaked at time-0 but then declined
sharply (K5) or gradually (K10). The second group (II) consists of three clusters, where
transcripts continued to increase within 0.5 h–2 h of salt stress, then decreased along with
stress progression. These transcripts were increased during the recovery procedure (K3)
or increased 4 days post-recovery and declined after that (K7 and K15). The third group
(III), composed of clusters K2, K6, and K9, exhibited an initial drop at time-0 compared
to control, followed by an increase in the transcript abundance, then dropped again at
24 h (K2), or dropped earlier (K6 and K9). By contrast, clusters that showed induction
between 2 h–48 h of salt stress with inconsistent patterns were placed in the fourth grope
(IV), including K4, K8, and K12. The fifth group showed a sharp induction at a particular
time point (24 h) as in K1 and K13; however, K1 exhibited a second increase at 12 days of
recovery. Finally, clusters K11 and K14 with inconsistent patterns were placed in the sixth
group (IV).

To provide a broad overview of the types of transcripts in each group, the Gene On-
tology (GO; i.e., Molecular Function MF, Cellular Component CC, and Biological Process
BP) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment strategies
were used to analyze each cluster [27]. Several stress- and salinity adaptation-related
GO-term categories displayed high enrichment with a wide range of cluster differences.
For instance, cluster K10 was enriched in ROS homeostasis MF subcategories (“oxidore-
ductase activity, acting on the CH-CH group of donors” and “oxidoreductase activity,
acting on the CH-NH group of donors and quinone or similar compound as acceptor”)
(Figures 2B and S5 and Table S4). Moreover, K10 with K8 clusters showed considerable
enrichment of BP GO terms for signaling, hormones, photosynthesis, carbohydrates, and
other stress-related terms (e.g., cell communication, intracellular signal transduction, signal
transduction, abscisic acid-activated signaling pathway, polyamine biosynthetic process,
fructose 6-phosphate metabolic process, sucrose biosynthetic process, oligosaccharide
biosynthetic process, fructose 1,6-bisphosphate metabolic process, fructose metabolic pro-
cess, carbohydrate derivative metabolic process, disaccharide biosynthetic process, carbo-
hydrate metabolic process, oligosaccharide metabolic process, monosaccharide metabolic
process, disaccharide metabolic process, protein dephosphorylation, sucrose metabolic
process, gluconeogenesis, oxidative photosynthetic carbon pathway, and photosynthesis)
(Figures 2C,D, S6 and S7 and Table S4).

The previous data analysis showed the global significant changes in transcriptome pro-
file and, subsequently, the GO term enrichments that eventually differentiated in response
to salt stress. Most notably, the photosynthesis, carbohydrates, and ROS homeostasis-
related GO terms were overrepresented with the progression of salinity.
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Figure 1. Temporal dynamics of RUG rootstock transcriptome during salt and recovery treatments.
(A) Principal Component Analysis (PCA) showing the global similarity among RNA-seq samples of
RUG rootstock, where salt stress was applied gradually, followed by a recovery procedure. (B) The
PCA of the transcriptome data after excluding the recovery samples. (C) The Upset plot of the
total number of the differentially expressed genes (DEGs) of each comparison. By using the DESeq2
pipeline, each two consecutive time points during the salinity and recovery procedure were compared,
resulting in 13,214 (6736 non-redundant), with |log2FC| > ±1.5 and p-adjusted < 0.05. The included
Venn diagram showed the non-redundant DEGs among the total, up-, and down-regulated transcripts.
(D) Bar plots of DEGs that demonstrated the temporal expression patterns of genes in RUG during
salinity and recovery procedures. The sampling order R1–R8 refers to the sampling time as follows:
control, 0 h, 0.5 h, 2 h, 24 h, 48 h, 4 days, and 12 days, respectively. Each time point during the salinity
and recovery treatments was given a distinctive color and symbol.
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30, and ≥30 genes. The most significant term defines the name of the group. 

Figure 2. Heatmap of the K-means clusters of the 12,760 non-redundant significantly expressed
genes throughout salinity stress in RUG. (A) By using transcript per million (TPM) of the 12,760 non-
redundant significantly expressed genes during salinity stress, the K-means algorithm generated
15 clusters (K1 to K15) that were hierarchically clustered utilizing Pearson pairwise correlation. The
sampling order R1–R8 refers to the sampling time, as described in Figure 1. (B–D) Network views
for specific predefined Biological processes GO terms pathways for significantly expressed genes
within K8 and K10, and the Molecular Function (MF) in K10 only. All MF and BP GO terms for each
cluster (p-adjusted < 0.05) were extracted by the g:Profiler website with the Benjamini-Hochberg FDR
multiple testing correction method. The default ClueGO settings were applied, and the terms are
functionally grouped based on shared genes (kappa score), shown with different colors. The size of
the nodes indicates the number of mapped genes ranged from 0–5, 5–10, 10–20, 20–30, and ≥30 genes.
The most significant term defines the name of the group.
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2.3. Analysis of Expression Patterns and Identification of WGCNA Modules Associated with
Salinity Adaptation

In our previous study, we examined the physiological responses of RUG rootstock
to salinity, including photosynthetic pigments (chlorophyll “Chl-T, Chl-a, Chl-b”, and
carotenoids “Caro”) and sugar contents (total soluble sugar “TSS”, sucrose “Suc”, glu-
cose “Glu”, and fructose “Fru”) as a manifestation of the efficacy of photosynthesis and
sugar/energy metabolism. In addition, the enzymatic antioxidant activities of superoxide
dismutase “SOD”, catalase “CAT”, and glutathione peroxidase “GPX” along with the deter-
mination of proline “Pro” content as an indication of redox homeostasis and two oxidative
stress markers (malondialdehyde “MDA”, hydrogen peroxide “H2O2”) were assessed in
the same samples used in this study [21]. The physiological results and the transcriptomic
data suggested that RUG maintains efficient photosynthesis and antioxidative machinery
under salinity by accumulating high amounts of sugars and suppressing the induction of
ROS, respectively. The WGCNA system biology approach was exploited to investigate the
gene modules and physiological data to get a better understanding of the molecular events
under salt stress. However, as the recovery treatment alleviates the impact of salinity, its
data was omitted from this analysis.

The pairwise correlations among the 18 samples (control, 0 h, 0.5 h, 2 h, 24 h, and
48 h) identified 46 modules, which were labeled in distinct colors shown in a hierarchical
clustering dendrogram and network heatmap (Figures S8 and S9). The analysis of module-
trait correlations among the identified modules and the physiological data enabled us to
identify 6 and 2 modules with positive and negative correlations, respectively (Figure 3).
Among the positively correlated modules, the M1 module was highly correlated with Fru
and TSS modules (r2 ≥ 0.81 and 0.72, respectively), holding 327 significant genes. The
M3 and M32 (10 and 18 significant genes, respectively) displayed a substantial positive
correlation with GPX (r2 ≥ 0.72). Finally, the M11, M28, and M29 modules involving 1664,
17, and 29 significant genes were positively correlated with Caro, SOD, and Pro (r2 ≥ 0.71),
respectively. On the other hand, M16 module showed a negative correlation with SOD and
GPX (r2 ≥ −0.73), while M45 was negatively associated with Fru (r2 ≥ −0.77).

Consequently, we focused on the most two prominent modules (M1 and M11), exhibit-
ing positive correlation and holding 2065 significant genes (Figure 3). The GO terms and
KEGG enrichment analysis of M1 and M11 modules exposed high enrichment of GO terms
associated with stress adaptation (Table S5). For instance, M1 displayed considerable en-
richment of BP GO terms for “cellular response to hormone stimulus”, “hormone-mediated
signaling pathway”, “ethylene-activated signaling pathway”, “regulation of biosynthetic
process”, “regulation of cellular metabolic process”, “regulation of primary metabolic
process”, glycosyltransferase activity, and “cell wall polysaccharide metabolic process”
(Figure S10 and Table S5). However, M11 was highly enriched for BP GO terms for “plastid
organization”, “chloroplast organization”, “pigment metabolic process”, “pigment biosyn-
thetic process”, “cellular response to oxidative stress”, “chlorophyll metabolic process”,
“superoxide metabolic process”, “chlorophyll biosynthetic process”, “protein import into
chloroplast stroma”, “thylakoid membrane organization”, “plastid membrane organiza-
tion”, “response to superoxide”, “removal of superoxide radicals”, “cellular response to
superoxide”, “cellular response to oxygen radical”, “response to oxygen radical”, “reg-
ulation of chlorophyll metabolic process”, “flavonoid metabolic process”, “regulation of
cellular biosynthetic process”, “carbohydrate metabolic process”, “response to reactive
oxygen species”, “regulation of biosynthetic process”, and “carotenoid metabolic process”
(Figures 4A and S11 and Table S5). Altogether, the WGCNA approach and the GO term
enrichments analysis of positively correlated modules (M1 and M11) confirmed the high
correlation of photosynthesis, carbohydrates, and ROS homeostasis with salinity adaptation
of RUG rootstock.
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Chl-b”, and carotenoids “Caro”), sugar contents (total soluble sugar “TSS”, sucrose “Suc”, glucose 

Figure 3. Expression heatmap of co-expression modules. Module-trait associations between RNA-seq
data and evaluated physiological traits of photosynthetic pigments (chlorophyll “Chl-T, Chl-a, Chl-b”,
and carotenoids “Caro”), sugar contents (total soluble sugar “TSS”, sucrose “Suc”, glucose “Glu”, and
fructose “Fru”), antioxidant enzymatic activities of superoxide dismutase “SOD”, catalase “CAT”,
and glutathione peroxidase “GPX”, and antioxidant non-enzymatic activity represented by proline
“Pro” content [21]. The color of the cell indicates the correlation coefficient between a given module
and the applicable trait at the row-column intersection. Each row corresponds to a module (M1–M46).
Modules of interest (M1 and M11) were shown in bold-line and were selected for further analysis.
The left panel displayed the assigned number of genes to two selected modules, whether the number
of total input genes or significantly expressed genes from seven pairwise transcriptome comparisons
between each two consecutive time points during salinity (R2–R1, R3–R2, R4–R3, R5–R4, R6–R5,
R7–R6 or R8–R7).
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Figure 4. (A) Network views for specific predefined Biological processes GO terms pathways for
significantly expressed genes within WGCNA module M11 with p-adjusted < 0.05. The GO terms
were extracted by g:Profiler website with the Benjamini-Hochberg FDR multiple testing correction
method. The default ClueGO settings were applied, and the terms are functionally grouped based on
shared genes (kappa score), shown with different colors. The size of the nodes indicates the number
of mapped genes ranged from 0–5, 5–10, 10–20, 20–30, and ≥30 genes. The most significant term
defines the name of the group. (B) Heatmap of the 61 hub genes significantly expressed throughout
salinity and recovery in RUG using qPCR gene expression data. Genes were hierarchically clustered
using Pearson pairwise correlation. The sampling order R1-R10 refers to the sampling time as follows:
control, 0 h, 0.5 h, 2 h, 8 h, 24 h, 48 h, 4 d, 8 d, and 12 d, respectively.
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2.4. Identification of Hub Genes Regulating Salinity Adaptation

To identify essential genes involved in salinity adaptation, annotation information
of significantly expressed genes within M1 and M11 modules was extracted from the V.
vinifera PN40024 grapevine reference genome [28,29]. A total of 61 genes were identified and
classified into 7 groups based on their predicted functions as follows: ROS detoxification,
sugars metabolism, hormones, transcription factors (TFs), secondary metabolites, transport,
and other functions (Figure 4B). Despite that they were exclusively located in 2 WGCNA
modules, they exhibited diverse expression profiles (K1, K2, K8, K9, K11, K12, 13, K14, or
no cluster) that was validated by quantitative real-time PCR (qPCR) assay. In addition to
the biological samples used for transcriptome analysis, two extra points were included in
the qPCR assay at 8 h of salinity and 8 days of recovery. The qPCR results of hub genes
exhibited a significant correlation with mRNA-seq data (r2 ≥ 0.90), except for one gene that
showed r2 ≥ 0.73, validating the transcriptome profiles (Figure 4B and Table S6).

For ROS detoxification-related genes, 9 out of 10 transcripts started to accumulate
early after 0.5 h of salinity, including genes encoding ascorbate peroxidase (APX1 and 2)
and seven oxidoreductase superfamily protein (2-ODDsL (5 isoforms), NAD(P)-L, TRZ).
Only GRX480, which encodes thioredoxin superfamily protein, was considerably induced
after 24 h of stress. With few exceptions, the expression levels of these ROS detoxification-
related genes reached their maximal levels after 48 h of salinity that exceeds their basal
levels during typical conditions; however, many of them tended to decline during the
recovery procedure. For genes related to sugar metabolism, 12 transcripts encoding UDP-
glycosyltransferases (UGTs) superfamily proteins were identified. Generally, their strong
induction took place after 48 h of salt stress with a tendency to accumulate during the
recovery process, establishing a peak at 4 days. Regarding the hormone-related genes,
3 out of 4 genes were jasmonic acid (JA)-related genes, while the fourth gene belongs to
auxin. Except for the JA carboxyl methyltransferase (JMT), they showed fast accumulation
during early salt stress (0.5 h). Of particular interest is the jasmonate-zim-domain protein
3 (JAZ3), which negatively affects the JA signal, playing a crucial role in fine-tuning the
JA pathway [30,31]. Similarly, the gene encoding the SAUR-like auxin-responsive protein
family (SAUR72) was strongly expressed between 2–24 h of stress but reached around null
expression at 8–12 days of recovery.

For TF-related genes, the 6 hub genes located in module M1 showed their strong
expression within 48 h of stress and 4 days of recovery compared to control, including
the redox responsive transcription factor 1 (RRTF1, two isoforms), myb domain protein r1
(MYBR1), plant regulator RWP-RK family protein (RWP-RK1, two isoforms), E2F target
gene 1 (ETG1), and transcription elongation factor (TFIIS) family protein. Genes related
to secondary metabolites accumulated mainly during late stress (24–48 h). In addition to
one gene for chalcone and stilbene synthase family protein (CHS), this set of genes mainly
includes terpene synthases (TPSs, 7 isoforms), which are liable for the structural diversity
of the superfamily of terpenoid products (also referred to as terpenoids or isoprenoids)
with diverse expression profiles that decline during the recovery. For transport-related
genes, four hub genes displayed distinct accumulation patterns, two of which are sodium
(cation)/calcium exchanger (NCX1L and CCX4), one early nodulin-like protein 15 (EN-
ODL15), and one for the zinc-induced facilitator-like 1 (ZIFL1). Finally, for other genes
involved in the salinity tolerance, 17 genes were assessed located mainly in M11 with
different expression profiles, including cytochromes P450 (CYP71B32 and CYP86A8), nudix
hydrolases (NUDT17 and 18), major latex protein-like protein 43 (MLP43), basic chitinase
(HCHIB), alpha/beta hydrolase (ABH) superfamily (ABH-L), serine carboxypeptidase-like
7 (SCPL7), beta-amylase (BGLU1, BGLU2, and BAM5), halo acid dehalogenase (HAD)
superfamily (HAD-L), glutathione S-transferase (GST), COBRA-like protein 10 precursor
(COBL10), Eukaryotic aspartyl protease family protein (PCS-L), and the OBP3-responsive
gene 1 (ORG1).
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3. Discussion

In this study, leaves of RUG grapevine rootstock showed transcriptome reprogram-
ming profiles over salinity and recovery conditions. Additional levels of complication arose
from the experimental procedure with different time points of both salinity and recovery.
Moreover, the re-watering application counteracted salinity, alleviating its adverse effects
on transcriptome, as shown by PCA results. Monitoring the growth status of grapevine
plants indicated that this influence is stress-dependent, and significantly impacted by its
gravity and duration [32]. In addition, the genetic background of plants determines the
effect of salinity and, accordingly, the transcriptome remodeling as shown by the coastal
salt-tolerant wild grapevine AS1B compared to salt-sensitive rootstock Richter 110 [33].
The pairwise comparisons between transcriptome profiles of consecutive time points of
RUG during salinity and recovery showed substantial changes in its transcriptomic profiles.
Notably, when the 24 h of stress was compared against the 2 h of stress (R5–R4), it exhib-
ited the highest number of up- and down-regulated transcripts. Likewise, transcriptomic
analysis of salt-tolerant wild grapevine Tebaba roots throughout salinity depicted similar
results commensurate with the accumulation of polyphenol content and enhancement of
antioxidant enzymatic activities [34]. The longer the time under salinity (in the range of
24–48 h), the higher the changes at the molecular, metabolic, and physiological levels.

It is tempted to indicate that RUG is a salt excluder rootstock with salt tolerance
capacity accumulating higher levels of photosynthetic pigments and sugars along with
enhanced ROS detoxification activity under salinity compared to the less tolerant Millardet
et de Grasset 420A [21,23]. Therefore, we were guided by our previous results, where
physiological parameters, including photosynthetic pigments, and sugar contents, along
with enzymatic and non-enzymatic antioxidant activities were estimated in the same RUG
samples used for the transcriptome analysis [21]. From a physiological perspective, salt-
stressed plants exhibited a considerable reduction in vital biological processes such as
photosynthesis, energy, and water/nutrient acquisition, but induction of ROS might lead
to cell death based on stress severity and plant tolerance capacity [8,9]. The WGCNA
strategy was able to identify 8 modules, exhibiting significant correlation with the recently
published physiological data [21] in which 6 modules were positively correlated with
carotenoids, Fru, TSS, GPX, SOD, and Pro. The most prominent two modules of M1 and
M11 encompass 327 and 1664 significant genes that were highly enriched of BP GO terms
related to salinity adaptation. While M1 was enriched with GO terms linked to hormones
and polysaccharides, M11 was highly enriched with GO terms for photosynthesis, ROS
detoxification, and carbohydrate metabolic processes. However, the K-means clustering
showed that each module could include different clusters with distinct kinetic behaviors
and, thus, a wide range of GO terms and KEGG enrichment analysis for each cluster.

The considerable enrichment of BP GO terms for signaling, hormones, photosynthesis,
carbohydrates, ROS homeostasis, and other stress-related terms in M1 and M11 modules
suggested a battery of molecular/cellular responses established during salinity. Certainly,
salt-challenged plants accumulate high inorganic ions, especially Na+ and Cl−, result-
ing in cellular toxicity, nutritional and energetic imbalances, and lipid peroxidation. The
stress ultimately leads to the production of ROS and metabolic dysfunction, which impair
photosynthesis and nutrient acquisition, causing cell death based on stress severity [2–4].
Therefore, the identified 61 hub genes were selected to cover a wide range of salt-adaptation
processes, including ROS detoxification, sugar metabolism, hormones, transcription factors
(TFs), secondary metabolites, transport, and other functions. Salinity is generally accompa-
nied by overproduction of ROS and alterations in secondary metabolite accumulation [35].
Hence, plants have to swiftly re-establish their ROS homeostasis. Our results showed that 9
out of 10 ROS detoxification-related genes started accumulating earlier after 0.5 h of salinity,
such as APX1/2 and seven genes encoding oxidoreductase superfamily protein. The role
of the thioredoxin superfamily and APX in redox homeostasis is not negotiable [36]. For
example, APX is an antioxidant enzyme that functions in synthesizing ascorbate (AsA) and
scavenging the H2O2. Ectopic expression of Celery (Apium graveolens) APX1 into Arabidopsis
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resulted in the induction of AsA content and antioxidant capacity but less reduction in
photosynthetic rate and chlorophyll content that culminated in drought resistance [37].

Interestingly, other gene-encoded proteins from different pathways also have ROS detox-
ification activity besides their primary function. For instance, the UDP-glycosyltransferases
(UGTs) and terpene synthases (TPSs) have a crucial role in detoxification and homeosta-
sis besides their prominent role of catalyzing a sugar conjugation with small lipophilic
compounds and generating the structural diversity of terpenoids superfamily, respec-
tively [38,39]. Further, terpenes and terpenoids have a wide range of biological activities,
acting as anticancer, antimicrobial, anti-inflammatory, and anti-allergic [39]. Similarly, TFs
such as RRTF1 and MYBR1 were up-regulated by stress and H2O2, resulting in less ROS
accumulation due to efficient antioxidant machinery [40,41]. On the contrary, the TFs
of RWP-RK play essential roles in nitrate starvation responses and root nodulation [42],
while the activity of TFIIS is substantial for heat stress adaptation in plants, while its ab-
sence negatively affects the expression and the alternative splicing pattern of hundreds of
heat-regulated transcripts [43].

ROS can highly coordinate and regulate multiple signaling pathways such as antioxi-
dants, kinases, defense-related genes, Ca2+ influx, and hormones (e.g., JA, ethylene, and
salicylic acid) [2,44]. Our data showed that transport-related genes encoding cation/Ca2+

exchanger were strongly induced during late stress and recovery. Similarly, the ZIFL1 is crit-
ical in regulating stomatal closure during stress in Arabidopsis [45]. Moreover, the ENODL
genes, such as GhENODL6, were shown to exhibit SA-induction under biotic stress and
regulate the ROS production in cotton [46]. Furthermore, 3 out of 4 hormone-related genes
are JA-related, especially the JAZ3 that showed strong induction at 2–48 h compared to 0 h.
It reported that salinity adaptation in grapevine is highly correlated with tight control of
JA and its isoleucine conjugate (JA-Ile) production and, hence, fine-tuning their signals [3].
In contrast, salt sensitivity is more likely attributed to the unconstrained jasmonate (JA)
signaling accompanied by ROS burst. Finally, our results revealed a list of genes with
different functions that are up-regulated under salinity with involved stress tolerance and
antioxidant activities during stress such as cytochromes P450, nudix hydrolases, major latex
protein-like protein, serine carboxypeptidase-like, and glutathione S-transferase [47–51].

In conclusion, this investigation addressed the transcriptional remodeling of grapevine
rootstock RUG throughout salinity and recovery, complementing our previous physiolog-
ical study [21] by improving our understanding of the molecular dynamic coordinating
grapevine’s salt tolerance mechanism. The data demonstrated the significant impact of
establishing different sets of processes to cope with salinity stress, most notably ROS
detoxification and homeostasis. Future research would allow further in-depth validation
and functional characterization of pivotal stress biomarkers to select suitable traits for
generating innovative salt-tolerant rootstocks.

4. Materials and Methods
4.1. Plant Materials, Salinity Application, and Sampling

Leave samples were collected from 3-year-old Vitis hybrid 140 Ruggeri (V. berlandieri
× V. rupestris) grown under greenhouse conditions during the summer season of 2020 at
the Florida A&M University (Tallahassee, FL, USA). The hybrid rootstock was selected
according to its salinity adaptation [21,22]. A total of 50 grapevine rootstock plants were
used for the experiment through which each plant was grown in a one-gallon pot supported
with a based plate and peat moss mixed with perlite (3:1). Salt stress was applied gradually
by irrigating plants with 2.5 L of 30 mM NaCl daily for 5 days to reach 150 mM NaCl as a
final concentration. Once the fifth addition of NaCl was received, samples were collected
from mature and healthy leaves, mainly the third and/or fourth ones. At each time point,
fifteen leaves were collected and distributed into 3 biological replicates (5 leaves/replicate).
For the salinity time course, leave samples were collected at time points 0, 0.5, 2, 8, 24,
and 48 h. Control plants were irrigated using distilled water. Similarly, treated plants
were re-watered with distilled water for the recovery experiment, and leaf samples were
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collected at 4, 8, and 12 days. All samples were immediately flash-frozen in liquid nitrogen
and stored at −80 ◦C for further analysis.

4.2. Nucleic Acid Extraction and RNA-Seq Library Construction

Total RNA was extracted from leaf samples as described previously [52]. All RNA
samples were treated with the RNase-Free DNase Set (Qiagen, Valencia, CA, USA), then
cleaned up with the RNeasy Mini Kit (Qiagen). A total of 24 RNA-seq libraries (three
biological replicates at 8 salt-stressed time points, R1–R8) were constructed using NEBNext
Ultra II RNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA).
The libraries were multiplexed equally for paired-end 150-base sequencing in two lanes of
NovaSeq 6000 (Illumina, San Diego, CA, USA) at the Novogene Co., Ltd. (Sacramento, CA,
USA).

4.3. RNA-Seq Data Preprocessing and Identification of Differentially Expressed Genes

Illumina sequencing of the multiplexed RNA-seq libraries yielded 24 FASTQ files of se-
quences (GenBank accession number: PRJNA1036264). As previously described [53], reads
quality was examined by FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/, accessed on 10 February 2023) twice before and after trimming using Trimmomatic
v0.39 [54]. Trimmed reads were aligned to the Vitis genome (V. vinifera_457_Genoscope.12X)
and projected to the transcriptome using STAR (Table S1) [24,25]. The later transcriptomic
coordinates files (*.BAM) were then quantified by Salmon in alignment mode (Table S1) [26].

Differentially expressed genes (DEGs) during salinity and recovery times were iden-
tified between consecutive time points (R2–R1, R3–R2, R4–R3, R5–R4, R6–R5, R7–R6 or
R8–R7) using DESeq2 package setting on default parameters [55]. DEGs of each comparison
(DEGs, PFDR < 0.05, log2fold change > ±1.5) were considered to be expressed (Table S2). The
open-source R package UpSetR was used to generate a scalable matrix-based visualization
for all intersections among comparisons [56]. Finally, the web-based tool Venny was used
to construct the consensus result (https://bioinfogp.cnb.csic.es/tools/venny/index.html,
accessed on 12 February 2023).

4.4. Weighted Gene Co-Expression Network Analysis

Co-expression network modules were constructed using the variance stabilizing trans-
formation values and the R package WGCNA (v. 1.72-1) [57]. Lowly expressed genes
among all samples were removed by DESeq2, and the remaining 20,717 genes were used in
module construction. The co-expression modules were obtained using the default settings,
except that the soft threshold power was 4, TOMType was signed, minModuleSize was
30, mergeCutHeight was 0.25, and scale-free topology fit index 0.8 (R2 = 0.8). A module
eigengene (ME) value, which summarizes the expression profile of a given module as the
first principal component, was calculated and used to evaluate the association of modules
with leaf physiological parameters, including photosynthetic pigments (chlorophyll “Chl-T,
Chl-a, Chl-b”, and carotenoids “Caro”), sugar contents (total soluble sugar “TSS”, sucrose
“Suc”, glucose “Glu”, and fructose “Fru”), enzymatic antioxidant activities (superoxide
dismutase “SOD”, catalase “CAT”, and glutathione peroxidase “GPX”), non-enzymatic
antioxidant activities (proline content “Pro”), and two stress markers malondialdehyde
“MDA” and hydrogen peroxide “H2O2” [21]. As a result, the final matrix for WGCNA
was assigned to 46 modules (M1-M46) with 20,717 genes. The module membership (MM)
and gene significance (GS) values were calculated, and the intra-modular hub genes were
identified (GS > 0.2, MM > 0.8, and p-value < 0.05).

4.5. GO Enrichment and KEGG Pathway Analyses

GO and KEGG enrichment analyses were assigned using the g:Profiler website by
applying the Benjamini-Hochberg multiple testing correction method with PFDR < 0.05 [27].
The Cytoscape plug-in ClueGO was used to visualize the non-redundant GO terms and
KEGG pathways [58].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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4.6. Validation of DEG Subsets by qPCR

DNase-treated RNA (4 µg) was reverse transcribed in a reaction of 50 µL using the
High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA).
Gene-specific primers were designed using Primer Express (v3.0, Applied Biosystems)
(Table S6). The qPCR assays were performed using 20 ng of cDNA and 300 nM of each
primer in a 10 µL reaction volume with SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad Laboratories, Hercules, CA, USA). Three biological and three technical replicates
for each reaction were analyzed on a CFX384 Touch Real-Time PCR Detection System in-
strument (Bio-Rad Laboratories) with the first step of 95 ◦C for 5 min followed by 40 cycles
of 95 ◦C for 10 s, 60 ◦C for 10 s, and 72 ◦C for 20 s. Melting curves were generated using the
program: 95 ◦C for 15 s, 60 ◦C for 15 s, and 95 ◦C for 15 s. Transcript abundance was quanti-
fied using standard curves for the target and reference genes generated from serial dilutions
of PCR products from corresponding cDNAs. Transcript abundance was normalized to
the reference genes MrActin and MrEF1, which showed high stability across the different
muscadine genotypes and tissues. The geometric mean of the selected housekeeping genes
was validated as an accurate normalization factor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13060837/s1, Figure S1: Heatmap of sample-to-sample
distances of RNA-seq data from Ruggeri leaves during the salt stress and recovery procedure,
Figure S2: The Upset plot of the total number of the upregulated differentially expressed genes
(DEGs), Figure S3: The Upset plot of the total number of the down-regulated differentially expressed
genes (DEGs), Figure S4: K-means clustering of non-redundant significantly expressed genes during
salt stress and recovery procedure, Figure S5: A network view for the pre-defined molecular function
(MF) GO terms pathways for the K10 cluster in-group (I), Figure S6: A network view for the pre-
defined Biological process (BP) GO terms and KEEG pathways for the K10 cluster in the group (I),
Figure S7: A network view for the pre-defined Biological process (PB) GO terms and KEEG pathways
for K8 cluster in the group (IV), Figure S8: Sample dendrogram and trait heatmap, Figure S9: The
hierarchical cluster dendrogram of genes showing co-expressed modules identified by WGCNA,
Figure S10: A network view for the pre-defined Biological process (BP) GO terms pathways for the
WGCNA M1 module, Figure S11: A network view for the predefined Biological process (BP) GO
terms pathways for the WGCNA M11 module; Table S1: Summary of read mapping rate of RNA-Seq
library of Ruggeri leaves at different time points of salt stress or recovery experiment, Table S2:
Significantly expressed genes over the time course of salt stress and recovery in Ruggeri rootstock,
Table S3: The gene list of each K-mean cluster including their transcript per million (TPM) values and
annotation information, Table S4: The GO-term information of the gene list of each K-means cluster,
Table S5: The GO-term information of the gene list of each significantly correlated WGCNA module,
and Table S6: The oligonucleotide primers of assessed genes by qPCR and the correlation coefficient
between RNA-seq and qPCR data.

Author Contributions: Conceptualization, A.I., A.E.-K., D.K., A.M.E.-S., I.E.-S., M.D.A. and S.M.S.;
Methodology, A.G.D., A.I., A.G.M., A.S.D., A.M.H., I.E.-S., T.I., M.M. and P.G.; Software, A.I. and
I.E.-S.; Validation, A.I., A.S.D., A.M.H., I.E.-S. and P.G.; Formal Analysis, A.I., A.G.M., A.S.D., I.E.-S.,
T.I. and P.G.; Investigation, A.I., I.E.-S. and P.G.; Resources, D.K., I.E.-S. and M.D.A.; Data Curation,
I.E.-S.; Writing—Original Draft Preparation, A.I., T.I. and P.G.; writing—review and editing, A.I.,
A.E.-K., D.K., A.M.E.-S., I.E.-S., M.D.A. and S.M.S.; Visualization, A.I., I.E.-S. and P.G.; Supervision,
I.E.-S. and M.D.A.; Project Administration, I.E.-S.; Funding Acquisition, I.E.-S. All authors have read
and agreed to the published version of the manuscript.

Funding: I.E.-S. received support from the 1890 Institution Teaching, Research, and Extension
Capacity Building Grants (CBG) Program (grant no. 2023-38821-39592; project accession no. 1030371)
from the USDA National Institute of Food and Agriculture.

Data Availability Statement: The data presented in this study are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/plants13060837/s1
https://www.mdpi.com/article/10.3390/plants13060837/s1


Plants 2024, 13, 837 15 of 17

References
1. Ismail, A.A.A.M. Grapes for the Desert: Salt Stress Signaling in Vitis. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe,

Germany, 2013.
2. Ismail, A.; Takeda, S.; Nick, P. Life and death under salt stress: Same players, different timing? J. Exp. Bot. 2014, 65, 2963–2979.

[CrossRef]
3. Ismail, A.; Seo, M.; Takebayashi, Y.; Kamiya, Y.; Eiche, E.; Nick, P. Salt adaptation requires efficient fine-tuning of jasmonate

signalling. Protoplasma 2014, 251, 881–898. [CrossRef]
4. Ismail, A.; Riemann, M.; Nick, P. The jasmonate pathway mediates salt tolerance in grapevines. J. Exp. Bot. 2012, 63, 2127–2139.

[CrossRef]
5. Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [CrossRef]
6. Shinozaki, K.; Uemura, M.; Bailey-Serres, J.; Bray, E.A.; Weretilnyk, E. “Plant environment and agriculture: Responses to abiotic

stress”. In Biochemistry & Molecular Biology of Plants, 2nd ed.; Buchanan, B.B., Gruissem, W., Jones, R.L., Eds.; John Wiley & Sons,
Ltd.: Hoboken, NJ, USA, 2015; pp. 1051–1100.

7. FAO. The Global Map of Salt-Affected Soils (GSASmap); FAO: Rome, Italy, 2021.
8. Ismail, A.; El-Sharkawy, I.; Sherif, S. Salt stress signals on demand: Cellular events in the right context. Int. J. Mol. Sci. 2020,

21, 3918. [CrossRef]
9. Yang, Z.; Li, J.L.; Liu, L.N.; Xie, Q.; Sui, N. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet

sorghum. Front. Plant Sci. 2020, 10, 1722. [CrossRef]
10. Ismail, A.; Seo, M.; Takebayashi, Y.; Kamiya, Y.; Nick, P. A balanced JA/ABA status may correlate with adaptation to osmotic

stress in Vitis cells. J. Plant Physiol. 2015, 185, 57–64. [CrossRef]
11. Bazihizina, N.; Colmer, T.D.; Cuin, T.A.; Mancuso, S.; Shabala, S. Friend or Foe? Chloride Patterning in Halophytes. Trends Plant

Sci. 2019, 24, 142–151. [CrossRef]
12. Karimi, S.M.; Freund, M.; Wager, B.M.; Knoblauch, M.; Fromm, J.; Mueller, H.M.; Ache, P.; Krischke, M.; Mueller, M.J.; Müller, T.;

et al. Under salt stress guard cells rewire ion transport and abscisic acid signaling. New Phytol. 2021, 231, 1040–1055. [CrossRef]
13. Wani, S.H.; Singh, N.B.; Haribhushan, A.; Mir, J.I. Compatible solute engineering in plants for abiotic stress tolerance-role of

glycine betaine. Curr. Genom. 2013, 14, 157–165. [CrossRef]
14. Kesawat, M.S.; Satheesh, N.; Kherawat, B.S.; Kumar, A.; Kim, H.U.; Chung, S.M.; Kumar, M. Regulation of reactive oxygen species

during salt stress in plants and their crosstalk with other signaling molecules-current perspectives and future directions. Plants
2023, 12, 864. [CrossRef]

15. Singh, M.; Kumar, J.; Singh, S.; Singh, V.P.; Prasad, S.M. Roles of osmoprotectants in improving salinity and drought tolerance in
plants: A review. Rev. Environ. Sci. Biotechnol. 2015, 14, 407–426. [CrossRef]

16. Downton, W.J.S. Influence of rootstocks on the accumulation of chloride, sodium and potassium in grapevines. Aust. J. Agr. Res.
1977, 28, 879–889. [CrossRef]
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