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Abstract

Genetic matching is a new method for performing multivariate matching which uses an

evolutionary search algorithm to determine the weight each covariate is given. The method

utilizes an evolutionary algorithm developed by Mebane and Sekhon (1998; Sekhon and

Mebane 1998) that maximizes the balance of observed potential confounders across matched

treated and control units. The method is nonparametric and does not depend on knowing

or estimating the propensity score, but the method is greatly improved when a known or

estimated propensity score is incorporated. Genetic matching reliably reduces both the

bias and the mean square error of the estimated causal effect even when the property of

equal percent bias reduction (EPBR) does not hold. When this property does not hold,

matching methods—such as Mahalanobis distance and propensity score matching—often

perform poorly. Even if the EPBR property does hold and the propensity score is correctly

specified, in finite samples, estimates based on genetic matching have lower mean square

error than those based on the usual matching methods. We present a reanalysis of the

LaLonde (1986) job training dataset which demonstrates the benefits of genetic matching

and which helps to resolve a longstanding debate between Dehejia and Wahba (1997; 1999;

2002; Dehejia 2005) and Smith and Todd (2001, 2005a,b) over the ability of matching to

overcome LaLonde’s critique of nonexperimental estimators. Monte Carlos are also presented

to demonstrate the properties of our method.



1 Introduction

Matching has become an increasingly popular method of causal inference in many fields

including statistics (e.g., Rosenbaum 2002), medicine (e.g., Christakis and Iwashyna 2003;

Rubin 1997), economics (e.g., Abadie and Imbens forthcoming; Dehejia and Wahba 1999,

2002; Galiani, Gertler, and Schargrodsky 2005), political science (e.g., Imai 2005; Sekhon

2004), sociology (e.g., Diprete and Engelhardt 2004; Smith 1997; Winship and Morgan 1999)

and even law (e.g., Epstein, Ho, King, and Segal 2005; Rubin 2001). There is, however, no

consensus on how exactly matching ought to be done, how to measure the success of the

matching procedure, and whether or not matching estimators are sufficiently robust to mis-

specification so as to be useful in practice (Heckman, Ichimura, Smith, and Todd 1998).

These issues have been central to an ongoing debate over how matching and other nonexper-

imental estimators perform when analyzing data from a nationwide job training experiment

(LaLonde 1986). The experimental results are used to establish benchmark estimates for

causal effects. Then, to create the kind of observational data typically analyzed by social

scientists, individuals from the experimental control group are replaced by individuals from

national observational surveys. The goal is to determine which methods, if any, are able

to use the observational data to recover results obtained from the randomized experiment.

We show that the debate between Dehejia and Wahba (1997; 1999; 2002; Dehejia 2005) and

Smith and Todd (2001, 2005a,b) over the ability of matching to overcome LaLonde’s cri-

tique of nonexperimental estimators is largely driven by the fact that the existing matching

methods fail to obtain reliable levels of balance in this dataset. We show that our proposed

matching method is able to reliably estimate the causal effects when other methods fail

because it achieves substantially better balance.

When using matching methods to estimate causal effects, a central problem is deciding

how best to perform the matching. Two common approaches are propensity score matching

(Rosenbaum and Rubin 1983) and multivariate matching based on Mahalanobis distance

(Cochran and Rubin 1973; Rubin 1979, 1980). Matching methods based on the propensity
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score (estimated by logistic regression), Mahalanobis distance or a combination of the two

have appealing theoretical properties if covariates have ellipsoidal distributions—e.g., distri-

butions such as the normal or t. If the covariates are so distributed, these methods (more

generally affinely invariant matching methods1) have the property of “equal percent bias

reduction” (EPBR) (Rubin 1976a,b; Rubin and Thomas 1992a).2 This property, which is

formally defined below, ensures that matching methods will reduce bias in all linear com-

binations of the covariates. If a matching method is not EPBR, then that method will, in

general, increase the bias for some linear function of the covariates even if all univariate

means are closer in the matched data than the unmatched (Rubin 1976a).

Our proposed method, genetic matching (GenMatch), is an affinely invariant method for

performing multivariate matching that uses an evolutionary search algorithm to determine

the weight given to each baseline covariate. The method utilizes an evolutionary algorithm

(EA) developed by Mebane and Sekhon (1998; Sekhon and Mebane 1998) that maximizes

the balance of observed baseline covariates across matched treated and control units.

GenMatch is shown to have better properties than the usual alternative matching meth-

ods both when the EPBR property holds and when it does not. Even when the EPBR

property holds and the mapping from X to Y is linear, GenMatch has better efficiency—

i.e., lower mean square error (MSE)—in finite samples. When the EPBR property does not

hold as it generally does not, GenMatch retains appealing properties and the differences in

performance between GenMatch and the other matching methods can become substantial

both in terms of bias and MSE reduction. In short, at the expense of computer time, Gen-

Match dominates the other matching methods in terms of MSE when assumptions required

for EPBR hold and, even more so, when they do not.

GenMatch is able to retain good properties even when EPBR does not hold because a

1Affine invariance means that the matching output is invariant to matching on X or an affine transfor-
mation of X.

2The EPBR results of Rubin and Thomas (1992a) have been extended by Rubin and Stuart (2005) to the
case of discriminant mixtures of proportional ellipsoidally symmetric (DMPES) distributions. This extension
is important, but it is restricted to a limited set of mixtures. See Section 3.1.
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set of constraints is imposed by the loss function optimized by the EA. The loss function

depends on a large number of functions of covariate imbalance across matched treatment and

control groups. The precise measures of covariate imbalance can be selected by the analyst

depending on the application, but given these measures, GenMatch will optimize covariate

balance. In the examples in this paper, we apply the algorithm to greedy matching (with

replacement). But the algorithm can also be used with optimal full matching (Rosenbaum

1989, 1991).

Both propensity score matching and matching based on Mahalanobis distance can be

considered special limiting cases of our method. If the propensity score is known or estimated,

genetic matching will use it along with information about baseline covariates uncorrelated

with the propensity score; if the propensity score contains all of the relevant information in

a given sample, the other variables will be given zero weight.3 GenMatch will converge to

Mahalanobis distance if that proves to be the appropriate distance measure.

The paper is organized as follows. Section 2 outlines the Rubin causal model; Sec-

tion 3 describes Mahalanobis and propensity score matching; Section 4 describes GenMatch;

Section 5 presents our Monte Carlo results which help demonstrate the properties of our

estimator; Section 6 presents our reanalysis of the job training data; Section 7 concludes.

2 Rubin Causal Model

The Rubin causal model conceptualizes causal inference in terms of potential outcomes

under treatment and control, only one of which is observed for each unit (Holland 1986;

Splawa-Neyman 1990 [1923]; Rubin 1974, 1978, 1990). A causal effect is defined as the

difference between an observed outcome and its counterfactual.

Let Yi1 denote the potential outcome for unit i if the unit receives treatment, and let

Yi0 denote the potential outcome for unit i in the control regime. The treatment effect for

3Technically, the other variables will be given weights just large enough to ensure that the weight matrix
is positive definite.
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observation i is defined by τi = Yi1 − Yi0. Causal inference is essentially a missing data

problem because Yi1 and Yi0 are never both observed. Let Ti be a treatment indicator: 1

when i is in the treatment regime and 0 otherwise. The observed outcome for observation i

is then Yi = TiYi1 + (1− Ti)Yi0.

In principle, if assignment to treatment is randomized, causal inference is straightforward

because the two groups are drawn from the same population by construction, and treatment

assignment is independent of all baseline variables. As the sample size grows, observed

and unobserved baseline variables are balanced across treatment and control groups with

arbitrarily high probability. Because treatment assignment is independent of Y0 and Y1—

following Dawid’s (1979) notation, {Yi0, Yi1 ⊥⊥ Ti}. Hence, for j = 0, 1

E(Yij | Ti = 1) = E(Yij | Ti = 0) = E(Yi | Ti = j)

Therefore, the average treatment effect (ATE) can be estimated by:

τ = E(Yi1 | Ti = 1)− E(Yi0 | Ti = 0)

= E(Yi | Ti = 1)− E(Yi | Ti = 0) (1)

Equation 1 is estimable in an experimental setting because observations in treatment and

control groups are exchangeable.4 In the simplest experimental setup, individuals in both

groups are equally likely to receive the treatment, and hence assignment to treatment will

not be associated with the outcome. Even in an experimental setup, much can go wrong

which requires statistical correction (e.g., Barnard, Frangakis, Hill, and Rubin 2003; Imai

2005).

In an observational setting, unless something special is done, treatment and non-treatment

4It is standard practice to assume the Stable Unit Treatment Value assumption, also known as SUTVA
(Holland 1986; Rubin 1978). SUTVA requires that the treatment status of any unit be independent of
potential outcomes for all other units, and that treatment is defined identically for all units. Throughout
the rest of the paper, we take SUTVA as given. If SUTVA does not hold, even in an experimental setting
the estimation of the causal effect become difficult.
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groups are almost never balanced because the two groups are not ordinarily drawn from the

same population. Thus, a common quantity of interest is the average treatment effect for

the treated (ATT):

τ | (T = 1) = E(Yi1 | Ti = 1)− E(Yi0 | Ti = 1). (2)

Equation 2 cannot be directly estimated because Yi0 is not observed for the treated. Progress

can be made by assuming that selection for treatment depends on observable covariates X.

Following Rosenbaum and Rubin (1983), one can assume that conditional on X, treatment

assignment is unconfounded ({Y0, Y1 ⊥⊥ T} | X) and that there is overlap: 0 < Pr(T = 1 | X) < 1.

Together, unconfoundedness and overlap constitute a property known as strong ignorabil-

ity of assignment which is necessary for identifying ATE. Heckman et al. (1998) shows

that for ATT, the unconfoundedness assumption can be weakened to mean independence:

E (Yij | Ti, Xi) = E (Yij | Xi).
5 The overlap assumption for ATT only requires that the

support of X for the treated be a subset of the support of X for control observations.

Then, following Rubin (1974, 1977) we obtain

E(Yij | Xi, Ti = 1) = E(Yij | Xi, Ti = 0) = E(Yi | Xi, Ti = j). (3)

By conditioning on observed covariates, Xi, treatment and control groups are balanced. The

average treatment effect for the treated is estimated as

τ | (T = 1) = E {E(Yi | Xi, Ti = 1)− E(Yi | Xi, Ti = 0) | Ti = 1} , (4)

where the outer expectation is taken over the distribution of Xi | (Ti = 1) which is the

distribution of baseline variables in the treated group.

The most straightforward and nonparametric way to condition on X is to exactly match

on the covariates. This is an old approach going back to at least Fechner (1966 [1860]), the

5Also see Abadie and Imbens (forthcoming).
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father of psychophysics. This approach fails in finite samples if the dimensionality of X is

large or if X contains continuous covariates. Thus, in general, alternative methods must be

used.

3 Mahalanobis and Propensity Score Matching

The most common method of multivariate matching is based on Mahalanobis distance

(Cochran and Rubin 1973; Rubin 1979, 1980). The Mahalanobis distance between any two

column vectors is:

md(Xi, Xj) = {(Xi −Xj)
′S−1(Xi −Xj)}

1
2

where S is the sample covariance matrix of X. To estimate ATT by matching with replace-

ment, one matches each treated unit with the M closest control units, as defined by this

distance measure, md().6 If X consists of more than one continuous variable, multivariate

matching estimates contain a bias term which does not asymptotically go to zero at
√

n

(Abadie and Imbens forthcoming).

An alternative way to condition on X is to match on the probability of assignment to

treatment, known as the propensity score.7 As one’s sample size grows large, matching on

the propensity score produces balance on the vector of covariates X (Rosenbaum and Rubin

1983).

Let e(Xi) ≡ Pr(Ti = 1 | Xi) = E(Ti | Xi), defining e(Xi) to be the propensity score.

Given 0 < Pr(Ti | Xi) < 1 and that Pr(T1, T2, · · ·TN | X1, X2, · · ·XN) = ΠN
i=1e(Xi)

Ti(1 −
6Alternatively one can do optimal full matching (Rosenbaum 1989, 1991) instead of the greedy matching

(with replacement) which we focus on in this paper. But this decision is a separate one from the choice of a
distance metric.

7The first estimator of treatment effects to be based on a weighted function of the probability of treatment
was the Horvitz-Thompson statistic (Horvitz and Thompson 1952).
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e(Xi))
(1−Ti), then as Rosenbaum and Rubin (1983) prove,

τ | (T = 1) = E {E(Yi | e(Xi), Ti = 1)− E(Yi | e(Xi), Ti = 0) | Ti = 1} ,

where the outer expectation is taken over the distribution of e(Xi) | (Ti = 1). Since the

propensity score is generally unknown, it must be estimated.

Propensity score matching involves matching each treated unit to the nearest control

unit on the unidimensional metric of the propensity score vector. If the propensity score is

estimated by logistic regression, as is typically the case, much is to be gained by matching not

on the predicted probabilities (bounded between zero and one) but on the linear predictor:

µ̂ = Xβ̂. Matching on the linear predictor avoids compression of propensity scores near zero

and one. Moreover, the linear predictor is often more nearly normally distributed which is

of some importance given the EPBR results if the propensity score is matched along with

other covariates.

Mahalanobis distance and propensity score matching can be combined in various ways

(Rubin 2001; Rosenbaum and Rubin 1985). It is useful to combine the propensity score with

Mahalanobis distance matching because propensity score matching is particularly good at

minimizing the discrepancy along the propensity score and Mahalanobis distance is partic-

ularly good at minimizing the distance between individual coordinates of X (orthogonal to

the propensity score) (Rosenbaum and Rubin 1985).

3.1 Equal Percent Bias Reduction (EPBR)

Affinely invariant matching methods, such as Mahalanobis metric matching and propen-

sity score matching (if the propensity score is estimated by logistic regression), are equal

percent bias reducing if all of the covariates used have ellipsoidal distributions (Rubin and

Thomas 1992a)—e.g., distributions such as the normal or t—or if the covariates are mixtures
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of proportional ellipsoidally symmetric (DMPES) distributions Rubin and Stuart (2005).8

To formally define EPBR, let Z be the expected value of X in the matched control group.

Then, as outlined in Rubin (1976a), a matching procedure is EPBR if

E(X | T = 1)− Z = γ {E(X | T = 1)− E(X | T = 0)}

for a scalar 0 ≤ γ ≤ 1. In other words, we say that a matching method is EPBR for X

because the percent reduction in the biases of each of the matching variables is the same.

One obtains the same percent reduction in bias for any linear function of X if and only if

the matching method is EPBR for X. Moreover, if a matching method is not EPBR for X,

the bias for some linear function of X is increased even if all univariate covariate means are

closer in the matched data than the unmatched (Rubin 1976a).

A significant shortcoming of common matching methods such as Mahalanobis distance

and propensity score matching is that they may (and in practice, frequently do) make balance

worse across measured potential confounders. These methods may make balance worse,

in practice, even if covariates are distributed ellipsoidally symmetric, because EPBR is a

property that obtains in expectation, not necessarily for any particular set of data. Moreover,

if covariates are neither ellipsoidally symmetric nor are mixtures of DMPES distributions,

propensity score matching has good theoretical properties if and only if the true propensity

score model is known with certainty and the sample size is large.

Even if the covariates have elliptic distributions, in finite samples they may not. Then

Mahalanobis distance may not be optimal because the matrix used to scale the distances,

the covariance matrix of X, can be improved upon.9

The EPBR property itself is limited and in a given substantive problem it may not be

8Note that DMPES defines a limited set of mixtures. In particular, countably infinite mixtures of el-
lipsoidal distributions where: (1) all inner products are proportional and (2) where the centers of each
constituent ellipsoidal distribution are such that all best linear discriminants between any two components
are also proportional.

9For justifications of Mahalanobis distance based on distributional considerations see Mitchell and
Krzanowski (1985, 1989).
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desirable. This can arise if it is known based on theory that one covariate has a large

nonlinear relationship with the outcome while another does not—e.g., Y = X4
1 + X2, where

X > 1. In such a case, reducing bias in X1 will be more important than X2.

4 Genetic Matching

The idea underlying the GenMatch algorithm is that if Mahalanobis distance is not

optimal for achieving balance in a given dataset, one should be able to search over the space

of distance metrics and find something better. One way of generalizing the Mahalanobis

metric is including an additional weight matrix:

d(Xi, Xj) =
{

(Xi −Xj)
′ (S−1/2

)′
WS−1/2(Xi −Xj)

} 1
2

where W is a k × k positive definite weight matrix and S1/2 is the Cholesky decomposition

of S which is the variance-covariance matrix of X.10

GenMatch is an affinely invariant matching algorithm that uses the distance measure

d(), in which all elements of W are zero except down the main diagonal. The main diagonal

consists of k parameters which must be chosen. Note that if each of these k parameters are

set equal to 1, d() is the same as Mahalanobis distance. Like Mahalanobis distance, this

distance metric can be used to conduct either greedy or optimal full matching.

The choice of setting the nondiagnal elements of W to zero is made for reasons of com-

putational power alone. The optimization problem grows exponentially with the number

of free parameters so it is important that the problem be parameterized so as to limit the

number of parameters which must be estimated. Moreover, as we shall see, our proposed

generalization works well in this example and in a set of Monte Carlos, but there is no claim

that it is generally the best parameterization.

The weight matrix W has an infinity of equivalent solutions because the matches produced

10The Cholesky decomposition is parameterized such that S = LL′, S1/2 = L. In other words, L is a
lower triangular matrix with positive diagonal elements.
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are invariant to a constant scale change to the distance measure. In particular, the matches

produced are the same for every W = cW for any positive scalar c. The matrix can be

uniquely identified in many ways.

As noted in Section 3, it is beneficial to combine both propensity score matching and

Mahalanobis distance. There are a variety of ways of doing this. For example, Rosenbaum

and Rubin (1985) suggest doing nearest neighbor matching within calipers defined by the

propensity score. We use an alternative approach (Rubin 2001). The linear predictor of the

estimated propensity score, µ̂, is matched upon along with the covariates X once they have

been adjusted so as to be uncorrelated with the linear predictor. Adjustment is accomplished

accomplished by regressing each covariate on the estimated linear predictor:

Xk = α̂ + µ̂ + ε̂k

where k indexes the covariate number. By construction, cor(ε̂k, µ̂) = 0. The covariates for

GenMatch are defined by the following column vectors: µ̂, ε̂1, · · · , ε̂k. We identify the weight

matrix, W , by setting the weight for the propensity score to a constant such as 100.

This leaves the problem of how to choose the k − 1 free elements of W . Many loss

criteria recommend themselves. The one we have chosen attempts to minimize a measure

of the maximum observed discrepancy between the matched treated and control covariates

at every iteration of optimization. For a given set of matches resulting from a given W , the

loss is defined as the minimum p-value observed across a series of balance tests performed

on distributions of matched baseline covariates. By default, tests are conducted for all

univariate baseline covariates, as well as their first-order interactions and quadratic terms.

In practice, the analyst may add tests of any function of X desired, including additional

nonlinear functions and higher order interactions. The tests conducted are t-tests for the

difference of means and nonparametric (bootstrap) Kolmogorov-Smirnov distributional tests.

Further details of these tests are provided in Section 4.2.

The algorithm attempts to maximize this loss function by minimizing the largest discrep-
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ancy at every step. Because GenMatch is minimizing the maximum discrepancy observed

at each step, it is minimizing the infinity norm. This property holds even when, because

of the distribution of X, the EPBR property does not hold. Therefore, if an analyst is

concerned that matching may increase the bias in some linear combination of X even if the

means are reduced, GenMatch allows the analyst to put in the loss function all of the linear

combinations of X which may be of concern. Indeed, any nonlinear function of X can also

be included in the loss function, which would ensure that bias in some nonlinear functions

of X is not made inordinately large by matching.

The GenMatch loss function does allow for imbalance in functions of X to worsen as long

as the maximum discrepancy is reduced. Hence, it is important the maximum discrepancy be

small—i.e., that the smallest p-value be large. As the data example makes clear (Section 6),

p-values conventionally understood to signal balance (e.g., 0.10), may be too low to produce

reliable estimates. After GenMatch optimization, the p-values from these balance tests

cannot be interpreted as true probabilities because of standard pre-test problems, but they

remain useful measures of balance.

The optimization problem described above is difficult and irregular, and we utilize an

evolutionary algorithm developed by Mebane and Sekhon (1998) called GENOUD, discussed

in detail by Sekhon and Mebane (1998). We offer a brief overview of the algorithm in the

following subsection.

4.1 Genetic Optimization

An evolutionary algorithm uses a collection of heuristic rules to modify a population of

trial solutions in such a way that each generation of trial values tends to be, on average, better

than its predecessor. GENOUD works for cases in which a solution is a vector of numbers

that serve as the parameters of a function to be optimized. The search for a solution proceeds

via a set of heuristic rules, or operators, each of which acts on one or more trial solutions

from the current population to produce one or more trial solutions to be included in the new

11



population. EAs do not require derivatives to exist or the function to be continuous in order

find the global optimum.

The EA in GENOUD is fundamentally a genetic algorithm (GA) in which the code-

strings are vectors of floating point numbers rather than bit strings, and the GA operators

take special forms tuned for the floating-point vector representation. A GA uses a set of

randomized genetic operators to evolve a finite population of finite code-strings over a series

of generations (Holland 1975; Goldberg 1989; Grefenstette and Baker 1989). The operators

used in GA implementations vary (Davis 1991; Filho and Alippi 1994), but in an analytical

sense the basic set of operators can be defined as reproduction, mutation, crossover and

inversion. The variations across these operators reflect the variety of codes best suited for

different applications. Reproduction entails selecting a code-string with a probability that

increases with the code-string’s fitness value. Crossover and inversion use pairs or larger

sets of the selected code-strings to create new code-strings. Mutation randomly changes the

values of elements of a single selected code-string.

Used in suitable combinations, the genetic operators tend to improve average fitness of

each successive generation, though there is no guarantee that average fitness will improve

between every pair of successive generations. Average fitness may well decline. But theorems

exist to prove that code-substrings that have above average fitness values for the current

population are sampled at an exponential rate for inclusion in the subsequent population

(Holland 1975, 139–140). Each generation’s population contains a biased sample of code-

strings, so that a substring’s performance in that population is a biased estimate of its

average performance over all possible populations (De Jong 1993; Grefenstette 1993).

The long-run properties of a GA are best understood by thinking of the GA as a Markov

chain. A state of the chain is a code-string population of the size used in the GA. For

code-strings of finite length and GA populations of finite size, the state space is finite. If

such a GA uses random reproduction and random mutation, all states always have a positive

probability of occurring. A finite GA with random reproduction and mutation is therefore
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a finite and irreducible Markov chain.11 An irreducible, finite Markov chain converges at an

exponential rate to a unique stationary distribution Billingsley (1986, 128). This means that

the probability that each population occurs rapidly converges to a constant, positive value.

Nix and Vose (1992; Vose 1993) use a Markov chain model to show that in a GA where

the probability that each code-string is selected to reproduce is proportional to its observed

fitness, the stationary distribution strongly emphasizes populations that contain code-strings

that have high fitness values. They show that asymptotic in the population size—i.e., in

the limit for a series of GAs with successively larger populations—populations that have

suboptimal average fitness have probabilities approaching zero in the stationary distribution,

while the probability for the population that has optimal average fitness approaches one. If

k > 1 populations have optimal average fitness, then in the limiting stationary distribution

the probability for each approaches 1/k.

The crucial practical implication from the theoretical results of Nix and Vose is that

a GA’s success as an optimizer depends on having a sufficiently large population of code-

strings. If the GA population is not sufficiently large, then the Markov chain that the GA

implements is converging to a stationary distribution in which the probabilities of optimal

and suboptimal states are not sharply distinguished. Suboptimal populations can be as likely

or even more likely to occur than optimal ones. Because the Markov chain is irreducible, the

GA will necessarily generate an optimal code-string if it is allowed to run for an unlimited

number of generations. But if the stationary distribution is not favorable, the run time

in terms of generations needed to produce an optimal code-string will be excessive. If πj

is the probability of an optimal code-string sj, then the expected number of generations

until sj occurs (from an arbitrary starting population) is reasonably approximated by the

recurrence time, µj = 1/πj (Feller 1970, 393). For all but trivially small state spaces, an

unfavorable stationary distribution can easily imply an expected running time in the millions

of generations. But if the stationary distribution strongly emphasizes optimal populations,

11Feller (1970, 372–419) and Billingsley (1986, 107–142) review the relevant properties of Markov chains.
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relatively few generations may be needed to find an optimal code-string. In general, the

probability of producing an optimum in a fixed number of generations increases with the

GA population size.

GAs have much in common with simulating annealing (SA) algorithms. SA is modeled

on annealing, a physical process common in metallurgy in which a solid is slowly cooled so

that when it eventually has its structure frozen, it is frozen at its minimum energy state

(Cerny 1985; Kirkpatrick, Gelatt, and Vecchi 1983). Extensions to simulating annealing,

called simulating tempering techniques, have been made where the temperature at which the

process is cooled is taken to be an additional random variable during optimization (Geyer

and Thompson 1995; Marinari and Parisi 1992). All are probabilistic methods for finding the

global minimum of a loss function that may be irregular and contain several local minima.

The theoretical properties of GAs and simulating annealing algorithms are very similar.

Both are best understood by considering the properties of Markov chains discussed above

(Bertsimas and Tsitsiklis 1993). Details of the precise GA we are using, GENOUD, are

offered in Sekhon and Mebane (1998).

4.2 Balance Tests and their Properties

In order to maximize balance across treatment and control groups, it is necessary to

be able to measure and test for balance. There are many issues involved with choosing

appropriate tests, and we have little to add to this vast literature. The best choice of what

tests to use is obviously dependent on the precise application. For example, if the application

at hand is an experiment where there was randomization but the randomization failed to

produce covariate balance, balance tests based on randomization inference may be both

powerful and require only weak assumptions (e.g., Bowers and Hansen 2005). Since we are

using observational data, we cannot use such tests.

For our application we employ paired t-tests to test for differences in means (because

matching produces matched pairs). And because it is important to not simply test for

14



differences of means, bootstrapped Kolmogorov-Smirnov tests are used for nonparametric

tests of the equality of distributions. The p-value of the usual Kolmogorov-Smirnov test

is not consistent when the distributions being compared are not continuous. However, as

Abadie (2002) proves, bootstrapped Kolmogorov-Smirnov tests are consistent even when

there are point masses in the distributions. A second issue arises when trying to conduct tests

on estimated propensity scores. Estimated propensity scores contain nuisance parameters

associated with the estimation method used, usually logistic regression. Also, estimated

propensity scores often have point masses when the baseline covariates are not continuous.

We resolve both issues by computer simulation—see Appendix A for details.

5 Monte Carlo Experiments

Two different Monte Carlo experiments are presented. In the first, the experimental

conditions satisfy assumptions outlined in Rubin and Thomas (1992a). In this experiment,

the true propensity score is known, all baseline covariates are distributed following a normal

distribution, and the mapping between X and Y is linear. Although the true propensity

score is known, the estimated propensity score (with correct specification) is used in each

Monte Carlo sample because it will perform better for efficiency reasons (Rosenbaum and

Rubin 1983).

In the second Monte Carlo experiment, the assumptions required for EPBR are not

satisfied. This experiment is a difficult case for matching. Some of the baseline variables

are discrete and others contain point masses and skewed distributions. The propensity score

is not correctly specified, and the mapping between X and Y is nonlinear. One thousand

Monte Carlo samples are performed for both experiments.

For each Monte Carlo sample in Experiment 1, there are 50 treated observations and 100

control observations. There are three baseline covariates all of which are normally distributed

with variance 1 and zero covariances. The baseline covariates for the treated observations
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all have means equal to 1 and the covariates for the control group all have means equal to

0.2. The effect of treatment is zero and the outcome, Y , is generated as follows:

Y = Xβ + ε

where ε ∼ N(0, .5) and all of the β parameters are equal to 1.

For the second Monte Carlo sampling experiment, the distribution of covariates was

chosen to make the setting as realistic as possible, with variables taken from the Dehejia and

Wahba (1999) experimental sample of the LaLonde (1986) data. There are eight baseline

variables, none of which have ellipsoidal distributions. They are age, years of education, real

earnings in 1974, real earnings in 1975 and a series of indicator variables. The indicator

variables are Black, Hispanic, married and high school diploma. The two earnings variables

have large point masses at zero, have fat tails and are heavily skewed distributions (for more

details, see Section 6). Given this, the EPBR property is unlikely to hold. In this simulation

we assume a homogeneous treatment effect of $1000. The equation that determines outcomes

Y (fictional earnings) is:

Y = 1000 T + .1 exp [.7 log(re74 + .01) + .7 log(re75 + 0.01)] + ε

where ε ∼ N(0, 10), re74 is real earnings in 1974, re75 is real earnings in 1975 and T is the

treatment indicator. The mapping from baseline covariates to Y is obviously nonlinear and

only two of the baseline variables are directly related to Y .

The true propensity score for each observation, πi, is defined by:

πi = logit−1
[
1 + .5µ̂ + .01 age2 − .3 educ2 − .01 log(re74 + .01)2 + .01 log(re75 + .01)2

]
where µ̂ equals the linear predictor obtained by estimating a logistic regression model, where

the dependent variable is the actually observed treatment indicator in the Dehejia Wahba

(1999) experimental sample of the LaLonde (1986) data. The true propensity score in the
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Monte Carlo experiment is a mix of the estimated propensity score in the Dehejia Wahba

sample plus extra variables in Equation 5, because we want to ensure that the propensity

model estimated in the Monte Carlos samples would be badly misspecified. The linear

predictor is:

µ̂ = 1 + 1.428× 10−4age2 − 2.918× 10−3educ2 − .2275 black +−.8276 Hisp

+ .2071 married− .8232 nodegree− 1.236× 10−9re742 + 5.865× 10−10re752

− .04328 u74− .3804 u75

where u74 is an indicator variable for if real earnings in 1974 are zero and u75 is an indicator

variable for if real earnings in 1975 are zero.

In each Monte Carlo sample of this experiment, the propensity score is estimated using

logistic regression and the following incorrect functional form:

µ̂∗ = α + α1 age + α2 educ + α3 black + α4 Hisp

+ α5 married + α6 nodegree + α7 re74 + α8 re75

+ α9 u74 + α10 u75

Table 1 presents results of the first Monte Carlo experiment. The first column of the

table presents the mean estimate of a given estimator and the second column the root mean

square error over 1000 Monte Carlo samples. Recall that the true estimate is 0. In this

experiment, where the propensity score is correctly specified and EPBR holds, GenMatch

has, as expected, the lowest mean square error and the second–lowest bias. The “Raw”

estimate refers the naive unadjusted ATE which is simply, in a given sample, the mean

treatment outcome minus the mean control outcome. The raw bias is 604. The bias of

Mahalanobis distance matching is −8.63, for the joint propensity score Mahalanobis distance

estimator the bias is −5.96, and for propensity score matching the bias is −2.45. GenMatch

has a bias of −2.47, which is the second lowest result, almost indistinguishable from the bias
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of propensity score matching. Consistent with the results of Rosenbaum and Rubin (1983),

the estimator with the second lowest root means square error is the joint propensity score

Mahalanobis distance estimator.

The last two columns of Table 1 present the ratios of bias and root mean square error

of a given estimator relative to GenMatch. The two other multivariate matching methods,

Mahalanobis distance and the joint estimator, both have significantly more bias than Gen-

Match: Mahalanobis distance has 3.5 times the bias and the joint estimator 2.4 times the

bias. Propensity score matching, however, only has .993 times the bias of GenMatch. This

is to be expected because as Abadie and Imbens (forthcoming) prove, if one is matching on

more than one continuous variable the bias is not
√

n consistent. What is surprising is how

close the GenMatch bias is to that of propensity score matching.

The Mahalanobis distance root mean square error is 1.33 times as large as that of Gen-

Match, for the propensity score estimator it is 1.61 times as large, and for the joint estimator

it is 1.21 times as large. Although the propensity score estimator has a slightly lower bias

than GenMatch (its bias is 0.993 times that of GenMatch), its root mean square error is

1.61 times as large. GenMatch dominates both other multivariate matching methods both

in terms of bias and MSE, and dominates propensity score matching in terms of MSE.

Table 2 presents the results for the second Monte Carlo experiment. In this experiment

the EPBR conditions do not hold and the propensity score is misspecified. GenMatch now

clearly dominates all other estimators both in terms of means square error and bias. The

other matching estimators have a bias which range from 16.8 times to 28 times as large as

that of GenMatch. The root mean square error of the other matching estimators ranges

from 1.6 times to 2.8 times as large as that of GenMatch. Once again, the joint matching

estimator has the second lowest mean square error (1.63 times that of GenMatch). But

this time it also has the second lowest bias (at 16.8 times that of GenMatch). This is

even though the propensity score is not correctly specified. It is worth noting that both

Mahalanobis distance and propensity score matching have a higher bias than the “Raw”
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difference between treatment and control groups across the Monte Carlo samples.

GenMatch is the only estimator which, across samples, produces a reliable estimate of

the true effect. The true causal estimate is $1000 and the average GenMatch bias is only

25.6 (0.0256%), with root mean square error of 378.

These Monte Carlos show that in a given finite sample genetic matching will produce

better balance in covariates than Mahalanobis distance even if the variables are multivariate

normal. And in a given sample, it will improve the balance obtained even if the propensity

score is correct. In cases where the propensity score is not correctly estimated or where the

variables are discrete or otherwise such that the EPBR property is unlikely to hold, genetic

matching performs well and the other matching methods perform poorly.

6 Example: Job Training Experiment

Following a research design pioneered by LaLonde (1986) and later duplicated by Dehejia

and Wahba (1997; 1999; 2002; Dehejia 2005) (DW) and Smith and Todd (2001, 2005a,b)

(ST), we use data from a randomized job training experiment, the National Supported Work

Demonstration Program (NSW), to illustrate the reliability of GenMatch versus conventional

matching methods and help resolve a longstanding debate in the literature. First we use

the NSW experimental data to establish benchmark estimates of average treatment effects.

Then, to create the type of observational setting and dataset typically encountered within

the social sciences, data from the experimental control group are replaced by data from the

Current Population Survey (CPS) and the Panel Study of Income Dynamics (PSID). The

goal is to determine which statistical methods, if any, are able to use observational survey

data to recover the results obtained from the randomized experiment. This dataset and

research design is canonical in the causal inference literature and has continued to provoke

debate because it is representative of a common and important type of inferential problem

in non-experimental settings.
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Although the NSW data has been examined many times by DW, ST, and others (Heck-

man and Hotz 1989; Firpo 2004) and has been widely distributed as a teaching tool for

use with matching software (Abadie and Imbens 2003; Ho, Imai, King, and Stuart 2004b;

Sekhon 2005), this paper extracts new information and reaches new conclusions because ge-

netic matching significantly boosts the degree of balance achieved. Without genetic matching

it is difficult (if not impossible) to achieve a high degree of balance with the NSW data, and

this is precisely what is required for this inferential problem.

6.1 Background

The NSW was a federally and privately funded program implemented in the mid-1970s

to provide work experience for 6–18 months to individuals facing economic and social dis-

advantages. Those randomly selected to join the program participated in various types of

work. Information on pre-intervention variables (pre-intervention earnings, as well as educa-

tion, age, ethnicity, and marital status) was obtained from initial surveys and Social Security

Administration records. By limiting himself to those assigned to treatment after December

1975, LaLonde (1986) ensured that retrospective earnings information from the experiment

included calendar 1975 earnings, a covariate which he included in his models. Limiting the

dataset to those who were no longer participating in the program by January 1978 ensured

that the post-intervention data included calendar 1978 earnings, the outcome of interest.12

LaLonde (1986) obtained the experimental treatment effect of training on earnings and

then compared this estimate to the results of various statistical analyzes that would have been

reported by econometricians evaluating the treatment effect without the benefit of a ran-

domized control group. His work revealed that standard econometric procedures (ordinary

least squares and instrumental variable regression) were unable to replicate the experimen-

tal results, and that conventional statistical diagnostics and specification tests were of little

12In this paper, as in all papers following LaLonde (1986), only male participants are included in the
analysis.
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value. An investigator with no knowledge of the true experimental outcomes would have no

way of knowing which models, techniques, and non-experimental control groups were able to

produce accurate estimates of average treatment effects. LaLonde’s paper was one of several

of that period (Hendry 1980; Leamer 1983) to openly challenge widely-accepted methods

and spark the debate over causal inference in observational settings.

More than a decade later, Dehejia and Wahba (1997, 1999) moved the debate forward by

reconstructing the NSW data and adopting the LaLonde (1986) research design—with one

important difference. DW cited cited theoretical and empirical labor economics literature to

support the claim that it was necessary to control for more than one year of pre-intervention

earnings.13 Thus, DW limited themselves to the subset of LaLonde’s NSW data for which

1974 earnings could be obtained: those individuals who joined the program early enough

for the retrospective earnings information to include 1974, as well as those individuals who

joined later but were known to have been unemployed prior to randomization.14 LaLonde’s

original sample was composed of 297 treated observations and 425 control observations; the

DW subset contains 185 treated and 260 control observations.

DW reported that nearest-neighbor propensity score matching methods were able to suc-

cessfully recover the average treatment effect for the treatment group “when the range of

estimated propensity scores of the treatment and comparison groups overlap, and when the

variables determining assignment to treatment are observed” (1053). Their results were

widely interpreted as evidence that there was a reliable way to estimate average causal ef-

fects in non-experimental settings under certain testable conditions.15 These claims were

questioned by Smith and Todd (2001), who replicated DW’s results and published a series

13See Ashenfelter (1978); Ashenfelter and Card (1985); Card and Sullivan (1988).
14The selection of this subset provoked considerable criticism from ST.
15Contrary to the way some have interpreted their paper, Dehejia and Wahba (1999) did not claim that

matching estimators provide a magic bullet method for evaluating social experiments: “The methods we
suggest are not relevant in all situations. There may be important unobservable covariates. . . However,
rather than giving up, or relying on assumptions about the unobserved variables, there is substantial reward
in exploring first the information contained in the variables that are observed. In this regard, propensity
score methods can offer both a diagnostic on the quality of the comparison group and a means to estimate
the treatment impact” (1062).
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of papers arguing that “. . . except in the special case of DW’s sample and their propen-

sity score specification, the matching estimators applied to the NSW data often exhibit

substantial biases” (113). The debate continues, most recently with Dehejia (2005), which

suggests researchers should confirm the quality of matched comparison groups by checking

the sensitivity of estimates to small changes in the propensity score specification.16

6.2 Data

LaLonde’s non-experimental estimates were based on two sets of comparison groups:

the Panel Study of Income Dynamics (PSID-1) and Westat’s Matched Current Population

Survey-Social Security Administration file (CPS-1). Both PSID-1 and CPS-1 differ substan-

tially from the NSW experimental treatment group in terms of age, marital status, ethnicity,

and pre-intervention earnings. All mean differences across treated and control groups are

significantly different from zero at any conventional significance level, except the indicator

for Hispanic ethnic background.

To bridge the gap between treatment and comparison group pre-intervention character-

istics, LaLonde extracted subsets from PSID-1 and CPS-1 (denoted PSID-2 and -3, and

CPS-2 and -3) that he deemed similar to the treatment group in terms of particular covari-

ates. PSID-2 selects from PSID-1 all men not working when surveyed in 1976; PSID-3 selects

from PSID-1 all men not working when surveyed in either 1975 or 1976; CPS-2 selects from

CPS-1 all males who not working in 1976; CPS-3 selects from CPS-1 all males unemployed in

1976 with 1975 income below the poverty level. CPS-1 has 15,992 observations, CPS-2 has

2,369 observations, and CPS-3 has 429 observations; PSID-1 has 2,490 observations, PSID-2

16A feature of this sensitivity test is that it requires the analyst to consider outcomes in the process
of judging the quality of the matched samples. As noted by Rubin (2001), one of the great benefits of
experiments is the discipline that comes of deciding how data is collected prior to observing outcomes: “If
we could try hundreds of designs and for each see the resultant answer, we could. . . choose the design that
generated the answer we wanted! The lack of availability of outcome data when designing experiments is
a tremendous stimulus for ‘honesty’ in experiments, and can be in well–designed observational studies as
well” (169). The GenMatch algorithm adheres to this principle, performing balance tests entirely blind to
the outcomes of interest.
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has 253 observations, and PSID-3 has 128 observations.

According to LaLonde, these smaller comparison groups were composed of individuals

whose characteristics were similar to the eligibility criteria used to admit applicants into the

NSW program. Even so, the subsets remain substantially different from the control group

and from each other.17 Because LaLonde’s study and the NSW experiment took place so

many decades ago, it is impossible to know precisely how and why the CPS- and PSID-2,

and -3 subsets were constructed.

6.3 Analysis

The NSW data and LaLonde (1986) research design presents an exceptionally difficult

evaluation problem. As observed by Smith and Todd (2005a), the data does not include a

rich set of baseline covariates, the non-experimental comparison groups are not drawn from

the same local labor market as participants, and the dependent variable is not measured

identically for participants and non-participants. It is also important to note that there is

not one uniquely well-defined experimental target result, but rather several candidate target

estimates, all of which have wide confidence intervals.18 Much of the prior literature has

focused on the experimental target as the simple difference in the means of outcomes across

treatment and control groups, and we shall do the same. By this metric, the estimated

average treatment effect for the treated is $886 in the LaLonde sample and $1794 in the DW

subsample, and in both cases the range of the 95% bootstrapped confidence interval exceeds

$900 (see Table 3).

17LaLonde’s paper reports that he experimented with matching the comparison groups even more closely
to the pre-training characteristics of the experimental sample, but found these closely matched comparison
groups were extremely small.

18One might propose other experimental target estimates produced via matching, regression adjustment,
or difference-in-difference estimation: all produce similar, though different, answers.
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6.3.1 GenMatch

Given that most of the NSW covariates are discrete and given that the income variables

are highly skewed with fat tails and contain point masses, the EPBR property is unlikely to

hold. Moreover, the correct specification of the propensity score is unknown. Given these

difficulties, it is not surprising that Mahalanobis distance and propensity score matching

methods are unreliable in the NSW setting (see Sections 6.3.3 and 6.3.2 below) because

they fail to achieve an adequate degree of balance in this very difficult evaluation problem.

GenMatch reliably recovers accurate estimates of the experimental results in both DW and

LaLonde samples because it incorporates sufficiently strict tests for balance and it harnesses

a search algorithm capable of achieving the balance required to satisfy these tests.

Figure 1 shows the relationship between the fitness value (the lowest p-value obtained,

after genetic matching, from covariate-by-covariate paired t- and KS-tests across all covari-

ates’ interaction and quadratic terms) and the square error associated with treatment effect

estimates in LaLonde and DW samples. Each point represents an attempt at matching re-

sulting in a balance test and an estimate of causal effect. Square error is calculated using

the simple experimental difference in means. In both cases, the square error declines as

the balance improves. Note that square error does not decline sharply until we achieve far

better balance than that required by commonly administered conventional tests. In the DW

sample, square error declines sharply only after fitness values exceed approximately 0.15.

The LaLonde sample is even more demanding, with square error declining sharply only after

fitness exceeds approximately 0.20.

Figure 2 shows how the distribution of GenMatch estimates vary with fitness. The

upper panel shows the DW sample, with estimates distributed above and below the target

experimental result. The 64 best-balancing estimates at the maximum fitness value are all

extremely accurate, within $52 of the experimental difference in means. The average of the

best-balancing estimates is $1734 (see Table 3). Note that in the DW sample, it is possible

to get lucky and produce a reliable result even when balance has not been attained, which
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helps explain why it is possible for DW to obtain accurate results with propensity scores

models that do not achieve a high degree of balance. Reliable results are obtained only at

the highest fitness values.

The lower panel of Figure 2 shows that in the LaLonde sample, all the GenMatch esti-

mates are negatively biased, which is to be expected given the omission of earnings in 1974,

the second year prior to training. As noted by Dehejia and Wahba (1999), there is a wealth

of economics literature to show that failing to control for more than one year of pre-training

income should induce bias. The sign of the bias is due to the fact that the omitted variable

compromises the quality of the matches; matched control individuals are better off than

the treated individuals would be in the absence of treatment. This is not surprising, given

that many in the treatment group experienced two years of zero pretreatment earnings and

are being matched with control individuals who did not.19 Even so, in this difficult case,

GenMatch obtains results within a small neighborhood of the experimental result.

In the LaLonde sample we obtained 451 estimates with equally best-balancing fitness

values of 0.23. Of these estimates, the mean was $281.64, the lowest was $234 and the

highest was $345; the mode, $285.41, was shared by 383 of these estimates. Standard errors

ranged from $702 to $715. Recall that the experimental difference in means for the LaLonde

sample was $886, with a bootstrapped 95% confidence interval bounded at $-55 and $1864

(Table 3). While the GenMatch point estimates do appear biased, all 64 best-balancing

estimates are well within the confidence interval of the experimental result. Furthermore,

the experimental result is less than one standard error away from all the best-balancing

GenMatch point estimates.20

19We have results confirming that balancing on all covariates except 1974 earnings does not automatically
induce balance on 1974 earnings.

20It has not escaped our attention that the experimental median estimate in the LaLonde sample is $485,
suggesting that the experimental difference in means may be overstating the the central tendency of the
true effect. Our best-balancing matching estimate with experimental data, $528 (fitness value of 0.22), lends
support to this hypothesis.

25



6.3.2 Propensity Score Matching

ST were correct to criticize the unreliability of simple nearest-neighbor propensity score

methods in this dataset, but the GenMatch results clearly repudiate the claim that match-

ing could not reliably solve the evaluation problem. The root of the problem is not with

matching, but with overly-lenient conventional tests for balance, and the difficulty of achiev-

ing a high degree of balance using nearest-neighbor propensity score methods. There are

numerous propensity score models that achieve weak but conventionally-accepted degrees

of balance and produce inaccurate estimates of the effect of training. DW follow a conven-

tional approach to balance-testing, checking balance across variables within blocks of a given

propensity-score range. The DW papers do not provide detailed information on the degree

of balance achieved on each variable. Instead, the authors plot the distributions of treated

and control propensity scores and claim overlap. Upon our replication of Dehejia and Wahba

(2002) and Dehejia (2005), it is clear that while their figures indicate overlap and their results

satisfy conventional notions of balance, performing paired t-tests and Kolmogorov-Smirnov

tests across matched treated and control covariates yields significant p-values.

For example, consider the case that should be most favorable to the DW argument:

propensity score matching with the largest of the non-experimental control groups, CPS-1,

and the most recent propensity score specification from Dehejia (2005).21 In this case, the

dummy variable for high school degree has a significant t-test p-value, as does its interaction

with age, education, and Black.22 We obtain Kolmogorov-Smirnov p-values less than 0.01

for all non-dichotomous covariates: age, education, and two years of pre-treatment income.

Moreover, the ratios of covariate variances across control and treatment groups exceed 2 in

several cases.

Conventional balance tests, like those used by DW and ST, typically involve t-tests

21We have replicated the earlier DW results across their models and datasets and results are much the
same. Their propensity score matching methods do not achieve a very high degree of balance across all the
confounders, their interactions, and the quadratic terms.

22These p-values are significant regardless of whether the paired or unpaired t-test is used.
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performed across the variables included in one’s model of treatment assignment. After an

extensive search across propensity score models and non-experimental comparison groups,

we identified five cases capable of producing paired t-test p-values greater than 0.05 for all

covariates included in the propensity score model. Four involved the DW subsample, and one

utilized the original LaLonde treatment group. Estimates of these models’ mean treatment

effects are provided in Table 3, and are clearly unreliable. One particular propensity score

model utilized in association with the DW dataset produced matches such that the lowest

paired t-test p-value was 0.56. The lowest KS-test p-value was zero, and, therefore, this

model would have been rejected by our strict test. Thus, unsurprisingly, the resulting point

estimate was outside the 95% confidence interval of the experimental result.23

6.3.3 Mahalanobis Matching

In the Dehejia and Wahba subsample, both simple Mahalanobis matching and Mahalanobis

matching incorporating the propensity score fail to balance all baseline covariates and their

interaction and quadratic terms. For example, when using the propensity score, the paired

t-test p-value associated with age and several covariates interacted with age show significant

differences at conventional levels. Yet even though the balance tests, the lack of distribu-

tional symmetry, and the uncertainty surrounding the propensity score give no cause for

confidence in the Mahalanobis estimates, the results are, in this case, very near the experi-

mental benchmark of $1794. Simple Mahalanobis matching produces an estimate of $1807.

When the joint propensity score–Mahalanobis method is used, the estimate is $1950. These

estimates underscore the same fact illustrated in the upper panel of Figure 2: for any given

dataset and given causal question, it is possible to get lucky and obtain good results even

when the appropriate identification assumptions do not obtain.

In the LaLonde dataset, which does not include two years of pre-treatment earnings, sim-

23We achieve substantively similar results when we disallow matching on control units outside the support
of treated units’ propensity scores. After culling these control units and ensuring all t-test p-values are greater
than 0.05, we still produce estimates outside the 95% confidence interval of the experimental estimate.
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ple Mahalanobis matching fails a strict balance test, but multivariate Mahalanobis matching

with the propensity score produces balance such that the lowest p-value for univariate KS

and paired t-tests across all interaction and quadratic terms is 0.053. This is a higher degree

of balance than is typically required of conventional matching estimators and much higher

than the balance found in the Dehejia and Wahba subsample, but the resulting estimate of

-$484 is highly biased and far below the lower bound of the experimental estimate’s 95%

confidence interval. As is evident from the lower panel of Figures 1 and 2, fitness values

considerably greater than 0.05 are required for reliable causal inference in this setting.

7 Conclusion

The debate arising from the NSW dataset makes clear the need to find algorithms which

produce matched datasets with high levels of covariate balance. Small and arbitrary changes

in the propensity score model resulted in radically different causal estimates. But this

is unsurprising given that although these propensity score models reduced covariate bias,

significant bias remained. Some specifications simply got lucky and landed near the exper-

imental benchmark while others, with an equally poor degree of balance, did not. The fact

that so many talented researchers over several years failed to produce a propensity score

model which had a high degree of covariate balance is a cautionary tale. In situations like

these, machine learning can come to the rescue. There is little reason for a human to try all

of the multitude of models possible to achieve balance when a computer can do this more

systematically and much faster.

Historically, the matching literature, like much of statistics, has been limited by compu-

tational power. The rise of optimal full matching is a good example of what is now possible

with fast computers. We think that genetic matching is another example. It is an algorithm

that allows the researcher to include her substantive knowledge of the data when choosing

the covariates to match on, the balance tests to conduct and the propensity score model
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to include. It is also possible to start the algorithm with suggested weights and indeed it

is possible for the researcher to bound the weights at will. From this substantive base, the

algorithm will search and improve balance to a degree far greater than what is realistically

achievable by human researchers. The debate regarding matching and the LaLonde dataset

has gone on for over eight years, but in this time, smart and diligent researchers were

unable to produce a propensity score model with anywhere near the balance achieved by our

algorithm in a few hours.

There are many outstanding questions and issues. There are other ways to generalize

Mahalanobis distance and these should be examined. Our proposed generalization works well

in this example and in a set of Monte Carlos, but there is no claim that it is generally the

best. It is unclear how to best measure the degree of covariate balance. It is surprising how

little attention this issue has received in the matching literature. Finally, it is possible to use

alternative optimization methods to search the space of possible solutions. New theoretical

work may be especially useful in helping to design a more efficient optimization algorithm.

A Bootstrap Kolmogorov-Smirnov Test

The bootstrap is used to account for the sampling distribution of nuisance parameters,

and Monte Carlo simulation is used to construct the correct test level when data contain

point masses. We first outline the algorithm for calculating Kolmogorov-Smirnov p-values

that are consistent even when there are point masses. In the next subsection we discuss the

complete algorithm that corrects for both point masses and nuisance parameters.

A.1 Point Mass

Let Y be the n × 1 data vector of interest. Let Y1 be the first sample of Y and Y2

the second each of which has, respectively, length n1 and n2. Let kss denote the usual

Kolmogorov-Smirnov (KS) test statistic, and let ksp denote the probability of observing kss
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as determined by the usual formulas (Conover 1971, 295–301, 309–314).

The point mass algorithm is:

Step 1 Calculate the KS statistic in the original (full) sample using Y1 and Y2; denote this

k̂s
f

s .

Step 2 Resample n observations from Y with replacement B times. Denote a given resample

by Y b. Divide Y b into two samples equal in size to n1 and n2, denoted Y b
1 and Y b

2 .

Compute kss using Y b
1 and Y b

2 , denote this statistic as k̂s
b

s.

Step 3 Calculate ksmc which is the Monte Carlo p-value as: k̂smc =
∑B

b=1 1
{

k̂s
b

s >= k̂s
f

s

}
/B

A.2 Nuisance Parameters

The bootstrap is used to integrate over the distribution of the parameters when estimating

nuisance parameters (Hall 1992). In this case, we want to obtain the p-value for the KS test

applied to Ŷ1 and Ŷ2. The algorithm is:

Step 1 Calculate the KS statistic in the original (full) sample using Ŷ1 and Ŷ2; denote this

k̂s
f

s .

Step 2 Calculate the Monte Carlos KS test in the full sample; denote this as k̂s
f

mc.

Step 3 Take B samples from the multivariate distribution of the nuisance parameters. For

logistic regression, this would be draws from the multivariate normal distribution of

the coefficient vector, where each draw is denoted by β̂b. For each bootstrap draw

calculate Ŷ b. In the case of logistic regression this would be µ̂ = Xβ̂b. And

Ŷ b = exp(µ̂)/(1 + exp(µ̂)).

Step 4 For each Ŷ b calculate ksmc denoted as k̂s
b

mc.

Step 5 The bootstrap p-value is calculated as: k̂sbs =
∑B

b=1 1
{

k̂s
b

mc >= k̂s
f

mc

}
/B
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k̂sbs has taken into account both the sampling distribution of the nuisance parameters

and calculated the empirical p-value in each Monte Carlos step, so the data may contain

point masses.
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Figure 1: Squared Error Declines with Balance Achieved
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Figure 2: Reliable Estimates Require High Degree of Balance
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Lower bound, 95% CI of experimental estimate
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