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Abstract

We report a controlled study investigating the effect of visual
information (i.e., seeing the speaker) on spoken language com-
prehension. We compare the ERP signature (N400) associated
with each word in audio-only and audio-visual presentations of
the same verbal stimuli. We assess the extent to which surprisal
measures (which quantify the predictability of words in their
lexical context) are generated on the basis of different types of
language models (specifically n-gram and Transformer mod-
els) predict N400 responses for each word. Our results indicate
that cognitive effort differs significantly between multimodal
and unimodal settings. In addition, our findings suggest that
while Transformer-based models, which have access to a larger
lexical context, provide a better fit in the audio-only setting, 2-
gram language models are more effective in the multimodal
setting. This highlights the significant impact of local lexical
context on cognitive processing in a multimodal environment.
Keywords: Surprisal theory, face-to-face communication
setup, multimodal language comprehension, language models.

Introduction
A significant amount of research in language comprehension
has been dedicated to examining how humans interpret writ-
ten or spoken language. These studies have mainly focused
on analyzing the verbal form of language (Fenk & Fenk,
1980; Hale, 2001; Jaeger & Levy, 2006; Torabi Asr & Dem-
berg, 2015). This approach involves building an understand-
ing of the text or speech one word at a time, with some words
being more difficult to process than others. Expectation-
based theories of sentence processing (Levy, 2008) propose
that the difficulty in processing a sentence is driven by the
predictability of upcoming lexical material in context. Sur-
prisal, an information-theoretic measure of predictability, is
computationally operationalised using language models (Au-
rnhammer & Frank, 2019; Jaeger & Levy, 2006; Meister et
al., 2021; Michaelov & Bergen, 2020). Language models
(LMs) calculate the probability of a word given its context,
which is then used to calculate surprisal. Surprisal has been
supported by behavioural and neural measures of processing
difficulty (Aurnhammer & Frank, 2019; Frank et al., 2015;
Jaeger & Levy, 2006).

However, a large body of previous work in language com-
prehension does not consider the visual contextual cues avail-
able in face-to-face communication. Language has evolved,
is learnt and is most often used in face-to-face contexts in
which comprehenders have access to a multitude of visual
cues, such as hand gestures, body movements and mouth

movements that contribute to language processing (Holler &
Levinson, 2019). In this paper, we follow this line of research
and examine how multiple modalities of information impact
language comprehension. We present a controlled study com-
paring the comprehension of language-related stimuli in both
audio-only and audio-visual conditions and analyse changes
in ERP signals.

N400, Language Models and Surprisal
The N400 is an event-related potential (ERP) component
peaking negatively at ≈400ms at the central parietal areas that
are observed in the brain during language processing tasks,
measured using electroencephalography (EEG). The N400 is
larger in response to semantically incongruent or unexpected
words compared to congruent or expected words (Kuperberg,
2016; Kutas & Federmeier, 2011; Kutas & Hillyard, 1980;
Michaelov & Bergen, 2020). This indicates that the N400 is
related to semantic processing, and the N400 effect has been
interpreted as reflecting the brain’s automatic evaluation of
incoming linguistic information for semantic coherence Typi-
cally, when an upcoming word is semantically consistent with
the context, it leads to a smaller N400 amplitude compared to
when it is not.

It has been reported in reading-related tasks that words
with higher surprisal, thus less predictable1 and more diffi-
cult to process, elicit more negative N400 (Aurnhammer &
Frank, 2019; Delogu et al., 2017; Frank et al., 2015; Merkx
& Frank, 2020; Michaelov et al., 2021; Michaelov & Bergen,
2022; Michaelov & Bergen, 2020). Previous research has
demonstrated the robustness of the N400 effect, and surprisal
has been shown to predict N400 for various experimental
tasks, including cloze-style tasks and semantic relatedness,
among others (Michaelov & Bergen, 2020). Recent work ob-
serve that surprisal estimates computed using some types of
language models may be better predictors than other types.
For example, Frank et al. (2015) find that n-gram based lan-
guage models with larger window sizes (4-grams) were best
at explaining variance. More recent works have investigated
Transformer based language models (Vaswani et al., 2017)
and show that Transformer based models may be better pre-
dictors of suprisal than other language models. Michaelov et
al. (2021) compared surprisal obtained from GPT-2 (Radford

1predictability is estimated using language models
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et al., 2019) (a Transformer based language model trained
over large web-based corpora), Recurrent Neural Network
(RNN) based language model (Elman, 1990) and manual
cloze probability in predicting N400 in cloze tasks, where the
target words are manipulated to have different cloze probabil-
ities. The authors discovered that all three measures showed
a significant association with N400, but surprisal estimates
generated from GPT-2 explained the largest amount of vari-
ance. Merkx and Frank (2020) conducted a study in which
they trained language models with Transformer and RNN-
based models in a controlled setting using similar corpora.
Under these controlled conditions, the study found that sur-
prisal estimates generated from Transformer-based models,
overall, provided a better fit to the EEG data. The increased
performance has been hypothesized to be primarily due to the
access to a larger lexical context in Transformer-based lan-
guage models, which helps the model capture longer-range
dependencies.

Overall, most recent works have shown that surprisal es-
timates from Transformer based models correlate better with
N400 based estimates of cognitive effort. We note that the
majority of the N400 and surprisal correlations were found
in reading based tasks. Some recent works have shown that
surprisal also predicts N400 based cognitive effort in audio
(Brennan & Hale, 2019) and audio-visual tasks (Zhang, Ding,
et al., 2021; Zhang, Frassinelli, et al., 2021) contexts. How-
ever, it remains unclear whether Transformer-based models
such as GPT-2 are better predictors in audio or audio-visual
settings where multiple sources of information are available.

Multimodality, Surprisal and N400
Language learning and use is fundamentally face-to-face, in-
volving information from multiple sources (or modalities)
such as gestures, facial expression, mouth movements and
prosody, in addition to the lexical content of speech (Zhang,
Ding, et al., 2021; Zhang, Frassinelli, et al., 2021). These
modalities provide additional context and meaning, making
communication more effective (Ankener et al., 2018; Grzyb
et al., 2022; Zhang, Ding, et al., 2021; Zhang, Frassinelli, et
al., 2021). Recent studies have shown that multiple modal-
ities, such as prosody (the rhythm, stress, and intonation of
speech) and gestures, play a key role in shaping language use
during face-to-face interactions and in general language use.

Crucially, multimodal information, such as prosody and
gesture, also modulates N400. For example, prosodic stress
has been shown to mark the information structure, with new
information more likely to carry prosodic stress than lexical
information (Aylett & Turk, 2004; Cruttenden, 2006). Viola-
tions of such patterns elicit larger N400 (Baumann & Schu-
macher, 2012; Dimitrova et al., 2012; Magne et al., 2005;
Wang et al., 2011), indicating that prosodic information is
taken into account in semantic processing. Crucially also vi-
sual signals such as iconic gestures (hand movements imag-
istically related to the content of speech, e.g., ”drawing” -
imitate holding a pen and moving around) have been shown
to affect the N400. Iconic gestures that mismatch the speech

elicit larger N400 (Holle & Gunter, 2007; Kelly et al., 2004;
Özyürek et al., 2007; Wu & Coulson, 2005), indicating en-
hanced semantic processing difficulty.

Zhang, Frassinelli, et al. (2021) further investigated how
multimodal information modulates N400 in the naturalistic
context where different cues co-occur. The authors in this
study present participants with videos where a speaker pro-
duces short passages with naturally occurring prosody, ges-
tures and mouth movements. They then quantified the cor-
relation between the lexical predictability (using 2-gram sur-
prisal estimates), prosody (using mean F0, capturing the pitch
of the word), gestures (annotated as meaningful, e.g. “drink-
ing” - imitate holding a cup to drink, or beats, the rhythmic
hand movements that are not directly meaningful), and infor-
mativeness of mouth movements. This study shows that ERP
between 300-600ms is indeed sensitive to surprisal, extending
the previous N400-surprisal effect to audio-visual modality.
However, they also found that the effect of surprisal on N400
is modulated by multimodal information, as pitch prosody,
meaningful gestures and informative mouth movements and
their combinations reduce the N400, especially for higher sur-
prisal words, indexing easier comprehension than predicted
by surprisal alone. Zhang, Ding, et al. (2021) further re-
port similar patterns in highly proficient non-native English
comprehenders. These findings indicate that surprisal may
not fully capture comprehension in the multimodal context,
as the surprisal effect is modulated by multimodal informa-
tion. However, both these studies only use a 2-gram based
language model to compute surprisal estimates. It is unclear
whether other models such as Transformers (which have ac-
cess to a larger window of context) would allow for a better
fit for N400 in the audio and audio-visual context. Ankener
et al. (2018) presented evidence showing that visual informa-
tion can impact lexical expectations in reading and listening
experiments. They determined the index of cognitive activ-
ity by examining the impact of visual uncertainty on word
surprisal and cognitive effort. These experiments focused on
presenting additional visual stimuli that matched the words
in the sentences. These findings suggest that in a controlled
environment where visual stimuli are carefully provided, they
have a significant effect on cognitive processing. This indi-
cates the importance of taking into account additional infor-
mation channels besides lexical content to accurately predict
cognitive effort.

The Present Study
We report a controlled study to investigate the effects of vi-
sual signals (seeing the speaker) on language comprehen-
sion. We compare the effects of audio-only and audio-visual
settings using the same language stimuli and analyze the
changes in ERP signals. We then evaluate the effectiveness
of surprisal estimates, using different language models with
varying lexical context windows, in explaining cognitive ef-
fort in both unimodal (audio-only) and multimodal (audio-
visual) conditions.

Our study extends recent observations that indicate that
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other modalities of information significantly contribute to-
wards the cognitive effort of language processing (Ankener
et al., 2018; Zhang, Ding, et al., 2021; Zhang, Frassinelli,
et al., 2021, inter alia). We provide a comparison of EEG
responses to the same lexical context but presented in a uni-
modal or multimodal manner. Crucially, our analysis of lan-
guage model surprisal estimates assesses whether language
models with different architectures and degrees of complexi-
ties provide equally good fit across unimodal and multimodal
contexts. We first present our methodology followed by the
results and finally discuss the salient observations in the fol-
lowing sections.

Methods
Electrophysiological Data
Participants We collected experimental data from two co-
horts: a) 27 participants in the audio-only condition and b)
31 participants in the audio-visual condition. All participants
were native English speakers with normal hearing, vision, and
no known neurological disorder2.

Materials 103 naturalistic passages were randomly se-
lected from the British National Corpus (BNC) and were
evaluated by native English speakers to be semantically and
grammatically coherent. They were recorded by a native
English-speaking actress with natural prosody and facial ex-
pressions. The final corpus of experimental stimuli has a
mean duration of 8.50 seconds and an average word count
of 23. The onset and offset of each word were automatically
detected using a word-phoneme aligner based on a Hidden
Markov Model (Rapp, 1995) and was further manually ver-
ified (mean=440ms, SD=376ms). Participants watched the
videos in the audio-visual setting and listened to the sound-
track of the videos in the audio-only setting.

Procedures Participants were seated approximately 1 me-
ter away from a computer and wore earphones during the ex-
periment. After three practice trials, they were presented with
audio stimuli in the first experiment and audio-visual stimuli
in the second experiment. To ensure comparability between
the two experiments, participants in the first experiment also
viewed a static snapshot of the same actress taken from the
video, to control for the presence of visual input. Each trial
was separated by a 2000ms interval, and 35 clips were fol-
lowed by attention checks to ensure participants were paying
attention to the stimuli. Participants were instructed to care-
fully listen to or watch the stimuli and answer as quickly and
accurately as possible.

The EEG data was collected for both the audio-only and
audio-visual conditions using the same 32-channel Biosemi
system with CMS and DRL as ground reference. Two ex-
ternal electrodes were attached to the left and right mastoid
as an offline reference, and two external electrodes captured

2The study was approved by the university ethics committee.
Participants gave written consent and were paid £7.5/h for their par-
ticipation.

horizontal and vertical eye movements. Participants were in-
structed to avoid moving, keep their facial muscles relaxed,
and reduce blinking, if possible. The electrode offsets were
maintained between ± 25mV. The recording was conducted
in a shielded room with a temperature of 18 °C. The EEG
session lasted approximately 60 minutes.

EEG Preprocessing The data was pre-processed with
EEGLAB (Delorme and Makeig, 2004, v.14.1.1) and ER-
PLAB (Lopez-Calderon and Luck, 2014, v.7.0.0) running un-
der MATLAB 2019a. All electrodes were included. While
N400 has a central-parietal distribution, the scalp distribution
of audio and audiovisual speech can be more frontal and may
be different from one another due to the modality differences
(Kutas & Federmeier, 2011). Therefore, instead of focusing
on a predefined region of interest (ROI), we included all elec-
trodes (Zhang, Ding, et al., 2021; Zhang, Frassinelli, et al.,
2021), categorized them into ROIs and added them in the sta-
tistical model (as in Michaelov et al., 2021, see Statistical
Analysis section below for more description). EEG files were
referenced to mastoids, down-sampled to 512Hz, separated
into -100 to 1200ms epochs time-locked to word onset and
filtered with a 0.05-100Hz band-pass filter. Artefacts (e.g.,
eye movements and muscle noise) were first corrected with
ICA. The remaining artefacts were rejected using a moving
window peak-to-peak analysis and step-like artefact analysis.
Due to likely overlap between any baseline period (-100 to
0ms) and the EEG signal elicited by the previous word, we
did not perform baseline correction, but instead extracted the
mean EEG amplitude in this time interval and later used it
as a control variable in the statistical analysis (see also Frank
et al., 2015). Following previous work (Frank et al., 2015;
Zhang, Frassinelli, et al., 2021), we take the mean ERP am-
plitude between 300-500ms as the N400 signal.

Computing Surprisal
Surprisal theory (Boston et al., 2008; Hale, 2001; Levy, 2008)
is rooted in information theoretic principles (Shannon, 1948)
by utilising entropy, a core concept in information theory, to
assess the predictability of events and the level of surprise
they generate. The theory examines the connection between
predictability and the processing of lexical information in the
human brain. In this framework, lexical units carry informa-
tion which is conveyed through a probabilistic measure. The
level of predictability of these units influences how the brain
processes and evaluates them. When predictability is low, it
results in higher levels of surprise and requires more cognitive
resources for processing. The exact amount of information
conveyed by a unit is hence quantified as its surprisal.

Formally, consider a linguistic signal l made of units:
{l1, · · · , ln} (where the units could be words, phonemes, etc.);
surprisal is then defined as:

s(lt) =− log p(lt | l1, · · · , lt−1) (1)

which represents the negative log-probability of a unit (lt)
given its preceding context (l1, · · · , lt−1), where t indicates the
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sequence time-steps. Surprisal theory asserts that the effort
needed to process a linguistic unit is directly proportional to
its unexpectedness in its context, which is measured by its
surprisal. Formally, for a linguistic unit (lt), the processing
effort is linearly proportional to its surprisal:

effort(lt) ∝ s(lt)

As we don’t have direct access to the true conditional prob-
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Figure 1: Scatter plot of N400 signal across audio-only and
audio-visual modalities (Pearson correlation r = 0.11). The
plot showcases that there is a weak correlation between the
two settings for the same lexical input.

abilities of observing linguistic units given their context, we
use language models to estimate them instead. We obtain
surprisal estimates using log-probabilities (see Equation 1
above) through classical n-gram-based language models and
more recent Transformer-based models.

For n-gram models, we cover an entire spectrum of n-
gram models and construct {2,3,4,5,6}-gram models using
modified Kneser-Ney Smoothing (Ney et al., 1994)3. All
probability estimates are computed at the word level. For
Transformer-based models, we use GPT-2 and BERT 4, and
all probability estimates are also computed at the word level.
We note that BERT is trained for a cloze-style task and hence
the probabilities from this model are considered as pseudo
surprisal estimates.

3Following Meister et al. (2021), we use Wiki-text 103 as the
corpus for estimating the n-gram probabilities.

4We use openly available pre-trained models from hugginface
library (Wolf et al., 2020).

Statistical Analysis
Correlation between Audio and Audiovisual N400 To de-
termine the correlation between N400 in audio and audio-
visual settings, we calculate Pearson’s correlation of N400
per word across modalities. N400 was calculated as the mean
ERP between 300-500ms minus the baseline ERP mean (as
we did not perform baseline correction during preprocessing,
as previously mentioned). The variance was reduced by aver-
aging the results across all participants and electrode sites for
each word in each modality.

Evaluating model performances across modalities We
compared the performances of surprisal generated by differ-
ent computational models using a linear mixed effect regres-
sion model conducted in R using the lme4 package (Bates,
2010). We followed a similar approach as Michaelov et al.
(2021) by comparing a baseline model with more complex
models containing surprisal. The dependent variable was the
mean ERPs in the 300-500ms time window extracted from
32 electrodes for all content words (e.g. nouns, verbs, ad-
jectives, as in Frank et al. (2015)). The baseline model con-
tains regions of interest (ROI) which describes the location of
each electrode. 32 electrodes were catogorised as 5 ROIs, in-
cluding prefrontal (Fp1, Fp2, AF3, AF4), fronto-central (F3,
F7, Fz, F4, F8, FC5, FC1, FC6, FC2), central (C3, C4, Cz),
posterior (CP1, CP5, CP2, CP6, P3, P7, Pz, P4, P8, PO3,
PO4, O1, Oz, O2), left temporal (T7) and right temporal
(T8). The baseline model also contains the mean EEG ampli-
tude from the baseline interval extracted above. The baseline
model includes participant, passage and electrode as random
intercepts. Then, we added the main effect of surprisal to
create surprisal+ROI models and further the interaction be-
tween surprisal and ROI to create surprisal×ROI models. We
then estimated the improvement of fit by model comparisons,
where the surprisal+ROI models are compared with the base-
line models and the surprisal×ROI models are compared with
the surprisal+ROI models using anova() function in R (p-
values FDR adjusted for multiple comparisons). We also cal-
culated the decrease of AIC value for each model compared
with the baseline model (∆̃AIC). The same analysis was per-
formed for audio and audio-visual data separately.

Results
N400 is weakly correlated across settings
The Pearson correlation coefficient for N400 per word be-
tween audio-only and audio-visual settings is 0.11 (t = 5.16,
p < .001), indicating a weak positive correlation between the
two settings. Figure 1 shows a scatter plot of N400 across
the two settings, which indicates that while most of the data
points are densely populated in the center, there is no mean-
ingful relationship between the two settings. If the lexical
information were the most significant contributing factor, we
would expect a stronger correlation between audio-only and
audio-visual conditions since both experiments involve the
same verbal stimuli.
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Model comparisons in audio-only setting

Model χ̃2 Df p ∆̃AIC

2-gram surprisal+ROI 17.76 1.00 < .001 15.76
∆surprisal×ROI 10.03 5.00 0.07 15.80

3-gram surprisal+ROI 21.46 1.00 < .001 19.46
∆surprisal×ROI 20.05 5.00 < .001 29.51

4-gram surprisal+ROI 34.64 1.00 < .001 32.64
∆surprisal×ROI 20.74 5.00 < .001 43.37

5-gram surprisal+ROI 33.02 1.00 < .001 31.02
∆surprisal×ROI 20.60 5.00 < .001 41.62

6-gram surprisal+ROI 33.96 1.00 < .001 31.96
∆surprisal×ROI 21.09 5.00 < .001 43.05

BERT surprisal+ROI 66.10 1.00 < .001 64.10
∆surprisal×ROI 16.19 5.00 0.01 70.28

GPT-2 surprisal+ROI 98.95 1.00 < .001 96.95
∆surprisal×ROI 63.90 5.00 < .001 150.85

Model comparisons in audio-visual setting

Model χ̃2 Df p ∆̃AIC

2-gram surprisal+ROI 246.45 1.00 < .001 244.45
∆surprisal×ROI 68.26 5.00 < .001 302.71

3-gram surprisal+ROI 153.54 1.00 < .001 151.54
∆surprisal×ROI 91.27 5.00 < .001 232.82

4-gram surprisal+ROI 129.53 1.00 < .001 127.53
∆surprisal×ROI 100.59 5.00 < .001 218.12

5-gram surprisal+ROI 129.72 1.00 < .001 127.72
∆surprisal×ROI 101.96 5.00 < .001 219.69

6-gram surprisal+ROI 134.70 1.00 < .001 132.70
∆surprisal×ROI 101.51 5.00 < .001 224.21

BERT surprisal+ROI 147.00 1.00 < .001 145.00
∆surprisal×ROI 27.15 5.00 < .001 162.15

GPT-2 surprisal+ROI 19.45 1.00 < .001 17.45
∆surprisal×ROI 87.45 5.00 < .001 94.91

Tables I: Model comparisons in audio-only (left) and audio-visual (right) settings. χ̃2 and p-values of additive (surprisal+ROI)
and multiplicative (surprisal×ROI) models were derived from comparisons with baseline and additive models respectively,
while ∆̃AIC was always derived from comparisons with the baseline model. We observe that, models with surpirsal (both
additive and muliplicative models), in both settings, provide a good fit for N400 amplitudes. We also observe that multiplicative
models, almost always, provide a better fit than additive models.
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Figure 2: Reduction of AIC (in surprisal×ROI models) associated with each model across modalities. While models with
access to larger lexical context windows provide a better fit in the audio-only setting, models with smaller and local lexical
context seem to provide a better fit in the audio-visual setting for same verbal stimuli.

Statistical models behave differently across settings
We present statistical analysis for the audio-only and audio-
visual settings in Tables I. We find that additive models
(surprisal+ROI) provide a good fit for N400 amplitudes than
baseline models in both audio-only and audio-visual settings,
as indicated in χ̃2 and p values. Furthermore, the mul-
tiplicative models (surprisal×ROI) almost always improve
the model fit compared to the additive models. The dif-

ference of the multiplicative models over additive models
(surprisal×ROI) indicates that surprisal generated from all
models predicts N400 amplitudes in both audio and audio-
visual conditions in interaction with ROIs.

In the auditory setting, we observe the largest reduction
in AIC compared to the baseline model (∆̃AIC) is associated
with GPT-2, followed by BERT and n-gram models. This
suggests that Transformer-based models (especially GPT-2),
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which has access to a largest lexical context, can better predict
N400 amplitudes, in a unimodal setting. Previous work has
also seen similar pattern, where models that consider larger
lexical contexts have been shown to provide better fit (Frank
et al., 2015; Meister et al., 2021; Michaelov et al., 2021).

However, in the audio-visual setting, we observe a reversal
of this pattern where, strikingly, the 2-gram model shows the
largest ∆AIC, while GPT-2 shows the smallest ∆AIC. In gen-
eral, we notice that the models with smaller context window
provide a better fit in the audio-visual setting. We present our
results in Figure 2, which shows the reduction in AIC (∆AIC)
across models and modalities. We note that we only plot mul-
tiplicative models, as they offer a better overall fit (but the ad-
ditive models showed similar patterns). These observations
indicate that local lexical information is more prominent in
the multimodal setting.

Discussion
Our results demonstrate that under the same verbal stimuli,
cognitive processing, as captured using ERP, significantly dif-
fers between unimodal and multimodal experimental settings.
We replicate the earlier findings of multiplicative models
(surpirsal×ROI) providing better fit for the data in compar-
ison to additive models (surpirsal+ROI) models. Although
we validate earlier findings that Transformer-based models
like GPT-2 are better predictors of N400 in unimodal (audio-
only) settings, the opposite trend is observed in the multi-
modal setting. These observations strongly suggest that non-
verbal cues significantly contribute to cognitive processing
more than lexical information alone.

In the unimodal setting, the surprisal estimates from GPT-2
based language model exhibit the best fit compared to other
models, consistent with previous research (Michaelov &
Bergen, 2022) demonstrating the superiority of Transformer-
based models over other language models, such as RNNs
and traditional n-gram models over a variety of psychomet-
ric data. Our findings show that in the unimodal setting, the
surprisal estimates from GPT-2 based language model out-
performs other models, as previously demonstrated in pre-
vious studies. However, the BERT displays slightly differ-
ent results, possibly due to its training objective as a masked
language model, which limits access to only pseudo log-
probabilities. This difference in objectives between BERT
and GPT-2, combined with the limitations in accessing log-
probabilities from BERT, could contribute to the differing
performance of these models. Similar findings have been re-
ported in previous work (Meister et al., 2021).

In the multimodal setting, our results reveal a reversal of
trends compared to the unimodal setting. Surprisal values de-
rived the n-gram language models, particularly the 2-gram
model, provide the best fit for N400 in the multimodal sce-
nario. We note that surprisal only captures word predictabil-
ity based on previous lexical context, ignoring any multi-
modal information in the stimuli. We posit that, in the mul-
timodal setting, participants utilise multiple sources of infor-

mation, such as gestures, mouth movements, eye movements,
and posture. The increased information content from mul-
tiple sources may only allow participants to better track lo-
cal lexical context, rather than global lexical context. Our
findings using language models over different contextual win-
dows suggest some validation of this hypothesis. Especially,
we observe in Figure 2 that as we increase the context window
from 2 to 6 we overall see a degradation in ∆AIC, indicating
a worse fit in comparison to 2-gram. The differences in N400
across audio and audiovisual modalities indicate that cogni-
tive processing strategies differ across modalities even when
the verbal stimuli is identical.

Overall, our findings provide strong evidence that multi-
modal processing of language differs significantly from uni-
modal processing of language, even under the same verbal
stimuli. Our results generally highlight the importance of
considering non-verbal cues in language processing.

Summary and Conclusions
In this paper, we present a controlled study, investigating the
effect of multiple modalities of information on cognitive pro-
cessing of language comprehension. We conduct experiments
over audio-only and audio-visual modalities with the same
verbal stimuli. Our findings overall suggest that cognitive
effort in a multimodal setting significantly differs from that
in a unimodal setting, with nonverbal contextual information
playing a significant role. We also observe that local verbal
context significantly influences cognitive processing effort in
a multimodal setting in comparison to the unimodal setting.
We believe that our results highlight the importance of mod-
elling non-verbal cues for language comprehension and pro-
cessing.5
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