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Abstract 

Environmental restrictions often permit the sampling of 
some items while excluding others. Such restrictions are 
termed sampling frames, whereby items can be selected 
based on their category membership (category frame), or 
possession of a target property (property frame). According 
to Bayesian principles, narrower property generalization is 
expected when a sample is subject to property sampling than 
category sampling. The current work examined whether 
sensitivity to such sampling frames could be increased 
through training with worked examples and practice. 
Experiment 1 found that training in property or category 
sampling enhanced sensitivity to that frame relative to a no-
training control. Experiment 2 employed a pre-post design 
where all participants received training in both frames. A 
positive training effect was found, but only for those with a 
poor understanding of sampling frames on the pre-test. This 
work indicates the viability of appropriate training for 
increasing understanding of the implications of sample 
selection mechanisms. 

Keywords: inductive reasoning; sampling frames; training 

 
Imagine that a new restaurant opened up in your 

neighborhood and you wanted to explore the quality of its 

cuisine. On five occasions, you tried and enjoyed different 

dishes. Given this new knowledge, you may infer that the 

chef is talented, and you will likely enjoy the rest of the 

menu as well. This is an example of inductive reasoning, 

in which we use prior knowledge to inform the extent to 

which we generalize information from a sample (e.g., the 

initial five dishes), to a novel population (e.g., the entire 

menu) (Denison & Xu, 2019; Hayes & Heit, 2018). 

Inductive reasoning is a crucial part of the human 

experience, as we make predictions every day based on 

what we already know, whether it pertains to trying a new 

restaurant, planning our commutes based on traffic, or 

taking an umbrella with us on a cloudy day. Indeed, our 

ability to make such intuitive statistical inferences emerges 

as early as 8 months of age without prior teaching, 

indicating that it may even be an innate human ability (Xu 

& Garcia, 2008). 

Research on inductive reasoning typically uses property 

induction tasks, in which participants learn about items in 

a sample which possess a target property. Participants then 

use their experience with the sample to infer whether the 

property is likely to generalize to novel items (Hayes, 

Navarro et al., 2019). Early work identified a range of 

factors relating to the contents of an evidence sample which 

affect how the sample is used to make inferences about 

property generalization. For example, people are more 

likely to generalize a property to novel category members 

if they have observed a large sample of items from the 

same category that share the property, as compared to a 

smaller sample (Feeney, 2007; Hayes & Heit, 2018). 

Property generalization is also more likely when the sample 

contains a diverse range of category members that share the 

property (Feeney & Heit, 2011; Hayes & Heit, 2018; 

Rhodes & Brickman, 2010). 

Sampling Assumptions and Inductive 

Inference 

Although sample contents are important for inductive 

inference, recent work has also highlighted the key role of 

sampling assumptions – a learner’s beliefs about how the 

sample contents were selected (Ransom et al., 2022; 

Tenenbaum & Griffiths, 2001). A crucial finding is that the 

same sample of evidence can lead to very different 

inductive inferences depending on one’s assumptions about 

the sampling process. 

One example of the role of sampling assumptions 

involves beliefs about the intentionality of sample 

selection. People draw very different inferences from a 

sample of evidence depending on whether they believe the 

sample was selected by a helpful agent, often termed strong 

sampling, or selected at random, a form of weak sampling 

(Navarro, Dry & Lee, 2012; Shafto & Goodman, 2008). 

For instance, while both adults and children are more likely 

to generalize from a diverse sample of items (Feeney, 2007; 

Rhodes & Brickman, 2010), this effect is attenuated when 

the sample is believed to have been selected at random 

(Hayes, Navarro et al., 2019; Ransom, Perfors & Navarro, 

2016). Similar results have been found regarding sample 

size, in which the effect of a larger sample size is 

moderated by the intentionality of the sample selection 

(Hayes, Banner et al., 2019). 

Sampling Frames and the Frames Effect 

Another line of work demonstrating the impact of sampling 

assumptions on inductive inference, which is pertinent to 

the present study, concerns peoples’ beliefs about sampling 

frames – environmental restrictions that permit the 

selection of some items in a sample while excluding others 

(Hayes, Banner & Navarro, 2017; Lawson & Kalish, 2009). 

A category frame limits sampling to instances that belong 

to a specific category while excluding members of another 

category. A property frame limits sampling to instances 

that share a specific property. A key idea is that the same 

sample of evidence can yield very different inferences 

depending on whether the sample was collected under a 

category or a property frame. To illustrate, say you wanted 
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to know whether a new fantasy television series is palatable 

for the general public. You have a sample of twenty people 

who liked the program. If this sample was collected under 

a category frame, (e.g., from attendees at a fantasy 

convention) then little can be concluded about the likely 

reactions to the program by other types of viewers. In this 

case, the absence of other viewers from the sample is 

explained by the category frame, rendering the sample 

relatively uninformative for generalization. In contrast, 

under a property frame, all types of items that have the 

property of interest can be observed. For example, we 

might have a sample of the first 20 people who declared 

they liked the fantasy program. If this sample was found to 

contain people from varied backgrounds, then you could 

infer the program is likely to have broad appeal. If, 

however, the sample only contained known fantasy fans 

(even though any type of viewer could have appeared in the 

sample), then we would infer that other types of viewers 

are unlikely to enjoy it. 

This intuitive example illustrates general principles of 

property inference that can be derived from Bayesian 

models of induction (Hayes et al., 2019; Navarro et al., 

2012; Ransom et al., 2022). According to such models, the 

breadth of property generalization from a given sample 

depends on the sampling frame. If all the sample members 

that share a novel property belong to a single category, and 

this sample was selected via property sampling, there 

should be little generalization of the property beyond the 

sample. In contrast, under category sampling, it remains 

possible that the target property generalizes beyond the 

sample. Research into the effects of sampling frames on 

inductive inference suggests that many people reason in 

line with these Bayesian predictions (e.g., Hayes, Banner 

et al., 2019; Lawson & Kalish, 2009). In these studies, 

learners are presented with a single sample of instances that 

share a novel target property (e.g., 10 small birds with 

“plaxium blood”). Different groups are told that the sample 

was collected under either category sampling (e.g., only 

small birds were sampled) or property sampling (the 

sample was made up of the first 10 animals found to have 

plaxium blood). In a subsequent test phase, learners are 

asked to infer whether the property generalizes to other 

categories that vary in similarity to the training sample. 

Under property sampling, many people show relatively 

narrow generalization – only generalizing the target 

property to items that are highly similar to the sample 

(Hayes, Navarro et al., 2019). In contrast, when the training 

sample is said to have been collected via category sample, 

the target property is often generalized to a range of other 

categories. This pattern of narrower generalization under a 

property frame than a category frame is termed the frames 

effect and has been replicated across a range of stimuli and 

cover stories (e.g., Hayes, Navarro et al., 2019; Hayes et 

al., 2022; Lawson & Kalish, 2009; Ransom et al., 2022). 

Individual Differences in the Frames Effect 

Although previous research indicates that individuals are 

sensitive to the effect of sampling frames on property 

induction, we are only beginning to understand the 

cognitive mechanisms that are involved. For instance, 

recent research has investigated whether sampling frames 

moderate the encoding or retrieval of sample items 

(Ransom et al., 2022). When sampling frame mechanisms 

are made apparent prior to observation of the sample, the 

generalization tendencies of participants tend to be the 

same as observed in previous research (i.e., Hayes, Banner 

et al., 2019). However, sampling frames do not impact 

generalization when frames are introduced after sample 

items are observed (Ransom et al., 2022). These results 

suggest that individuals take selection biases into account 

as they encode information but cannot retrospectively 

apply their frames knowledge to what they have already 

taken in. 

Just as there are specific cognitive mechanisms that are 

differentially susceptible to sampling frames, individuals 

also vary in their own sensitivity to these types of selection 

biases. Most sampling frames research conducted to date 

has been between-subjects, but a recent within-subjects 

study assessed individual sensitivity to the frames effect 

(Hayes et al., 2022). Participants in these studies were 

asked to make property inferences based on multiple 

training samples, some of which were presented with 

category framing instructions and others presented with 

property frames. The general frames effect was replicated, 

with broader generalization of target properties following 

category sampling as compared to property sampling. 

However, analysis of individual patterns of generalization 

found that this frames effect was driven by only around half 

of the participants. Most of the remaining participants 

demonstrated no difference in the pattern of their 

generalization judgments in response to category and 

property sampling frames. Either these individuals did not 

understand the difference between the frames or did not 

apply their understanding to their judgments. Regardless of 

the explanation, it is of interest to investigate whether these 

“frames-insensitive” individuals can be trained to 

understand and/or implement the frames effect in their 

future generalizations. 

The Current Studies 

The main aim of the current studies was to examine 

whether appreciation of the inferential implications of 

category and property sampling frames can be increased 

through training. Several previous studies have attempted 

to enhance the quality of inductive reasoning through 

relevant training. In classic work, Fong, Krantz, and 

Nisbett (1986) provided brief training to participants about 

the formal properties of the law of large numbers. This 

training improved participants’ performance in solving 

inferential problems that involved an appreciation of the 

impact of sample size or regression to the mean.  

Training via the practice of various inductive reasoning 

problems and subsequent feedback has been successful in 

enhancing the reasoning performance of seven-year-old 

children on analogous tasks (Tomic, 1995). Likewise, 

young children who do not initially appreciate the 

importance of sample diversity for inductive inference can 

be trained to do so (Rhodes & Brickman, 2010). Further, it 

has been shown that the provision of feedback on correct 

and incorrect responses effectively increases the accuracy 
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of adults’ deductive reasoning (Khemlani & Moore, 2012). 

Such studies show that appropriate application of 

statistical or logical principles can be enhanced through 

training. However, to our knowledge, no previous studies 

have sought to improve people’s understanding of the 

implications of different types of sampling assumptions for 

inductive inference. 

In the two current studies, we provided participants with 

a brief training regime that comprised worked examples of 

category and/or property frames, together with feedback 

identifying what sorts of inferences could be drawn from 

each type of frame. Following the general approach used in 

previous studies (e.g., Fong et al., 1986), the training 

examples used relatively abstract materials (sampling 

frames versions of balls-and-urns problems). Property 

inference tests involving more familiar animal or social 

categories were used to assess whether people exhibited the 

frames effect of broader property generalization following 

category than property sampling. In Experiment 1, the 

effects of training were investigated in a between-subjects 

design where the inferences of participants who received 

frames training were compared to those of a baseline no-

training group. Experiment 2 examined the effects of 

training at an individual level in a pre-post design, where 

all participants completed property induction tasks before 

and after training. 

Experiment 1: Between-Subjects Training in 

Sampling Frames 

Method 

Participants 201 participants (121 male, 73 female, 7 non-

binary; Mage = 25.75, SDage = 7.53) were recruited via 

Prolific Academic in exchange for payment at a rate of 7 

GBP per hour. 

Design The experiment used a 2 (sampling frame: category 

vs. property) × 2 (training: no training baseline vs. training) 

× (4) (test items) design, with repeated measures on the last 

factor. Participants were randomly allocated to either the 

training or baseline condition. In each condition, 

participants completed generalization judgments for four 

scenarios with either a category or property sampling frame 

(cell n’s: baseline category frame, n = 58; baseline property 

frame n = 44; training category frame, n = 49; training 

property frame, n = 50). When making generalization 

judgments for each scenario, all participants responded to 

four types of test items based on their similarity to the 

observed sample (familiar, near transfer, medium transfer, 

and far transfer). 

Materials and Procedure Induction problems and training 

examples were presented with text and cartoon images 

obtained from Google Images and Microsoft Word Icons, 

and the experimental procedure was created using the JS 

Psych programming language. 

All participants completed four property induction 

problems, presented in random order. In the training 

groups, this was preceded by either category or property 

training. In each of the four induction problems, 

participants were asked to use an observed sample 

containing six instances from a single category that shared 

a property (e.g., six dogs owned by children in Town X), to 

make inductive inferences (e.g., whether other children in 

the town are likely to own dogs, cats, or fish). In all 

problems the six sample items belonged to the same 

category, with minor variations in their visual appearance 

to convey that they were discrete sample items (see Figure 

1). Other induction problems included stimuli/cover stories 

concerning which sports children played, what transport 

was used to go to work, and whether aliens were friendly.  

In the category frame condition for each problem, an 

environmental restriction was described which restricted 

sampling to a single category (e.g., observations were made 

at a dog park, which prevented sampling of cats and fish). 

In the property frame condition, items were said to be 

sampled because they had the target property (e.g., 

observations were made at Bring Your Pet to School Day, 

whereby any type of pet owned by children in the town 

could have been observed). The six sample items were 

presented sequentially on a computer screen.  

After observing all sample items, participants made 

generalization judgments about four test items. Familiar 

test items were identical to one of the previously observed 

sample items, while near, medium, and far transfer items 

were three categories varying in similarity to the sample 

(e.g., a dog that was visually different to those in the 

sample, a cat, and a fish), as shown in Figure 2. The 

familiar test item was presented first, followed by the near, 

medium, and far items in a randomized order. For each test 

item participants had to infer whether it shared the target 

property with the sample items (e.g., whether it was likely 

to be owned by children from Town X). Responses were 

made by pressing a button that said either “Most Likely 

No” (coded as 0 for analysis) “Equally Likely Yes or No” 

(coded as 1), or “Most Likely Yes” (coded as 2). 

Prior to completion of the induction problems, 

participants in the training conditions observed a worked 

example of their assigned sampling frame (either category 

or property). In the training example, 30 colored balls (10 

each of three colors) were shown in an opaque bag. 

Participants were told that some balls may have prizes 

Figure 1: Example of Sample Items 

 

Figure 2: Example of Test Items 
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inside, and they had to determine which ones possessed this 

property. In category frame training, participants were told 

that two of the three sets of colored balls were stuck inside 

the bag and could not be sampled. As such, all six sample 

items were of the same color, and possessed the target 

property (i.e., had prizes). Participants were subsequently 

informed that based on this sample, they could conclude 

that balls with the sampled color would most likely contain 

prizes, but that little could be inferred about the other 

colored balls – for these, the most appropriate response to 

the inference question was “equally likely yes or no”. 

In property frame training, the general set-up was similar 

with the crucial exception that the sample was said to be 

made up of balls that were found to contain prizes in a 

previous game. A comparison between the category and 

property frame set-up is shown in Figure 3. All six sample 

items were again of the same color. As such, participants 

were informed that other balls of the sampled color would 

most likely contain prizes, but that balls with the non-

sampled colors most likely would not. All participants then 

observed another ball scenario (with different colors) in 

their allocated frame and made generalization judgments. 

With each judgment, participants were given feedback 

informing them of the correct response. Participants in the 

training conditions then proceeded to complete the four 

induction test problems. 

Results and Discussion 

Generalization judgments for each of the four types of test 

items (familiar, near, medium, far) were averaged across 

the four induction problems to give mean generalization 

scores between 0 and 2. As previous research suggests that 

the greatest evidence of the frames effect is observed in 

items more dissimilar to the observed sample (e.g., Hayes, 

Navarro et al., 2019), and since there was no significant 

difference between generalization for medium and far 

transfer items (F1, 197 = 2.556, p = .111, η2 = 5.281e-4), we 

collapsed mean generalization scores across the medium 

and far items into a single novel transfer category. Group 

generalization data for familiar, near, and novel test items 

are shown in Figure 4. These data were analyzed using a 

frequentist repeated measures analysis of variance 

(ANOVA). 

There was a significant effect of test item, averaged 

across frame and condition, whereby generalization was 

greatest towards familiar items (Mfamiliar = 1.928), then near 

transfer items (Mnear = 1.591), and lowest towards novel 

transfer items (Mnovel = 0.412; F2, 394 = 1070.881, p < .001, 

η2 = .714). There was a significant interaction between test 

items and sampling frame, whereby generalization to novel 

items was narrower under a property frame than a category 

frame (F1, 394 = 57.021, p < .001, η2 = .038). Crucially, there 

was also a three-way interaction between test items, 

sampling frame, and training, whereby this frames effect 

was greater in the training condition compared to the 

baseline condition (F1, 394 = 4.681, p = .01, η2 = .003). As 

shown in Figure 4, the difference in generalization to novel 

items under category and property framing was larger in 

the training than in the baseline condition. 

These results reflect a successful replication of the 

frames effect observed in previous research (e.g., Hayes et 

al., 2017). Importantly, this study is the first to also 

demonstrate a successful training effect in the application 

of sampling frames to property generalization. Participants 

who observed an analogous but more abstract worked 

example of sampling frames, and were given feedback on 

their practice judgments, subsequently showed a greater 

frames effect than those who received no training. 

It is important to note, however, that the results of most 

previous sampling frames research, including the present 

study, are based on aggregate data that do not reflect 

individual variability in sensitivity to sampling frames. 

Such variability is clear in the results of Hayes et al. (2022), 

whereby only around half of the participants demonstrated 

clear evidence of the frames effect. As such, Experiment 2 

examined the effect of our training paradigm using a 

within-subjects design to assess shifts in individual 

understanding of the implications of each sampling frame. 

Experiment 2: Within-Subjects Training in 

Sampling Frames 

In this study, individuals’ use of category and property 

frames for property generalization was examined before 

and after training. Based on the Experiment 1 results, we 

predicted that an overall frames effect would be replicated 

and that this effect would be augmented post-training. A 

particularly interesting exploratory question was whether 

participants who initially showed little understanding of the 

implications of different frames would show a reliable 

frames effect after training. 

Figure 3: Category vs. Property Frame in Training Task 

Figure 4: Generalization Responses in Experiment 1. 

Error bars denote 95% confidence intervals. 
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Method 

Participants 170 participants (103 male, 65 female, 2 non-

binary; Mage = 26.98, SDage = 7.81) were recruited via 

Prolific Academic in exchange for payment at a rate of 7 

GBP per hour. 

Design and Procedure The experiment used a fully 

within-subjects design: (2) (sampling frame: category vs. 

property) × (2) (pre-test vs. post-test) × (4) (test item), 

whereby each participant made generalization judgments to 

four test items across four pairs of induction problems (four 

involving a category frame and four involving a property 

frame). Two problems involving category frames and two 

problems involving property frames were presented before 

training. Four problems with an analogous structure were 

presented after training. The structure of these induction 

problems was identical to Experiment 1: each involved 

presentation of a sample of six instances that had a target 

property, selected via a category or property frame. 

Participants then inferred how likely it was that the target 

property was shared by four test items (familiar, near, 

medium, and far transfer). Because participants in this 

study completed more induction problems than in 

Experiment 1 (a total of eight as compared to four in the 

previous study), new problem contents were generated. 

The additional problems contained cover stories about 

which fish ate specific seaweed, which birds ate specific 

grubs, children’s preferred ice cream flavors, and which sea 

creatures had colored blood. Allocation of contents to 

category/property roles and to pre-test vs. post-test 

presentation was counterbalanced across participants. 

The study commenced with the presentation of the four 

pre-test problems. Training in category and property 

frames was administered immediately after the pre-test. 

The training regime was the same as in Experiment 1 

except that, in this case, all participants received training 

about both category and property frames. The four post-test 

problems were administered immediately after training. 

Participants were randomly allocated to one of two 

presentation order conditions for induction problems and 

training examples, whereby approximately half were first 

presented with category problems at both pre- and post-

tests and received category frame training before property 

frame training. The remainder were presented with 

problems and training in the opposite frame order. This 

served as a control on the time interval between the 

completion of test problems and training involving the 

same type of frame. 

Results and Discussion 

Generalization judgments for each of the test items in each 

induction problem were scored on the same three-point 

scale as in Experiment 1. Generalization scores were again 

collapsed over the two novel (medium and far) test items. 

Responses were averaged across problems involving the 

same type of frame to give pre-test and post-test scores for 

each type of test item – which are shown in Figure 5.  

A preliminary analysis confirmed there were no 

significant effects of frame order (F1, 168 = 2.517, p = .115, 

η2 = .001), so this variable was excluded from subsequent 

analyses. There was a significant effect of test item, 

whereby generalization was greatest for familiar items 

(Mfamiliar = 1.92), then near transfer items (Mnear = 1.68), and 

lowest towards novel transfer items (Mnovel = 0.454; F2, 338 

= 1600.414, p < .001, η2 = .737). There was a significant 

interaction between test items and sampling frame – 

generalization to novel items was narrower under a 

property frame than a category frame (F2, 338 = 74.882, p < 

.001, η2 = .016). However, the three-way interaction 

between test items, sampling frame, and training was not-

significant (F2, 338 = 2.182, p = .114, η2 = 3.516e-4). 

Further analysis was conducted on the subset of data 

from participants who did not demonstrate sensitivity to the 

difference between sampling frames at baseline (i.e., those 

whose average property frame generalizations were equal 

to or greater than their average category frame 

generalizations; n = 84, 49%). Mean responses from these 

“frames-insensitive” participants are shown in Figure 6. 

The figure shows that the general pattern of results for 

this subset of participants was similar to the complete 

sample. Notably, however, this group showed a significant 

three-way interaction between test items, sampling frame, 

and training (F2, 166 = 13.267, p < .001, η2 = .004). The 

figure shows that, for these participants, there was an 

increase in the frames effect after training. 

Figure 6: Generalization Responses from “Frames-

Insensitive” Participants in Experiment 2. Error bars 

denote 95% confidence intervals. 

 

 

Figure 5: Generalization Responses in Experiment 2. 

Error bars denote 95% confidence intervals. 
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This within-participants study replicated the sampling 

frames effect from Experiment 1 and many previous 

studies such that overall, people showed narrower property 

generalization to novel transfer items from a sample 

selected via property sampling, as compared to a sample 

selected via category sampling. Training tended to increase 

this effect of sampling frames, but the result was not 

statistically reliable. 

The current study also allowed us to examine individual 

sensitivity to the implications of different sampling frames. 

As in Hayes et al. (2022), in the pre-test we found that 

around half the participants showed little sensitivity to 

sampling frames. Training in category and property 

framing did, however, benefit this sub-group – increasing 

the size of the frames effect in the post-test. 

The modest training effects obtained in this study may 

seem surprising when compared with the robust training 

effect found in Experiment 1. However, demonstrating an 

effect of training on post-test performance was likely to be 

more difficult in this study compared to the previous 

experiment. For an individual to show an effect of training, 

they would not only have to understand the respective 

category and property frame training examples but would 

also have to correctly map the principles from these 

examples to the appropriate types of post-test problems. 

Given these complexities, we see the success of training for 

participants who showed little initial understanding of 

frame implications, as encouraging. 

General Discussion 

A considerable body of previous work has shown that 

many but not all people grasp the implications of different 

sampling frames for property generalization – showing 

narrower generalization to novel transfer items following 

exposure to samples selected via property as compared 

with category sampling (e.g., Hayes, Banner et al., 2019). 

Although such frame effects are usually robust in aggregate 

data, there is also evidence of considerable individual 

variability in sensitivity to sampling frames.   

The current studies, therefore, attempted to enhance 

sensitivity to the implications of sampling frames via 

training with worked examples and practice with feedback. 

Experiment 1 found that training separate groups on the 

implications of category or property frames led to an 

enhanced sampling frames effect. In a more complex, 

within-subjects design, Experiment 2 found that training 

enhanced sensitivity to the implications of sampling 

frames, but only for those participants who showed little 

initial sensitivity in the pre-test. Inspection of Figures 4 and 

6 suggests that the augmentation of the frames effect was 

primarily driven by an upwards shift in generalization 

judgments towards novel items under a category frame. 

While it is possible that generalization judgments under a 

property frame also experienced a downward shift, this is 

difficult to evaluate due to floor effects. 

The core principle underlying sampling frames effects 

concerns the reason why the observed sample only contains 

members of a single category that have the target property. 

In category sampling, the absence of instances from other 

categories is attributable to the frame. This renders the 

sample uninformative about whether the target property 

generalizes to other categories. By contrast, in property 

sampling, instances from any category could be observed, 

as long as they have the target property. In this case, the 

fact that only members of a single category are observed is 

highly informative – indicating that the property does not 

generalize beyond that category. Our training regime aimed 

to promote understanding of these principles via the use of 

balls-and-urns examples that had little surface similarity to 

any of the test induction problems. The modest training 

effects that we observed suggest that people are capable of 

a) grasping some of the abstract principles that underlie 

inductive reasoning based on samples of evidence, and b) 

applying these principles to problems involving different 

stimuli and cover stories. 

In this respect, the success of our training approach is in 

line with previous demonstrations of the positive effects of 

training in other types of inductive (Fong et al., 1986; 

Tomic, 1995) and deductive reasoning (Khemlani & 

Moore, 2012). The current work, however, is novel in that 

our training targeted people’s sampling assumptions –  

their understanding of the way that sample instances are 

selected and the implications for property generalization. 

This work also shows that even though many people may 

show “myopia” about the implications of sample selection 

mechanisms for inductive reasoning (cf. Fiedler, 2012) this 

can be overcome through appropriate training. 

That said, the modest training results of Experiment 2 

suggest that there is room for further investigation of 

frames training, with a view to increasing its effectiveness. 

Previous work (Hayes et al., 2022) has shown that 

sensitivity to an understanding of sampling frames (in the 

absence of training) is positively correlated with working 

memory capacity and level of cognitive reflection 

(Frederick, 2002). Such individual differences may also 

mediate the effectiveness of frames training. 

A further issue for future research is to undertake a more 

fine-grained examination of how frames training changes 

the way that people process sample instances. Previous 

empirical work and Bayesian modeling (Ransom et al., 

2022) suggest that information about sample selection 

mechanisms affects the encoding rather than the retrieval 

of sample instances. In property sampling, each new 

sample instance provides further evidence about whether 

the properties of sample instances generalize to other items. 

This may prompt people to pay more attention to sample 

instances in property sampling than in category sampling. 

Future work could examine whether patterns of attention to 

sample instances change as a result of training in the 

principles that underlie property or category sampling. 

In sum, the current results provide encouraging evidence 

that peoples’ appreciation of the implications of different 

types of sample selection mechanisms can be improved 

through brief training. Many if not most of the samples we 

encounter and use as a basis for inference outside the 

laboratory are subject to some form of selection bias 

(Hogarth, Lejarraga & Soyer, 2015). An important 

implication of our results is that appropriate forms of 

training can help people to understand the implications of 

such selection biases for their inferences and judgments. 
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