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The dynamical systems approach 
 

Dynamics is the scientific study of any entities that change with time. The two most 
important goals of dynamics are (1) quantitative description of the observed behavior (sometimes 
this is called kinematics) and (2) explanation of the observed patterns. In natural sciences 
dynamics may also be used for forecasting and control, but in typical social science applications 
the theory has not developed to the point where this is possible. 
 

A highly useful approach to studying dynamical phenomena is to think of them as 
systems. This involves artificially separating a holistic natural (or, rather, social) phenomenon 
into parts—elements or subsystems. The assumption is that the dynamics of the whole can be 
explained by studying how its parts interact with each other. The success of the enterprise, 
obviously, depends very much on how the whole is sliced up. One of the most important issues in 
dynamical analysis, therefore, is to determine just what is the most effective way of representing 
the studied phenomenon as a system. Efficiency in this context means finding the simplest 
possible representation of the system (the fewer variables the better) that allows the most 
explanatory (and, eventually, predictive) power. 
 

The mathematical approaches to the study of dynamical systems have been with us since 
the days of Newton and Leibnitz. The most common (and incredibly fruitful) mathematical tool is 
the differential equation, which looks like this: 
 
(1)     ( )X f X=&

where X is a variable describing some aspect of the system (for example, it could be the 
population density). On the left hand side we see X with a dot on top, which denotes the 
derivative, or rate of change of X. To the right of the equals sign, f(X) means some function of X.
For example, if ( )f X rX= , then we have an exponential model: X rX=& , which assumes that 
the rate of change of the variable X is directly proportional to the value of the variable, X.

There are many variations on the basic theme of Eqn. (1). First, we could think of X as 
not a scalar but a vector, whose elements represent different variables describing the state of the 
system (see below). Alternatively, we could write it out in scalar form. For example, if there are 
two variables, X and Y, the model would look like this: 
 
(2)     ( , )

( , )
X f X Y
Y g X Y
=
=

&
&

The second variation is to use not continuous models, such as Eqn. (1), but discrete-time models, 
e.g., 1 ( )t tX f X+ = . Other modifications/complications include explicit handling of time delays, 
adding space (which leads to partial differential equations), and so on. For our purposes, we only 
need to know about the continuous and discrete forms of dynamical models.  
 

After we have represented the studied phenomenon as a dynamical system, the next step 
is to decide what variables we will use in describing the state of the system—these are the state 
variables, or structural variables (the latter designation is preferable in cliodynamic applications, 
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since the term state is better reserved for a kind of polity). For example, when studying secular 
cycles (centuries-long oscillations in demographic, economic, social, and political structures of 
agrarian societies), we might focus on three main parts of a society: the state, the elites, and the 
commoners. The set of structural variables, then, might be something like population numbers of 
elites and commoners, average incomes of these two strata, and the fiscal health of the state. 
Coming up with a set of structural variables is really an integral part of representing the studied 
phenomenon as a system. A priori we don’t know what the most efficient (in the sense defined 
above) set of variables is going to be; we arrive at such a set by the method of trial and error (a 
well-developed modeling intuition is invaluable in this process).  
 

If we are interested in generating theoretical insights about how the studied system might 
function, the next step is to start making assumptions about how structural variables are 
interrelated, writing down explicit models, and investigating their behaviors. This essentially 
deductive process is described in my 2003 book Historical Dynamics. An alternative, or rather 
complementary, investigation is to use statistical methods to analyze time-series data describing 
various aspects of the system. Such an approach can aid in generating insights about the 
functioning of the system, and also be used in testing theoretical models. 
 
Analysis of time-series data: the conceptual foundations 
 

Time-series data are repeated measurements of some aspect of the system, typically (but 
not always) taken at regular time intervals. It is possible to obtain meaningful results even when a 
univariate data series is available (see Chapter 7 in Turchin 2003a), but our ability to generate 
insights is greatly expanded when we have multivariate series describing many different aspects 
of the empirical system. Here I focus on the analysis of multiple time series. 
 

The goal of the analysis is to determine what kind of dynamic interrelations, if any, 
characterize different aspects of the studied phenomenon for which we have time-series data. The 
basic model underlying analysis is a modification of Eqns. (1) and (2). Suppose we have 
measurements of two structural variables, X and Y. Then the model looks like this: 
 
(3)     ( , , )

( , , )
X f X Y Z
Y g X Y Z
=
=

&
&

Here Z is the exogenous variable, or variable that affects X and Y, but is not affected by them in 
return. X and Y are endogenous variables because they affect each other through feedback loops, 
designated by the functions f and g. Z can stand for known, and measured, aspects of the 
empirical system, in which case we can explicitly bring it in the analysis. Alternatively, Z may 
represent unknown effects, in which case we typically model it as a stochastic variable. In 
practice, we should always include a stochastic variable—the noise term—in the model which we 
use to investigate dynamics of real-life systems (whether in natural or social sciences). This is 
because no model should be expected to capture all aspects of the studied system. Those factors 
that we don’t have explicit data on are folded into the noise term. Sometimes, even when we have 
data on some factors that have a minor effect on dynamics, we might chose to treat them as part 
of a collective noise term for the sake of parsimony. Finally, it should be noted that the division 
of variables into exogenous and endogenous ones is not clear a priori, but is arrived at in the 
process of modeling and data analysis. 
 

If we can somehow estimate the derivatives of X and Y on the left-hand side, then Eqns. 
(3) becomes a regression model, with the derivatives serving as dependent (or response) 
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variables, and the values of X and Y themselves serving as independent (or predictor) variables. Z
is, as was explained above, the error term. The nonstandard aspects of using Eqns. (3) as a 
regression model are, first, that functions f and g are most likely nonlinear. Thus, we need to 
employ extensions of the standard linear regression, for example, polynomial regression. Second, 
the values of serially measured variables are not statistically independent; they are autocorrelated. 
This means that we need to use extra care in interpreting regression statistics, such as F and P
values.  
 

How can we estimate the derivative X& from the time series of X values? The variable 
itself is measured at discrete intervals, while the derivative assumes that X is continuous. One 
approach is to smooth the observed time series, using such techniques as splines or kernel 
regression. If following this course, it is critical to choose well the smoothing parameter, the 
bandwidth. If the chosen bandwidth is too narrow, the “under-smoothed” trajectory will trace 
closely the measured values of X. But variables in the real world are never measured precisely; 
there is always a measurement error. When the smoothed trajectory follows closely the stochastic 
fluctuations in the data series, we will get a highly variable estimate of the derivative. Most of the 
fluctuation in the derivative estimate will be a result of measurement noise, and it will be difficult 
to detect the underlying signal of how the structural variables affect the rates of change. 
 

Using a bandwidth that is too broad also causes problems. The over-smoothed trajectory 
will miss some important signals in the trajectory by smoothing away such revealing movements.  
 

In practice, time-series analysts rarely use Model (3) directly—partly because of the 
difficulty of finding the optimal smoothing bandwidth, partly because smoothing introduces extra 
autocorrelations in the data, and partly because using smoothing techniques is a rather technical 
field. The major alternative to direct estimation of derivatives is to use the discrete rates of 
change:  
 
(4)     t t tX X Xτ+∆ = −

where τ is the time delay, which could be equal to one, two, or more time intervals at which data 
were collected. An estimate of the derivative is ∆X/τ; the smaller τ, the better this quantity 
approximates the derivative. We can, thus, modify Model (3) as follows: 
 
(5)     ( , , )

( , , )
t t t t

t t t t

X f X Y Z
Y g X Y Z

∆ =
∆ =

Because many people do not like the implied circularity of using Xt on both left-hand side (as part 
of the definition of ∆X) and right-hand side, we can simply use Xt+τ as the response variable: 
 
(6)     ( , , )

( , , )
t t t t

t t t t

X f X Y Z
Y g X Y Z

τ
τ
+

+

=
=

In other words, we have switched from a continuous to a discrete model as the basis for the 
analysis of data. 
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Choosing the delay parameter 
 

The appropriate choice of the time delay parameter, τ, is very important (this parameter is 
analogous to the smoothing bandwidth, when estimating the derivative). Unfortunately, there are 
no universal guidelines for making this choice, although we now understand that we need to 
avoid two opposite extremes—redundance and irrelevance (Casdagli et al. 1991). Redundance 
occurs when time delay is very small, so that the expectation of Xt and Xt–τ are practically the 
same. The opposite problem of irrelevance occurs when τ is so large that Xt and Xt–τ are not 
functionally related anymore, as a result of cumulative effects of noise (and trajectory divergence, 
if the system is chaotic).  
 

An optimal choice of τ lies between the two extremes of redundance and irrelevance. It 
would be nice to be able to estimate the lag parameter τ from the data. A naïve approach is to fit 
models with different values of time delay, and choose the one that yields the highest coefficient 
of determination, R2. A little thought shows why this approach does not work. If our response 
variable is the discrete derivative, such as in Model (5), then by varying τ we also vary the 
dependent variable. A comparison of how well models fit different response variables is akin to 
comparing apples and oranges—it is meaningless. Discrete derivatives based on different time lag 
will be characterized by different variances (generally, as we increase τ from small values, the 
variance of ∆X will also increase, and will reach a maximum at τ approximating half the period of 
oscillations). Thus, if we use R2 then not only its numerator (the variance explained by the model) 
will change, but also it denominator (the total variance). Other best-fit statistics run into similar 
problems.  
 

What about using Model (6)? Now we are comparing apples with apples, so the problem 
explained in the previous paragraph is avoided. However, we run into a different problem—
typically the best model is simply Xt = Xt–τ for the smallest possible time lag. This model will 
explain the enormous proportion of variance—the only variance left unexplained would be that 
due to measurement noise. Due to this problem of redundance, no other model would be able to 
do better (except in a spurious sense, by fitting measurement noise), so this approach is also self-
defeating. This consideration reinforces the importance of choosing the lag parameter large 
enough to avoid redundance. Ellner and Turchin (1995) recommend using a time delay long 
enough to get the correlation coefficient between Xt and Xt–τ down to the vicinity of 0.5 (which 
would correspond to R2 of roughly 0.25, ensuring that redundance would account for a relatively 
minor proportion of variance explained).  
 

The take-home message is that we cannot rely on the data themselves for selecting the 
optimal time delay (at least, so far nobody figured out a way to get around the problems discussed 
above). Therefore, we must choose the lag parameter using a priori considerations (the data 
should be used to check for redundance, e.g., using Ellner and Turchin’s “rule of thumb”). In fact, 
when we think about it, it is only appropriate that τ should be chosen based on the goals of the 
analysis, rather than on the data. To understand this point better, let us take a short excurse into 
the question of time scales (see also discussion on p. 150ff in Turchin 2003b). 
 
Time scales and the choice of the delay parameter 
 

In general, different social processes operate at a variety of temporal scales. The shorter 
scales include daily, weekly, monthly, and annual cycles. Beyond that we have human 
generations, processes occurring on the time scale of centuries, such as secular cycles, and 
longer-term phenomena such as social and biological evolution. As an example, consider the 
stock market, as measured by the Dow-Jones Industrial Average (DJIA). DJIA fluctuates on a 
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variety of scales: daily (because the stock exchange shuts down at night), weekly (no activity on 
weekends), annual (fiscal year accounting affects trader behavior), multi-annual (business 
cycles), and multi-decadal (the Kondratieff cycle, although not everybody accepts the reality of 
such long cycles). The DJIA trajectory looks “fractal,” because the amount of fluctuation depends 
on the time-scale at which the trajectory is viewed.  
 

If we are interested in understanding the effect of business cycle on the stock prices we 
really don’t care about short-term fluctuations. We certainly should ignore price movements with 
a single day, and probably even within a week. Thus, the time-series with which we would want 
to investigate multi-annual oscillations would probably use the values of Dow-Jones averaged for 
each week. Averaging is the simplest kind of smoothing, so what we have done is essentially 
smoothed away all “uninteresting” short-term fluctuations—uninteresting, that is, from the point 
of view of the main question of analysis. On the other hand, if we want to know how holiday 
periods affect stock price movements, we would certainly want to retain within-week 
fluctuations, and perhaps go down to hourly movements (to see how trading patterns behave 
during the short pre-holiday days). Now the variation due to the business cycle becomes a 
nuisance, and it might be a good idea to remove the effect of multiannual and longer-term 
fluctuations by detrending. The point is that different questions require approaching analysis at 
different time scales.  
 

Taking population dynamics, they also occur on a variety of scales: monthly (female 
menstruation periods), yearly (subsistence and epidemic cycles), generational (somewhere 
between two and three decades), and secular (two or three centuries, if the theory of secular 
cycles is to be believed). If we are interested in the dynamics of childhood diseases, then the 
appropriate time scale would be weeks or months, to capture the within-year course of each 
epidemic (the incidence of measles, for example, begins to grow after children are brought 
together at the beginning of the school year, and gradually builds up towards a peak in winter).  
 

If we want to understand how secular cycles unfold, on the other hand, we certainly don’t 
care how mortality fluctuates on a weekly or monthly time scale. Or that there may be a deficit of 
births nine months after the Lent, as a result of devout Christians avoiding sexual intercourse. All 
such within-year, or even year-to-year fluctuations are irrelevant to the purposes of our 
investigation. The appropriate time step is one human generation, and we need to average over 
smaller-scale fluctuations. We also need to do something about very long trends driven by social 
evolution. This requires some kind of removal of millennial trends, for example as was done for 
the English population in the accompanying paper (Turchin 2005). By smoothing within-decade 
fluctuations and removing millennial trends we retain two temporal scales of interest. The longer 
one is the average period of the secular cycle—this is what needs to be explained. The shorter one 
is the human generation time—this is the time step of the dynamical process that is postulated to 
be the explanatory mechanism of secular cycles. Thus, the delay parameter, τ, is set by 
consideration external to the data themselves. It is a good idea, however, to try a couple of 
different values of τ, e.g., 20 and 30 years. If results of the analysis are qualitatively the same, 
everything is fine. If not, we have a problem—high sensitivity to the specific choice of the delay 
parameter throws in doubt any results we have obtained, and the reason for such sensitivity must 
be understood.  
 

Thus, the general procedure for selecting the lag parameter is not to estimate it from the 
data, but to choose it on the a priori grounds. Ideally this should be done prior to seeing the data, 
in order to remove any potential doubts that this parameter was actually selected a posteriori to 
make the results appear better. In the case of secular cycles, this has been done (see p. 154 in 
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Turchin 2003b, a general recommendation of setting τ equal to general time in the context of 
animal population dynamics is on p. 187 in Turchin 2003a).  
 
Independent measures of the derivative sidestep the problem of choosing the delay 
parameter 
 

There is one situation when the whole question of choosing the time lag becomes moot—
when we have independent data on the rate of change of a variable. For example, the per capita 
rate of population change, estimated by the difference between births and deaths (assuming that 
we can neglect immigration and emigration), is closely related to the rate of change of population 
numbers (it’s the derivative of the log-transformed population size). We are fortunate to have a 
time-series of per capita rates of population change for England between 1540 and 1870, 
estimated by Wrigley et al. (1997), who call it the compound annual growth rate. In the 
regression model where this quantity is used as a response variable we use non-delayed values of 
potential predictor variables—the approach is essentially based on Model (3). The results 
obtained with the analysis of per capita rates of population change, thus, provide an important 
testing case of the general approach. Unfortunately, situations where we have an independent 
estimate of the rate of change are relatively rare. For example, there is no comparable variable 
corresponding to the rate of change of the instability index. 
 
Steps in the analysis 
 

Once we selected the value (or values) of the time delay, the actual analysis of data is 
fairly straightforward, and can be accomplished by using any statistical software. The first model 
that should be tried is the linear regression: 
 

0 1 2t t t tX a a X a Yτ τ ε− −= + + +

where a0, a1, etc are regression coefficients, and εt is the error term—a stochastic variable 
assumed to be normally distributed with mean zero and variance σ2. Note that the subscripts 
indicating time have been shifted. This is a convention in time-series analysis—the idea is that we 
are trying to explain the present given the past (rather than predict the future given the present, 
which is appropriate in a theoretical model). A viable alternative is to use ∆Xt as the response 
variable. It also needs to be redefined by shifting subscripts: t t tX X X τ−∆ = − . The two models are 
very similar and differ in the value of the estimated coefficient a1.

Many of the issues discussed in standard textbooks on regression apply to fitting 
statistical models in the time-series data (one important exception, discussed below, is that 
standard statistical tests cannot be used due to autocorrelations between values of the response 
variable). The first concern is whether the assumptions of normally distributed residuals hold at 
least approximately. Often non-Gaussian residuals can be handled by a judicious transformation 
of the response variable (for example, population numbers should be routinely log-transformed). 
The second concern is whether the relationship between the predictor and response variables is 
nonlinear. Mild forms of nonlinearities can be fitted by appropriately transforming the predictor 
variables (not the response, because that affects the structure of residuals). Strong nonlinearities 
(e.g., humped functions) are fitted by employing polynomials. For further discussion of these 
issues, see Turchin (2003a). 
 

The usual statistics printed out by the canned software, such as F-ratios and P-values are 
suspect because they are calculated by assuming statistical independence of response variable 
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values. In the time-series setting, however, sequential values tend to be positively autocorrelated, 
which tends to inflate the significance of the results (if sequential predictor values are negatively 
autocorrelated, then the standard statistics, on the contrary, understate the significance of the 
results). This leads to the confidence intervals on the estimates of the model parameters that are 
too narrow. Thus, obtaining an unbiased measure of confidence intervals takes some work. The 
most general approach is the bootstrap (Efron and Tibshirani 1993).  
 

Typically, however, we are not interested in the regression coefficients per se, but in 
determining whether a particular predictor variable, or set of variables, has a statistically 
detectable effect on the response. In other words, in the model such as  
 

0 1 2 3 ...t t t t tX a a X a Y a Zτ τ τ ε− − −∆ = + + + + +

where X, Y, Z, etc are potential predictor variables, which of them we need, and which we can 
dispense with? This is the issue of model selection. In the last decade or two, statisticians and 
time-series analysts advanced very substantially the methodology of model selection, so we have 
a pretty good understanding of what to do, and what not to do. The basic premise of the approach 
is to select only those variables that increase our ability to predict the values of the response 
variable (that’s why they are called predictors).  
 

Simply using a statistic such as R2 does not work, because the more variables we include 
on the right hand side of the regression equation, the better R2 we get. This procedure results in an 
overfitted model that, when presented with novel data, does very poorly at predicting the values 
of the response variables. In other words, an overfitted model does very well in “explaining” in-
sample data, on which it was fitted, but poorly on predicting out-sample, novel data. One 
approach to resolving this problem is to use some information measure, such as the Akaike 
Information Criterion, AIC (see, for example, Burnham and Anderson 1998). AIC balances how 
well a model fits the data against how many parameters were needed to achieve this degree of fit. 
Many standard packages now print out AIC or some other related measure; if not, AIC can be 
calculated from standard kinds of output. Using AIC is reasonably straightforward, and many 
people now employ it in model selection. 
 

Although the use of information criteria is perfectly valid, personally I prefer cross-
validation. The disadvantage of cross-validation is that it is very computer intensive, but given the 
power of present-day computers this is not much of a problem. The advantage, on the other hand 
is that cross-validation gives us a direct method of finding out how well different models predict 
out-sample data.  
 

The basic approach is simple. We split the data into two halves, fit all different models on 
the first half, and use the fitted models to predict the response variable in the second half. Then 
we reverse the procedure: fit the models on the second half, predict the first. This procedure is 
known as the “double-cross”. One problem with it is that although we utilize all the data for 
testing purposes, at any given step we use only half the data points for fitting purposes. When 
data are scarce, half of them may not be enough to fit more complex models, even though the use 
of such complex models may be warranted. The solution is known as the “k-fold cross-
validation”. Instead of dividing the dataset into two halves, we divide it in k parts. We reserve one 
of the parts for testing, fit the model on the other k–1 parts, test it on the reserved one, and then 
repeat it for all k parts. In the extreme, we can set k = n, the sample size. In such a case, at every 
step we fit the model on all but one data point (the left-out “predictee”—the point to be 
predicted), while testing it on all data points. As Mosteller and Tukey (1968), who first clearly 
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formulated this approach, commented, this procedure “squeezes the data almost dry.” However, 
in the time-series setting we cannot use this procedure as is, because of the redundancy problem. 
We have to exclude several points on each side of the predictee. Otherwise, it would be too easy 
to predict the omitted point Xt as an average of Xt–1 and Xt+1. How many points we omit on each 
side depends on how high is the serial autocorrelation.  
 

This brings me to another important issue—oversampling. An oversampled series is one 
where sequential values of X are highly autocorrelated. As an example, think of a trajectory 
showing one “cycle”, or more precisely, a single excursion up and down in the phase space. 
Suppose that the trajectory was sampled at 100 points along the way. Is our sample size, n = 100? 
Not at all, because each subsequent data point is so similar to the preceding one that it adds very 
little information overall to the data set. We could easily reduce the sampling frequency to just 10 
points and not lose any information at all.  
 

As a result, in time-series setting we should quantify our sample sizes as the number of 
oscillations (up-and-down excursions) in the series. This should not be taken too literally, because 
each oscillation is a pretty “fat” data point. In a larger sense, however, our confidence in the 
results can grow only when we analyze more and more oscillations, which can come from the 
same place (for example, the English data set has a couple of oscillations) or from other places 
(the Chinese data add two more oscillations for the Han period and two for the Tang period).  
 
Interpretation of the results 
 

The analysis approach that I have been describing above is obviously more involved than 
a regular regression exercise, but it has one advantage over regular regression. In usual regression 
situations all we can say is that two variables are closely correlated, we can never tell which one 
is the cause, and which one the effect. In dynamical analysis a strong correlation between a rate 
of change and structural variables usually means that the variables themselves are the cause, and 
the rate of change is the effect. Most graphically this is seen in the discrete setting: since Xt, Yt
and so on precede Xt+1, the direction of the causation arrow is pretty obvious. This consideration 
is a great help in interpreting analytical results, but there are, nevertheless, limitations. For 
example, if variable Y has a strong effect on the rate of change of X, it is not necessarily true that 
there is a causal mechanism underlying this relationship. For example, Y could be closely 
correlated with Z, which is the actual mechanism of change in X, so that the relationship detected 
by the analysis is, in this way, a spurious one. In general, no statistical analysis can 
unambiguously identify causal mechanisms. Interpretation of the results of dynamical analysis is 
aided by the temporal structure of the data set, but gaining understanding still requires erecting 
and rejecting hypotheses. 
 

Interpretation of regression results is greatly aided by first understanding how different 
variables in the data set fluctuate with respect to each other. The simplest pattern is two variables 
moving up and down in synchrony, without a phase shift or, alternatively, in perfect anti-phase. 
Both types of behavior have the same dynamical implications (Turchin 2003c). One possible 
explanation of such dynamics is that one of the variables operates on a fast time scale and 
fluctuates in response to changes in the second variable. This is the most likely explanation of the 
almost perfect anti-phase movements between population pressure and real wage in the English 
data set (see Figure 2b in Turchin 2005). Economic processes setting the real wage operate on a 
much faster time scale than the population movements. When population grows or declines, real 
wages quickly equilibrate in response to new economic conditions. As a result, real wage curve 
follows population trajectory without any perceptible lag.  
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 Synchronous oscillations of two variables can also result from a different mechanism: 
entraining or phase-locking (Turchin and Hall 2003). Mathematical models show that if two (or 
more) systems separated in space are driven by largely endogenous dynamics, and if their 
endogenous dynamics are broadly similar (e.g., have approximately the same period), then their 
cycles may be synchronized by a variety of shared exogenous perturbations. This insight, in 
particular, is suggestive for possible explanations for the synchrony of population and city-size 
changes in east and west Asia. Entraining usually results in less rigid synchrony than when a slow 
variable has a direct effect on a fast one. Therefore, we expect to see the two entrained variables 
come into and out of phase. However, because data are typically limited in quantity (we rarely 
can follow the system for more than two or three oscillations) and quality (measurement errors 
are often high) in practice it is hard to distinguish between the two potential explanations of 
synchrony using just the time-series data.  
 

When two variables fluctuate synchronously or in perfect anti-phase, dynamical systems 
theory tells us that the interaction between the two variables is not what drives the oscillations 
(Turchin 2003c). A phase shift of roughly one-quarter between two variables, on the other hand, 
is consistent with the hypothesis that it is the dynamical interaction between the two variables that 
drives the cycle (it is also possible that one or both of the variables are closely correlated with the 
actual drivers of oscillations). When dynamics are relatively simple low-dimensional cycles, 
graphical analysis in the phase plot could be very revealing (e.g. Figure 4b in the accompanying 
paper). However, complex trajectory movements in a high-dimensional phase plot are difficult to 
visualize, and regression analysis of multiple predictor variables comes to the fore.  
 

Based on the phase relations and the results of regressions we can classify variables in the 
data set into four classes. Let X be the primary variable whose dynamics we are mainly interested 
in understanding. For example, in the accompanying paper (Turchin 2005) the primary variable is 
population numbers and what needs to be explained is population oscillations. In what follows, by 
the “rate of change of X” I mean either an estimate of its derivative, or ∆Xt, depending on whether 
we are using the continuous or discrete analysis framework. 
 

The first class includes those variables that move together with X synchronously or in 
anti-phase. An example of such a first-order endogenous variable is the real wage in the English 
data.  
 

The second class includes those variables that are closely correlated with the rate of 
change of X, and whose own rate of change is closely correlated with X. Typically, their 
fluctuations will be shifted by a quarter phase with respect to X, but if dynamics of the system are 
very complex and high-dimensional, then such phase-relations may be hard to see. An example of 
such second-order endogenous variables is the sociopolitical instability.  
 

The third class includes variables that affect the rate of change of X, but who themselves 
fluctuate independently either of X or of other endogenous variables. A possible example of such 
an exogenous variable might be climatic fluctuations, if it turns out that they have an effect on the 
carrying capacity of the environment. The final class of irrelevant variables includes those that 
have no effect on either X or its rate of change.  
 

In real life it will not always be easy to sort out all variables neatly into one or another 
class, but let us think through the implications of different kinds of variables for the explanation 
of the dynamics of X. Second-order endogenous factors are of most interest because it is their 
action that drives oscillations up and down. First-order factors set the limits of fluctuations, and 
are inherently stabilizing. The exogenous factors are responsible for unpredictable stochastic 
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fluctuations (unless they themselves have a strong periodic component). The irrelevant factors 
are, well, irrelevant. A rough estimation of the relative importance of various factors is given by 
the proportion of variance that each of them explains in the regression with the rate of change of 
X as the response variable. 
 

In summary, the statistical approach that I reviewed above can yield valuable insights 
into the feedback structure characterizing the interactions between different aspects of the studied 
dynamical system—when data are reasonably plentiful (for example, at least two or three 
complete oscillations), cover different aspects of the system, and the measurement errors are not 
too large. Once we have determined which variables have the strongest effect on each other (or, 
rather, on each other’s rates of change), we may desire to obtain quantitative estimates of 
parameters that govern the strength and functional form of various feedback loops. However, the 
generic models discussed in this primer are not suitable for this purpose. A better approach is to 
write models based on explicit mechanisms and fit them to data using such approaches as 
trajectory matching or nonlinear forecasting. Fitting mechanistic models to time-series data is a 
large topic, and its discussion is beyond the scope of the present primer. The interested reader 
may consult Chapter 7 of Turchin (2003a), where I discuss such approaches in the context of 
population ecology. 
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