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FULL RANK RATIONAL DEMAND SYSTEMS 

Common reasons for the choice of functional form for demand analysis include parsi-
mony, ease of estimation and interpretation, generality, flexibility, in- and out-of-sample 
fit, aggregation, and consistency with economic theory (Cooper and McLaren 1992, 
1996). However, at least since the path-breaking papers of Gorman (1953, 1961, 1981), 
Muellbauer (1975, 1976), and Deaton and Muellbauer (1980), flexibility under aggrega-
bility has guided much of the development and application of functional forms. Thus, the 
rank of Engel curves became a central feature to nuance flexibility while maintaining de-
sirable properties of aggregation (Lewbel 1987a, 1990). Recent emphasis on micro-micro 
data sets, empirical models and methods have perhaps decreased the emphasis on aggre-
gation in empirical work but allow for increased parametric flexibility due to relatively 
large data sets. This flexibility is increasingly less costly to implement using modern 
computation and storage capacities. In either case, it is relatively routine to impose any or 
all of the theoretical constructs of non-negativity, Slutsky symmetry, and homogeneity 
including adding up.  

In this paper, we present an extremely flexible structural model of micro-level con-
sumer or producer behavior that encompasses nearly every existing model of demand or 
supply as a special case. This form, developed using group theory, begins with the in-
sights initiated by Gorman (1981), Russell (1983, 1996), and Russell and Farris (1993, 
1998) and ends with a flexible form with useful applications consistent with aggregation 
as a special case, extending to empirical analyses of the micro variety where there may be 
little interest in aggregation. We attain this flexibility by extending the deflated income 
systems of Lewbel (1989a) to a class of rational demand systems that are associated with 
a projective transformation group.  

In addition to all Gorman polar forms, including the normalized quadratic expenditure 
function (Diewert and Wales 1988) and translog, generalized Leontief, and generalized 
McFadden cost functions (Diewert and Wales 1987), we show that the general translog 
(Christenson, Jorgenson, and Lau 1975), modified almost ideal demand system and gen-
eral exponential form (Cooper and McLaren 1992, 1996), fractional and rational rank 
four demand systems (Lewbel 1987b, 2003, 2004), reciprocal generalized Leontief and 
minflex Laurent demand systems (Barnett and Lee 1985; Barnett, Lee, and Wolfe 1985), 
and reciprocal indirect normalized quadratic (Diewert and Wales 1988) are members this 
new class of demand systems. As a consequence, nearly all commonly used demand 
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models are encompassed by the class of rational demand systems derived and presented 
here. Thus, we extend and synthesize a large literature on functional forms in demand and 
production analysis. 

A Brief Summary of Aggregation Theory 

Gorman (1953) derived the necessary and sufficient conditions for the existence of a rep-
resentative consumer and then found the indirect preference function, commonly called 
the Gorman Polar Form (Gorman 1961). Muellbauer (1975, 1976) extended this to one 
nonlinear function of income, obtaining the price independent generalized linear (PIGL) 
and price independent generalized logarithmic (PIGLOG) models. Gorman (1981) ex-
tended this further to a complete system that is a finite sum of functions of income, each 
multiplied by a vector of price functions. Gorman systems are the foundation of an im-
portant literature in demand theory (Deaton and Muellbauer 1980; Gorman 1953, 1961, 
1981; Jerison 1993; Lewbel 1987a 1988, 1989a, 1990; Muellbauer 1975, 1976; Russell 
1983, 1996; Russell and Farris 1993, 1998; van Daal and Merkies 1989).  

An important fact is that many – even most – existing empirical models of consumer 
and producer behavior can be represented as a Gorman system. This includes, inter alia, 
quadratic utility and many extensions, linear expenditure system, quadratic expenditure 
system, almost ideal demand system (AIDS), quadratic AIDS, Rotterdam model, general-
ized Leontief, normalized quadratic, translog, and trigonometric demand models. 

There are three main insights in the literature on aggregation theory. Gorman’s (1981) 
seminal work, as clarified and extended by Lewbel (1987a 1988, 1989a, 1990) and van 
Daal and Merkies (1989), tells us that the maximum number of linearly independent vec-
tors of price functions – called the rank of the system – is no more than three. A Gorman 
system is said to have full rank if the rank of the matrix of price functions is equal to the 
number of its columns, which in turn equals the number of unique income functions 
(Lewbel 1990). As a result of the research program of Lewbel, the indirect preferences of 
all full rank nominal income Gorman systems are known.  

The second insight was originally presented in Russell (1983), and clarified and ex-
tended by Jerison (1993), Russell (1996), and Russell and Farris (1993, 1998). All full 
rank Gorman systems are projective transformation groups of differential geometry. This 
provides an opportunity – as yet unfulfilled – for a unifying expression for all full rank 
Gorman systems in a single framework. We provide this representation below. 

The third (group of) insight(s) comes from Lewbel (1989a). Deflating income prior to 
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considering the implications of symmetry (hereafter called deflating ex ante) overcomes 
the functional form restrictions due to homogeneity, deflated income Gorman systems 
can have a maximum rank of four, and deflated income Gorman systems include all of 
the nominal income Gorman systems as special cases. 

This paper combines the above results with at least two additional insights to expand 
the class of full rank models to any rank – up to the number of goods in the demand sys-
tem – while maintaining the strict equivalence between the number of independent price 
indices and the rank of the demand system in all nominal or deflated income Gorman sys-
tems. As noted in the introduction, this extension encompasses many well-known alterna-
tives to Gorman systems, including the general exponential form, or GEF (Cooper and 
McLaren 1996), modified AIDS, or MAIDS (Cooper and McLaren 1992), translog 
(Christensen, Jorgenson, and Lau 1975; Jorgenson 1990; Jorgenson, Lau and Stoker 
1980, 1981, 1982; Jorgenson and Slesnick 1984, 1987), fractional demand systems 
(Lewbel 1987b), rational rank four demand system (Lewbel 2003, 2004), reciprocal indi-
rect utility generalized Leontief and minflex Laurent demand systems (Barnett and Lee 
1985; Barnett, Lee, and Wolfe 1985), and reciprocal indirect normalized quadratic de-
mand system (Diewert and Wales 1988). 

First, we find a unifying expression for all full rank nominal and deflated income 
Gorman systems in terms of a projective group transformation, which also provides a 
comprehensive answer to the question raised by Lewbel (1989a, 1990). Second, we over-
come the restriction to rank three of a projective group transformation – which appears on 
the right-hand side of the group theory representation we find for all nominal and deflated 
income Gorman systems – by generalizing the left-hand side in a comprehensive, yet 
natural and intuitively appealing way. This produces a class of rational full rank demand 
systems that can have any rank, up to the total number of goods in the demand system. 

We proceed by first briefly reviewing the properties of projective group transforma-
tions. Next, we identify an important common characteristic of full rank three nominal 
income Gorman systems. Third, we present the group theory representation for all full 
rank nominal and deflated income Gorman systems. Fourth, this class of models is ex-
tended to a large class of rational demand systems in which any rank can be achieved and 
all but one of the income functions is flexible. This class is shown to encompass almost 
all well-known and commonly implemented empirical models of demand behavior. The 
final section summarizes and concludes. Proofs are in the Appendix. 
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Projective Transformation Groups 

A group is a set of elements that is closed under a binary operator, called multiplication 
regardless of what the operator truly is, an inverse operator, and a well-defined identity 
operator. The projective transformation group is equivalent to the special linear group 
two, (2)sl . The latter group is defined by the set of all 2×2 matrices,  

 
α β
γ δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A , (1) 

with a unit determinant, 1αδ βγ− =  (Olver 1993). The inverse of any (2)∈A sl , 

 1 δ β
γ α

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

A , (2) 

satisfies 1 (2)− ∈A sl , since 1| | 1 | | 1− = =A A . It is clear that the 2×2 identity matrix be-
longs to (2)sl , while 2 =I A A  for all (2)∈A sl . Last, for all , (2)∈A B sl , the matrix 
product, (2)∈AB sl , since | | | | | | 1.= × =AB A B  Thus, matrix multiplication is the 
multiplicative operator for this group, matrix inversion is the inverse operator, and multi-
plication by the 2×2 identity matrix is the identity operator. The restriction to a unit de-
terminant is a normalization that gives three independent parameters in the group. 

The matrix (2)∈A sl  in (1) is associated with the projective group transformation 
( ) ( ) /( )y x x xα β γ δ= + +  for all x∈  such that | ( ) |y x < ∞ , a rational map with linear 

functions in both the numerator and the denominator. The inverse projective group trans-
formation, ( ) ( ) /( )x y y yδ β γ α= − − + , is associated with 1 (2)− ∈A sl . I2 defines the 
identity map ( )y x x= . Let , (2)∈A B sl  define a pair of projective group transformations 
by 11 12 21 22( ) ( ) ( )a x a x a a x a= + +  and 11 12 21 22( ) ( ) ( )b x b x b b x b= + + . The matrix 
product BA is associated with the composition of the projective group transformations,  

 11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

( ) ( )( ( ))
( ) ( )
b a b a x b a b ab a x
b a b a x b a b a

+ + +
=

+ + +
. (3) 

This can be verified by computing the individual elements of BA and rearranging terms 
in the composite function ( ( ))b a x . That is, multiplication is the composition of transfor-
mations in the group and this is one-to-one and onto with matrix multiplication in (2)sl . 
A simple inductive argument implies that any sequence of compositions of projective 
group transformations is a projective group transformation. 

As noted above, the determinant restriction implies that there are three parameters in 
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this group. Sophus Lie (1880; English translation with commentary in Hermann 1975) 
proved that this is the most general group transformation on the real line. In general, the 
projective transformation group is defined only up to arbitrary monotonic, smooth trans-
formations, say ( ), ( ) 0z y z y′ ≠ . The group (2)sl  also is closed for matrices with com-
plex elements. Consequently, the projective transformation group extends from  to 

{ }: ,x y x yι= + ∈ , where 1ι = − . These two facts are essential and advantageous 
in what follows. 

In the following sections, the identity matrix will be associated with rank one Gorman 
systems. A second special case of interest is the set of upper triangular 2×2 matrices of 
the form, 

 
1
0 1

β⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A , (4) 

which is associated with full rank two Gorman systems via the map ( )y x x β= + . A 
third case of interest is the set of diagonal matrices of the form 

 
0

0 1
α

α
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A , (5) 

which also is associated with full rank two systems. Upper triangular matrices of the form 

 
0

α β

α−1

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A  (6) 

are associated with full rank three deflated income systems, while matrices satisfying 
1αδ βγ− =  with no other restriction are associated with full rank three nominal income 

systems and full rank four deflated income systems. 

A Characteristic of Full Rank Three Nominal Income Gorman Systems 

Let n
+∈ ⊂p P  be a vector of market prices, let n

+∈ ⊂q Q  be a vector of goods, let 
m +∈ ⊂M  be total expenditure, and let utility be u(q), where :u → ⊂Q U  is 
smooth ( u ∞∈C ), increasing, and quasi-concave on Q. We use the sobriquet income to 
denote m throughout. Define the expenditure function by 

 { }( , ) min : ( )e u u u≡ ≥p p q qT . (7) 

Assume :e × →P U M  is smooth ( e ∞∈C ), increasing, 1° homogeneous, and concave 
in p, and increasing in u. Assume an interior solution for q. Any nominal income Gorman 
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system can be written as 

 
1

( , ) ( ) ( ( , )),
K

k k
k

e u h e u
=

∂ ∂ = ∑p p p pα  (8) 

where : n
k →α P , k

∞∈α C , :kh →M , kh ∞∈C , 1, , ,k K=  are smooth functions 
of prices and income, respectively. Finally, we also assume that the 1{ , , }Kα α  are line-
arly independent across the K–dimensional constants and that the 1{ , , }Kh h  are linearly 
independent across the K–dimensional constants, to ensure a unique representation of the 
demand system (see, e.g., Gorman (1981) or the Appendix of Russell and Farris (1998) 
by Robert Bryant). 

The Appendix includes the algebraic steps that will put each of the extended PIGL, 
PIGLOG, and QES full rank three nominal income Gorman systems in the form, 

 
2

1 1

2 2

( ( , )) ( ) ( ( , )) ( ) ( )( ( ))
( ) ( )

f e u f e uβ β ηθ η
β β

⎡ ⎤⎛ ⎞ ⎛ ⎞− −∂ ∂⎢ ⎥= +⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

p p p p pp
p p p p

, (9) 

where ( ) {ln , }f m m mκ∈ , 1 2, , :β β η →P , :θ → , and 1 2, , ,β β η θ ∞∈C . With a 
change of variables to [ ]1 2( , ) ( ( , )) ( ) ( )z u f e u β β= −p p p p , this simplifies to 

 2( , ) ( ( )) ( , ) ( )z u z uθ η η⎡ ⎤∂ ∂ = + ∂ ∂⎣ ⎦p p p p p p . (10) 

Therefore, all full rank three QES, generalized PIGL, and generalized PIGLOG models 
are characterized by the following property (A proof is contained in the Appendix). 

Lemma 1: If :z × →P U , :θ → , :η →P , , ,z θ η ∞∈C , satisfy (10) 
and ( )η∂ ∂ ≠p p 0 , then ( , ) ( ( ), )z u w uη≡p p , 2( , ) ( ) ( , )w x u x x w x uθ∂ ∂ = + . 

The function :w × → , w ∞∈C , can be defined formally by 

 
( )

2
0

( ( ), ) ( ) ( , )[ ]w u x w x u dx
η

η θ= +∫
p

p , (11) 

with initial conditions1 (0, )w u u=  and 2(0, ) (0)w u x uθ∂ ∂ = + . In the Appendix, as part 

                                                 

1Make the change of variables ( , ) ( , ) / ( , )w x u v x u x v x u= −∂ ∂  to convert the Riccati partial differential 
equation in w to the linear second-order partial differential equation 2 2( , ) ( ) ( , ) 0v x u x x v x uθ∂ ∂ + = , which 
requires two initial conditions. The two chosen here normalize the utility index and guarantee smoothness 
at x=0 for all u. In general, linear second-order differential equations with non-constant coefficients do not 
have solutions that are expressible in terms of elementary functions, although solutions in terms of conver-
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of the proof of proposition 1 below, it is shown that when ( )xθ λ≡  solutions for ( , )w x u  
can be expressed in terms of elementary functions. We use (11) to obtain the projective 
group transformations for this class of demand systems. The special cases that can be ex-
pressed in terms of elementary functions illustrate the nature of these transformations. 

Lewbel (1988, 1990) finds the indirect preferences for the trigonometric full rank 
three nominal income Gorman system,  

 ( )
( )

3 1
2

1

( ) cos ln ( ( ))
( , ) ( )

1 sin ln ( ( ))
m

v m
m

β τ β
β

τ β
= +

−⎡ ⎤⎣ ⎦

p p
p p

p
. (12) 

We use this expression to find the projective group transformation for this system. 

Full Rank Gorman Systems as Projective Group Transformations 

With this background, we present a complete characterization of all full rank nominal and 
deflated income Gorman systems in terms of projective group transformations.  

Proposition 1:  Let { , , }w η θ  satisfy lemma 1; let :π →P , π ∞∈C , be 1° ho-
mogeneous; let ,α β γ δ, , : →P , ,α β γ δ ∞, , ∈C , be 0° homogeneous and sat-
isfy ( ) ( ) ( ) ( ) 1α δ β γ− ≡p p p p ; let λ ∈ ; and let :f → , f ∞∈C , 0f ′ ≠ . 
Then the expenditure function of any full rank Gorman system can be written as: 

Rank 1 ( , )
( )

e u u
π

=
p

p
; 

Rank 2 ( , ) ( )
( )

e uf u β
π

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p p
p

 if ( ) lnf x x≠ , or 

 ( , ) ( )
( )

e uf uα
π

⎛ ⎞
=⎜ ⎟

⎝ ⎠

p p
p

 if ( ) lnf x x= ; 

Rank 3 ( , ) ( ) ( )
( )

e uf uα β
π

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p p p
p

 if ( ) {ln , , }f x x x xκ ιτ∉ , 

 ( , ) ( ) ( )
( ) ( ) ( )

e u uf
u

α β
π γ δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p
p p p

 if ( ) {ln , }f x x xκ∈  and ( )θ η λ≡ ,  

 or if ( )f x xιτ= , or 

                                                 
gent infinite series can often be found (e.g., Boyce and DiPrima 1977, chapter 4). 
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 ( , ) ( ) ( ( ), ) ( )
( ) ( ) ( ( ), ) ( )

e u w uf
w u

α η β
π γ η δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p p
p p p p

, if ( ) {ln , }f x x xκ∈  and ( ) 0θ η′ ≠ ; 

Rank 4 ( , ) ( ) ( )
( ) ( ) ( )

e u uf
u

α β
π γ δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p
p p p

 if ( )θ η λ≡ , or  

 ( , ) ( ) ( ( ), ) ( )
( ) ( ) ( ( ), ) ( )

e u w uf
w u

α η β
π γ η δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p p
p p p p

 if ( ) 0θ η′ ≠ ,  

 with ( ) {ln , , }f x x x xκ ιτ∉  in both of these two cases. 

The discussion in the previous section shows that the projective transformation group 
is closed over any sequence of compositions of transformations in the group. This fact 
illuminates the content of proposition 1. Define { , }fα β γ δ θ η π, , , , , ,  as in the proposi-
tion and extend the definition of the function :w × →  to 

 ( )
2

0

, ( ( )) ,
( ( ), )

( ) ( , ) , ( ( )) 0,[ ]
u if

w u
x w x u dx if

η
θ η λ

η
θ θ η

≡⎧⎪= ⎨ ′+ ≠⎪⎩ ∫
p

p
p

p
 (13) 

with initial conditions (0, )w u u=  and 2(0, ) (0)w u x uθ∂ ∂ = +  in the second case. Then 

 2

, ( ( )) ,
( ( ), )

( ( )) ( ( ), ) ( ) , ( ( )) 0.

if
w u

w u if

θ η λ
η

θ η η η θ η

≡⎧⎪∂ ∂ = ⎨ ⎡ ⎤ ′+ ∂ ∂ ≠⎪ ⎣ ⎦⎩

p
p p

p p p p p

0
 (14) 

Define the projective group transformation from ( ( ), )w uη p  to ( ( , ) ( ))f e u πp p  by 

 ( , ) ( ) ( ( ), ) ( )
( ) ( ) ( ( ), ) ( )

e u w uf
w u

α η β
π γ η δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p p
p p p p

. (15) 

The inverse transformation is 

 ( ) ( ( , ) ( )) ( )( ( ), )
( ) ( ( , ) ( )) ( )

f e uw u
f e u

δ π βη
γ π α

−
=
− +

p p p pp
p p p p

, (16) 

and some straightforward algebra yields  

 1( ) ( ( ), ) ( )
( ) ( ( , ) ( )) ( )

w u
f e u

γ η δ
γ π α

+ =
− +

p p p
p p p p

. (17) 

Let subscripts denote partial derivatives, suppress the arguments of all functions for 
compactness, and make the substitution ( , )m e u= p  throughout, to yield 
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[ ]

2 2

2

2

2

( ) ( )( )
( ) ( )

( ) ( ) (

( )
( ) (

.
( )

w w w w wmf
w w

w w

w
w w

w

α α β α β γ γ δ
π

π γ δπ γ δ

γα αγ γβ βγ δα αδ δβ βδ

γ δ
αγ αγ αδ βγ

γ δ

+ + + + +⎛ ⎞′ × − = −⎜ ⎟ + +⎝ ⎠

− + − + − + − )
=

+

− + − )
+

+

p p p p p p
p

p p p p p p p p

p

q

 (18) 

The first term in parentheses inside of the square brackets on the last line of (18) vanishes 
identically. The second term in parentheses is identically one. Substitute (14), (16), and 
(17) into the right-hand side of (18) and rearrange terms to obtain: 

 2( ) ( ) (m f f
f
ππ αβ βα βγ γβ δα αδ γδ δγ

π
⎡ ⎤= + − + − + − + − )⎣ ⎦′p p p p p p p p pq , (19) 

if ( )θ η λ≡ ; and 

 

2

2 2

( ) ( ) (

( ) ( ) ,

m f f
f

f f
f

ππ αβ βα βγ γβ δα αδ γδ δγ
π

π η δ β θ γ α

⎡ ⎤= + − + − + − + − )⎣ ⎦′

⎡ ⎤+ − + − +⎣ ⎦′

p p p p p p p p p

p

q
 (20) 

if ( ) 0θ η′ ≠ . 
In both cases, the right-hand side is quadratic in f. Note that if ( ) {ln , , }f x x x xκ ιτ∈ , 

then ( ) ( )f x f x′  or 1 ( )f x′  is proportional to x. The first term on the right in (19) and 
(20) already is proportional to /x m π= , so that such a choice for f reduces the number 
of income terms by one. In other words, a deflated income system has a greater rank than 
an otherwise identical nominal income system if and only if f is not one of the functional 
forms found by Gorman. Moreover, every full rank deflated income Gorman system has 
the same group structure for indirect preferences as a nominal income Gorman system. 

Rational Demand Systems of Any Rank 

These developments show that the main difference between full rank deflated and nomi-
nal income Gorman systems is one of functional form, while Lie’s theory of transforma-
tion groups limits the rank of the demand system generated by the projective group trans-
formation on the right-hand side for all choices of f on the left-hand side. No added flexi-
bility – in terms of the rank of the demand system – can be achieved by further manipu-
lating the right-hand side. But nothing precludes further manipulating the left-hand side.  
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As discussed in previous sections of this paper, a common alternative to Gorman sys-
tems of Engel curves are rational demand systems, including the translog, MAIDS, GEF, 
fractional and rational rank four demand systems, and the reciprocal indirect generalized 
Leontief, minflex Laurent, and normalized quadratic demand systems. So far, these alter-
natives have at best achieved rank four, most are rank two, a few are rank three, and even 
fewer are full rank. From the known algebraic results on rational polynomials (e.g., 
Jorgenson 1966), one would expect that the flexibility of demand models would increase 
dramatically with the use of rational systems. Moreover, it appears desirable to nest and 
test for the functional form, rank, and aggregation properties of an empirical demand 
model, both for aggregate and micro-level data sets. The following allows one to take this 
to any level that may be desired. It also illustrates a tradeoff when seeking to increase the 
flexibility and rank of a demand system beyond rank four.  

Let :jϕ → , jϕ ∞∈C , 0jϕ′ ≠ , 1, ,j J= , let :jπ +→P , jπ ∞∈C , 
1, ,j J= , be 1° homogeneous, let :f → , ,f ∞∈C  0,f ′ ≠  0f ′′ ≠ , and define2 

 ( )1( , ) / ( )( )J
j jjy m f mϕ π

=
= ∑p p . (21) 

Define the expenditure function implicitly by the real projective group transformation,3  

 ( ) ( )( , ( , )) ,
( ) ( )

uy e u
u

α β
γ δ

+
=

+
p pp p
p p

 (22) 

with , , , :α β γ δ →P , but otherwise the same as in proposition 1.4 Hotelling’s Lemma 

                                                 
2 If J≥2, we can also let ( ( ))J Jϕ π p  be independent of m, where ( )Jπ p  is 0° homogeneous, although this 
may not result in a full rank system (see the discussion below for details). We restrict our attention to real 
projective group transformations. However, systems defined by a complex-valued f and appropriately re-
stricted complex-valued , , , :α β γ δ →  also are possible. For example, such systems could be used to 
generate rational Fourier series demand systems (Chalfant 1987; Chalfant and Gallant 1985; Elbadawi, 
Gallant, and Souza 1983; Gallant 1981, 1982, 1984; Piggott 2003). 
3 Equivalently, define the indirect utility function explicitly by the inverse projective transformation group, 

( ) ( , ) ( )( , )
( ) ( , ) ( )

y mv m
y m

δ β
γ α

−
=
− +

p p pp
p p p

. 

One can impose properties on f and , 1, , ,j j Jϕ =  so that y is increasing and convex in m. Monotonicity 
then implies 2( ) 0m mv y yγ α= − + > . However, 2 2 3( ) 2 ( )mm mm mv y y y yγ α γ γ α= − + + − + , and there 
can be increasing, constant, or decreasing marginal utility of money even if y is increasing and convex in m. 
Such properties affect the region of economic regularity of the demand equations, but are not related to the 
rank of the system. 
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yields 

 
2 2

1 1 2 3

1 1

,
J

j j jj
J J

j j j jj j

m y y

f

ϕ π π

ϕ π ϕ π
=

= =

′ + +
= +

′ ′ ′×

∑
∑ ∑

p
q α α α  (23) 

with 1 αβ βα= −p pα , 2 βγ γβ δα αδ= − + −p p p pα , and 3 γδ δγ= −p pα . 

This demand system can attain full rank J+3 ≤ n. To see this, set 

 / ( ) ( ) / ( ) , 1, ,( ) ( ) j
j j j jm j m j Jϕ π φ π= × =p p , (24) 

and ( ) exy f x= = . Then (23) becomes 

 
1

1 2 31

1

( )

( )

J j
j j j jj

J j
j jj

m y y
m

m

φ π π π

φ π

−
=

=

⎧ ⎫⎡ ⎤ + + +⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑
∑

p
q

α α α
. (25) 

which is a J th–order rational polynomial in deflated income plus the sum of three linearly 
independent terms in 1{ ,1, }y y− . Other definitions of f yield similar results, as long as 
there is nonzero curvature. For example, 1/( )f x x κ=  and (24) yields 

 
( )2

1 2 31

1

( )

( )

J j
j j j jj

J j
j jj

m y y y
m

m

κφ π π π κ

φ π

−1
=

=

⎧ ⎫⎡ ⎤ + + +⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑
∑

p
q

α α α
. (26) 

The tradeoff associated with increasing the rank of demand systems beyond four is 
that y becomes increasingly complex with each added term. Full rank also restricts the 
functional forms that can be chosen for ( )f x . For example, the identity map (which is 
WLOG for a linear ( )f x  since the multiplicative constant can be absorbed into the ϕ j’s) 
combined with the power terms (24) results in a rational polynomial in m with a reduced 
rank of at most J+2. This is so because (23) then reduces to 

                                                 

4 We could extend the definition of rational full rank demand systems to include ( ( ), )w uη p  as defined in 
(14) and a non-constant ( )θ η . Lewbel (1987a, p. 1454) states, “… this complicates the demand equations 
while adding nothing to either income or price flexibility, so demands with [ ( )θ η λ≠ ] are not likely to be 
of much practical interest.” He repeats this sentiment in Lewbel (1990, p.292) and we agree with his as-
sessment. Nevertheless, the complete set of rational demand systems in this class would include this case. 
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( ) ( )1 21

1

3 1 1

1

( )

( )

( )
.

( )

J j
j j j jj

J j
j jj

J J j k j k
j k j kj k

J j
j jj

j m
m

m

jk m

m

φ π π π

φ π

φ φ π π

φ π

=

=

+
= =

=

⎧ ⎡ ⎤+ +⎪ ⎣ ⎦= ⎨
⎪⎩

⎫
⎪+ ⎬
⎪⎭

∑
∑

∑ ∑
∑

p
q

α α

α
 (27) 

The polynomial in the numerator on the first line of (27) has J+1 linearly independent 
price vectors, but the polynomial in the numerator on the second line has only one, 3α , 
with ½J(J+1) total income terms. We can replace jm π  in (24) with ln( )jm π  to gener-
ate a rational polynomial in log-income, but this will again have a reduced rank when f 
has no curvature. 

We conclude this section by showing that the translog (Christenson, Jorgenson, and 
Lau 1975), MAIDS and GEF (Cooper and McLaren 1992, 1996), fractional and rational 
rank four demand systems (Lewbel 1987b, 2003, 2004), reciprocal indirect generalized 
Leontief and minflex Laurent demand systems (Barnett and Lee 1985; Barnett, Lee and 
Wolfe 1985), and reciprocal indirect normalized quadratic (Diewert and Wales 1988) are 
all members this class of demand systems. As a consequence, nearly all commonly used 
demand models are encompassed by the class of rational demand systems presented 
above.5 

Translog 

 ( , ) ln( ) ½ ln ( ) ln ( )v m m m m= +p p p B pα T T . (28) 

The restrictions 1= −i αT  and 0=i BiT  are typically imposed for identification and exact 
aggregation. Set ( , )v m u=p , ( , )m e u= p , impose these restrictions and solve for the 
log-expenditure function as 

 ln ½ ln lnln ( , )
1 ln

ue u − −
=

−
p p B pp

i B p
α T T

T
. (29) 

                                                 

5 For brevity, we omit many Gorman polar forms – which are clearly rank two members of this class – such 
as the normalized quadratic expenditure function (Diewert and Wales 1988), and the translog, generalized 
Leontief, and generalized McFadden cost functions (Diewert and Wales 1987). Of course, extensions of 
these models that include both a linear and a quadratic term in output or log-output are not members of the 
class of rational demand systems developed in this paper.  
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Since 1 ( )in
i ip α π−
= ≡Π p  is 1° homogeneous, add ( )ln ln ln−i B p i B p pαT T T  to the nu-

merator, and move the term ln ln ( )π= −p pα T  to the left-hand side, 

 ½ ln ln ln ln( , )ln
( ) 1 ( ln )

( )ue u
π

− −⎛ ⎞
=⎜ ⎟ −⎝ ⎠

p B p i B p pp
p i B p

αT T T

T
. (30) 

Define ( ) 1 1 ( ln )α = −p i B pT ,  
 ( ) ½ ln ln ln ln 1 ( ln )( )β ⎡ ⎤= − − −⎣ ⎦p p B p i B p p i B pαT T T T , 
 ( ) 0γ =p , and 
 ( ) 1 ( ln )δ = −p i B pT , to obtain the desired projective group format.6 

If the translog indirect utility function is not exactly aggregable, it is convenient to 
apply a different normalization for identification, 1=i BiT , to rewrite (28) as 

 2( ln ( , )) 2( ln ) ln ( , ) 2 ln ln ln 2 0e u e u u+ + + − =p i i B p p p p B pα − αT T T T . (31) 

This can be solved for the log-expenditure function as 

 2ln ( , ) ln ( ln ) 2( ln ) ln lne u u= − ± − + − −p i B p i i B p i p p B pα α αT T T T T T . (32) 

Since 11( ) e
nn
j iji i bn

i ipαπ == Σ−Σ
=1≡ Πp  is 1° homogeneous, subtract ln ( )π p  from both sides of 

(32) and square the result to obtain, 

 
2

2( , )½ ln ln ½ ln ln ½( ln )
( )

e u u
π

⎡ ⎤⎛ ⎞
= − − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

p p p B p i B p i
p

α αT T T T . (33) 

MAIDS 

The indirect utility function for the MAIDS (Cooper and McLaren 1992) is 

 
1 2

( , ) ln
( ) ( )
m mv m

η

π π
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p
p p

, (34) 

where 1ln ( ) ln ½(ln ) lnπ κ= + +p p p C pα T T , 2ln ( ) ( ln )π η=p pβ T , 1=i αT , =C C T , 

1 0, 1, ,n
j ijc i n= = =Σ , and [0,1]η= ∈i βT . Taking the log of both sides yields 

 
1 2

( , ) ( , )ln ln ln
( ) ( )

e u e u uη
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞
− =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

p p
p p

, (35) 

                                                 

6 Nearly identical steps put the nested AIDS and exactly aggregable translog model of Lewbel (1989b) in 
the same format, so we also omit this case. 
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with the normalization ln ( , )v m u=p . 

GEF 

The indirect utility function for the GEF (Cooper and McLaren 1996) is 

 ( )1

2

( ) 1
( , )

( )
m mv m

ημπ
μ π

⎡ ⎤− ⎛ ⎞
= ⎢ ⎥ ⎜ ⎟
⎢ ⎥ ⎝ ⎠⎣ ⎦

p
p

p
, (36) 

where 1 2, :π π → ++P  are 1° homogeneous, 1μ ≥ − , and [0,1]η ∈ .7 Taking the log of 
both sides then gives 

 
1 2

( , ) ( , )ln 1 ln
( ) ( )

e u e u u
μ

η
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥− + =⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

p p
p p

, (37) 

with the normalization ( )ln ( , )v m uμ =p . 

Fractional Demand Systems 

The indirect utility functions for fractional demand systems that are presented in Lewbel 
(1987b) include homothetic, PIGL, PIGLOG, and translog demand systems – which have 
already been analyzed – plus three new ones: 

1. LOG2 ( )( , ) [ ( ) ln 1] e Bv m A m m −= + − pp p ; 

2. EXP 1 ( )( , ) ( ) Bv m m A m eκ+ −⎡ ⎤= +⎣ ⎦
pp p ; and 

3. TAN ( , ) ( ) sin( ln ) ( ) cos( ln )v m A m B mτ τ= +p p p . 
To put each of the new cases in the form of the above class of rational demand systems, 
we must impose the associated homogeneity conditions on the price functions. 

For the LOG2 indirect utility function, 0° homogeneity requires 1( ) ln ( )A π= −p p  
and ( )

2e ( )B π=p p , where 1( )π p  and 2 ( )π p  are 1° homogeneous. This model can then 
be written in terms of the expenditure function as 

 
1 2

( , ) ( , )ln 1 ln
( ) ( )

e u e u u
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞
− + =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

p p
p p

, (38) 

with the normalization ln ( , )v m u=p . 
                                                 
7 Cooper and McLaren (1996) include a parameter, [0,1]κ ∈  as a multiplicative scalar on 1( )π p  in the 
definition of the GEF. This parameter can not be identifed in empirical applications and has no effect on the 
structure of the indirect utility function. Hence, we omit it for compactness. 
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For the EXP indirect utility function, 0° homogeneity requires that ( )
1e ( )B π=p p  and 

( ) (1 )
2( )e ( )BA κπ− − +=pp p , where again 1( )π p  and 2 ( )π p  are 1° homogeneous. This 

model can then be written in terms of the expenditure function as 

 
1

1 1

( , ) ( , )
( ) ( )

e u e u u
κ

π π

+
⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p p
p p

, (39) 

with the normalization ( , )v m u=p . 
For the TAN indirect utility function, Euler’s equation for 0° homogeneity implies 

that two functions, 1 :π +→P , 2 :π →P , exist such that 1( )π p  is 1° homogeneous, 

2 ( )π p  is 0° homogeneous, and  

 ( )( ) ( )( )2 1 1( , ) ( ) sin ln ( ) cos ln ( )v m m mπ τ π τ π⎡ ⎤= +⎣ ⎦p p p p . (40) 

Set 1
2( ) ( )α π −=p p  to write the TAN model in terms of the expenditure function as 

 
1 1

( , ) ( , )sin ln cos ln ( )
( ) ( )

e u e u uτ τ α
π π

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

p p p
p p

. (41) 

Reciprocal Generalized Leontief and Minflex Laurent 

The generalized Leontief reciprocal indirect utility function (Barnett and Lee 1985; and 
Barnett, Lee, and Wolfe 1985) is 

 0
1 1 1

1
( , )

n m n

i i ij i j
i i j

a a p m b p p m
v m = = =

= + +∑ ∑∑p
. (42) 

Define 
2

1 1( ) n
i ii a pπ

=
⎡ ⎤=
⎣ ⎦∑p  and 2 1 1( ) n n

ij i ji j b p pπ
= =

= ∑ ∑p , so that we have 

 
½ 1

0

1 2

1( , ) ( , )
( ) ( )

a ue u e u
uπ π

− −
⎛ ⎞ ⎛ ⎞ −

− − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p p
p p

. (43) 

Similarly, dropping the exponents on all coefficients in equation (3.1) of Barnett and Lee 
(1985), the minflex Laurent reciprocal indirect utility function is 

 
0

1 1 1

1 1 1

1
( , )

.

n n n

i i ij i j
i i j

m n n

i i ij i j
i i j

a a p m b p p m
v m

c p m d m p p

= = =

= = =

= + +

+ −

∑ ∑∑

∑ ∑∑

p
 (44) 
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The same definitions for 1( )π p  and 2 ( )π p , plus the new definitions 3 1( ) n
i ii c pπ

=
= ∑p  

and 1
4 1 1( ) n n

ij i ji j d p pπ −
= =

= ∑ ∑p , imply that 

 
1½ 1

0

1 2 3 4

1( , ) ( , ) ( , ) ( , )
( ) ( ) ( ) ( )

a ue u e u e u e u
uπ π π π

−− −
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ −

− − − + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

p p p p
p p p p

. (45) 

The linear dependence of the middle two terms on the left-hand side implies that this is a 
rank three system. This is verified by inspection of the budget shares in Barnett, Lee and 
Wolfe (1985, p. 8, equation (3.4)) and Barnett and Lee (1985, p. 1423). A class of up to 
rank six systems extending (43) and (45) can be obtained by including four unique pow-
ers of m , with 1 2 3 4, , , :π π π π →P  arbitrary, independent, 1° homogeneous price 
indices, and a projective group transformation on the right, 

 
½1 ½

1 2 3 4

( , ) ( , ) ( , ) ( , ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

e u e u e u e u u
u

α β
π π π π γ δ

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ +

− − + + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

p p p p p p
p p p p p p

. (46) 

This system has a maximum rank of six, rather than full rank seven, because the vector of 
price functions introduced by the term 4 ( )m π p  on the left is linearly dependent with the 
vector of price functions associated with the constant (in y) function introduced by the 
projective group transformation on the right. 

Reciprocal Indirect Normalized Quadratic 

The reciprocal normalized quadratic indirect utility function is (Diewert and Wales 1988) 

 
21 ½ ln

( , ) o
mb

v m m m m
⎛ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

b p p Bp pa
p pα

T T
T

T
. (47) 

Since 1( )π =p b pT , 2 ( ) ½π =p p Bp pαT T , and ( / )
3( ) ian

i ipπ =1≡ Π a ip
T

 are all 1° homoge-
neous, we can rewrite this in terms of the expenditure function as  

 
1 1

0

1 2 3

1( , ) ( , ) ( , )ln
( ) ( ) ( )

b ue u e u e u
uπ π π

− −
⎛ ⎞⎛ ⎞ ⎛ ⎞ −

− − + =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

p p pa i
p p p

T . (48) 

Again, as can be verified by inspecting equation (7) in Diewert and Wales (1988), this is 
a rank two rational demand system due to the linear dependence of the first and second 
income functions on the left-hand side. A class of up to rank four systems of this general 
form is obtained with 1 2, :π π →P  arbitrary, independent, 1° homogeneous price indi-
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ces and a projective group transformation on the right, 

 
1

1 2

( , ) ( , ) ( ) ( )ln
( ) ( ) ( ) ( )

e u e u u
u

α β
π π γ δ

−
⎛ ⎞ ⎛ ⎞ +

− + =⎜ ⎟ ⎜ ⎟ +⎝ ⎠ ⎝ ⎠

p p p p
p p p p

. (49) 

This system has at most rank four, rather than full rank five, because the vector of price 
functions introduced by the term 2ln( ( ))m π p  from the left-hand side is linearly depend-
ent with the vector of price functions associated with the constant (in y) function intro-
duced by the projective group transformation on the right-hand side. 

The Rational Rank Four Demand System  

The reciprocal indirect utility function for the rational rank four demand system (Lewbel 
2003, 2004) is 

 [ ] 1ln ( ) ( )1 ( ).
( , ) ( )

m a b
d

v m c

−
− −⎛ ⎞

= +⎜ ⎟
⎝ ⎠

p p
p

p p
 (50) 

Homogeneity requires that ( )a p  is 1° homogeneous, 1( ) ln ( )b π=p p , where 1( )π p  is 1° 
homogeneous, and ( ), ( )c dp p  are 0° homogeneous. Therefore, rewrite (50) as 

 
( ) ( )1

( )( , ) ( ) ( )ln
( ) ( ) 1 ( ) ( ) 1 ( )

c ue u a c u
d u d c u cπ

⎛ ⎞−
= =⎜ ⎟ − + − +⎝ ⎠

pp p p
p p p p p

, (51) 

so that ( ) ( )cα =p p , ( ) 0β =p , ( ) ( ) ( )d cγ = −p p p , and ( ) 1 ( )cδ =p p  gives the 
projective group transformation on the right-hand side, while ( ) lnf x x= , ( )1 x xϕ = , 
and 2 1( ) ( ) ( )aϕ π= −p p p  is independent of income and 0° homogeneous in p on the 
left-hand side.  

This generates a rank four demand system because {1, x} are linearly independent and 
( ) lnf x x=  has nonzero curvature, which combine to produce two linearly independent 

terms from the left-hand side, while the right-hand side has two independent price indices 
that define the projective group representation. A general class of rank four rational de-
mand systems of this form is 

 1

2

( , ) ( ) ( ) ( )ln
( ) ( ) ( )

e u u
u

π α β
π γ δ

⎛ ⎞− +
=⎜ ⎟ +⎝ ⎠

p p p p
p p p

, (52) 

with demand equations given by 
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( )

( ) ( )

2
1 1 1 1

2
2

1 1
2 1 3 1

2 2
ln ln .

m

m mm m

π
π π

π

π ππ π
π π

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
+ − + − ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

p
pq α α

α α

 (53) 

This is a rational demand system with budget shares on the left, and a simple quad-
ratic polynomial in 1ln( )m π−  with quantities or expenditures as dependent variables. 
The rank is at most four because the two terms introduced from the left in (52) span 

1 1( )m π−α  from the projective group transformation on the right. Also, there are a total 
of six additively separable, independent income functions in the demand system, 

( ) ( ) ( ) ( ){ }2 2
1 2 1 2 1 2 1 21, , ln ( ) , ln ( ) , ln ( ) , ln ( )m m m m m m mπ π π π π π π π− − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

The choices ( ) ln( )f x x=  and 2 1 2( ( ) ( ))ϕ π πp p , independent of m, therefore combine to 
reduce the rank of this demand system from six to a maximum of four.  

Thus, in every case, the choice of the functional form for f and , 1, ,j j Jϕ = , de-
termines the maximum rank of the demand system. 

Conclusions 

For several decades the pioneering conceptual work of Gorman (1953, 1961), Muellbauer 
(1975, 1976) and the later salient developments in Gorman (1981), have guided empirical 
analysis of demand systems. Gorman, with subsequent results by Lewbel (1987, 1989a, 
1990) defined rank such that it is now commonly used to describe the flexibility of de-
mand systems. Among Gorman’s remarkable insights was that integrability substantially 
constrains the rank of a demand system. This paper synthesizes and extends work initi-
ated by Russell (1983) using projective group transformations. After characterizing all 
full rank Gorman systems, a key insight is developed: all full rank nominal income Gor-
man systems as well as extended deflated income Gorman systems (Lewbel 1989a) can 
be represented as a projective group transformation of a specific function of deflated in-
come. We develop rational demand systems with arbitrary rank by generalizing the de-
pendent variable in such a projective group transformation, maintaining a one-to-one re-
lationship between the number of independent price indices and rank of the system, yet 
encompassing virtually all extant applied demand models. This increases the flexibility to 
model demand behavior and facilitates testing for aggregability and the rank of a demand 
system (Lewbel 1991; Cragg and Donald 1997). 
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The primary focus of this paper is on full rank demand systems. Full rank models are 
parsimonious in the number of unknown parameters for a given level of flexibility, and as 
a result are of primary interest in econometric applications. It is easy to construct high 
rank demand systems that are not aggregable, but more difficult to obtain high full rank 
systems. One reasonable modeling strategy, therefore, would be to test Engel curve data 
for its rank, and if it is above rank four, implement a parsimonious rational full rank de-
mand system in the class developed here.8  
 

APPENDIX 

Representation Algebra 

To motivate the statement and proof of Lemma 1, we first show how to express any full 
rank three QES, generalized PIGL, or generalized PIGLOG nominal income Gorman sys-
tem in the form 

 
2

1 1 2
2

3 3

( ( , )) ( ) ( ( , )) ( ) ( )( ( ))
( ) ( )

f e u f e uβ β βθ β
β β

⎡ ⎤⎛ ⎞ ⎛ ⎞− − ∂∂ ⎢ ⎥= +⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

p p p p pp
p p p p

. (A.1) 

Throughout this section, subscripts denote partial derivatives, we use notation consistent 
with (A.1) to replace the corresponding notation in the original articles, and often omit 
the arguments of functions for compactness. 

In van Daal and Merkies (1989), equation (2), group terms in 1
3( )β −p : 

 ( )1 2 2
3 2 3 1 2 1 2 1 3 1 2 3 22 ( )m m mβ β β β β β β β β β θ β β β−= + − + − + +p p p p p p pq . (A.2) 

where p subscripts denote differentiation. Regroup terms in the parentheses: 

 1 2
3 1 2 1 3 1 2 3 2( ) ( ) ( )m mβ β β β β β θ β β β− ⎡ ⎤= − + − + +⎣ ⎦p p p pq . (A.3) 

Gather terms in 2β p , divide both sides by 3β , and isolate 2β p  on the right: 

 
2

1 1 3 1
2 22

3 33

( )
( )

m mβ β β β θ β β
β ββ

⎡ ⎤− − ⎛ ⎞−⎢ ⎥− = +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p p
p

q
. (A.4) 

To obtain (A.1), note that  

                                                 
8 We are gratefully indebted to Arthur Lewbel for emphasizing each of the points in this final paragraph. 
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 1 1 31
2

3 3 3

( ) ( )( , ) me u β β ββ
β β β

− −⎛ ⎞−∂
= −⎜ ⎟∂ ⎝ ⎠

p pqp
p

. (A.5) 

In Lewbel (1990), case iv, move 1mττ −  to the left-hand side, define 1
3 3( ) ( ) τβ β≡p p  

and 1 1 3( ) ( ) ( )β β β≡p p p : 

 

2
3 1 1 3 2 2 3 2

3 2 2
1 2

3 3

( )

2 .

m

m m

τ τ τ τ

τ τ
τ

τ β β β β β θ β β β

τβ β
β β

β β

−1 = + +

⎛ ⎞
+ − +⎜ ⎟⎜ ⎟
⎝ ⎠

p p p

p p
p

q

 (A.6) 

Group terms in 2β p  and 3
τβ : 

 

2
32

3 1 1 2 2 12
33 3

2
31 3

3 2 2 1
33

2 ( ))

( ) .

m mm m

m m

τ τ
τ τ τ

τ τ

τ τ
τ τ

τ

β
τ β β β θ β β β τ

ββ β

ββ ββ θ β β β τ
ββ

−1
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= − + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬
⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥= + + +⎜ ⎟⎨ ⎬
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

p
p p

p
p p

q

 (A.7) 

Isolate the terms in 2β p  on the right: 

 
2

3 1 3
1 2 21

3 3 3
( )

m mm τ τ ττ

τ τ τ

τ β β βτ β θ β β
β β β

−1

+

⎡ ⎤⎛ ⎞−⎢ ⎥− − = +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p
p p

q . (A.8) 

Note that 

 3
1 11

3 3 3

( , )( , ) ( , ) e ue u e u ττ τ

τ τ τ

τ βτβ β
β β β

−1

+

⎛ ⎞∂
− = − −⎜ ⎟∂ ⎝ ⎠

p
p

pp p q
p

. (A.9) 

Substitute 1 1 3( ) ( ) ( )τβ β β≡p p p  and 3 3( ) ( )τβ β≡p p  into (A.8) and (A.9) to get (A.1). 
In Lewbel (1990), case v, fix a sign error and a typographical error on the right (see 

Lewbel 1990, p.297) and move 1/m to the left-hand side: 

 

2 3 12
1 1 3 2

3 3 1

3 2 1 2 2

3 3

(ln ) ln ( )

2 ln
ln (ln ) .

m

m m

β β β
β β θ β β β

β β β
β β β β

β β

2= − + +

−⎛ ⎞
+ +⎜ ⎟
⎝ ⎠

p p p
p

p p p

q

 (A.10) 

Group terms in 2β p : 
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2

1 1 31
3 2

3 1 3

ln( )ln( ) ( )
mm

m
β β βββ θ β β

β β β2

⎡ ⎤⎛ ⎞
⎢ ⎥= + + +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p p
p

q . (A.11) 

Isolate the terms involving 2β p  on the right-hand side: 

 
2

1 1 3 1
22

3 1 3 33

ln( ) ln( ) ( )
m m

m
β β β β θ β β

β β β ββ 2

⎡ ⎤⎛ ⎞
⎢ ⎥− − = +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

p p
p

q . (A.12) 

To obtain (A.1), note that 

 1 1 31
2

3 3 1 3 3

ln[ ( , ) ]ln[ ( , ) ]
( , )

e ue u
e u

β β ββ
β β β β β

⎛ ⎞∂
= − −⎜ ⎟∂ ⎝ ⎠

p ppp q
p p

. (A.13) 

Proofs 

Lemma 1: If :w × →P U , :θ → , :η →P , , ,w θ η ∞∈C , satisfy 

 2( , ) ( ( )) ( , ) ( )w u w uθ η η⎡ ⎤∂ ∂ = + ∂ ∂⎣ ⎦p p p p p p , 

and ( )η∂ ∂ ≠p p 0 , then ( , ) ( ( ), )w u g uη≡p p  with 2( , ) ( ) ( , )g x u x x g x uθ∂ ∂ = + . 

Proof:  Differentiating both sides of the system of partial differential equations,  

 

2

2
2

( , ) ( ) ( )( ( ))

( ) ( , ) ( )( ( )) ( , ) 2 ( , ) .

w u

w uw u w u

η ηθ η

η ηθ η

∂ ∂ ∂′=
∂∂ ∂ ∂

∂ ∂ ∂⎡ ⎤+ + +⎣ ⎦ ∂∂ ∂ ∂

p p pp
pp p p

p p pp p p
pp p p

T T

T T

 (A.14) 

Hence, ( ) ( )w η∂ ∂ × ∂ ∂p p T  is symmetric, so that ( , ) ( ( ), )w u g uη=p p  (Goldman and 
Uzawa 1964, Lemma 1). Differentiating with respect to prices then yields, 

 2( , ) ( ( ), ) ( ) ( )( ( )) ( ( ), )w u g u g uη η ηθ η η
η

∂ ∂ ∂ ∂⎡ ⎤= ⋅ = +⎣ ⎦∂ ∂ ∂ ∂
p p p pp p
p p p

.  

Proposition 1: Let { , , }w η θ  satisfy lemma 1; let :π →P , π ∞∈C , be 1° ho-
mogeneous; let ,α β γ δ, , : →P , ,α β γ δ ∞, , ∈C , be 0° homogeneous and sat-
isfy ( ) ( ) ( ) ( ) 1α δ β γ− ≡p p p p ; let λ ∈ ; and let :f → , f ∞∈C , 0f ′ ≠ . 
Then the expenditure function of any full rank Gorman system can be written as: 

Rank 1 ( , ) ( )e u uπ =p p ; 
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Rank 2 ( , ) ( )
( )

e uf u β
π

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p p
p

 if ( ) lnf x x≠ , or 

 ( , ) ( )
( )

e uf uα
π

⎛ ⎞
=⎜ ⎟

⎝ ⎠

p p
p

 if ( ) lnf x x= ;  

Rank 3 ( , ) ( ) ( ),
( )

e uf uα β
π

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p p p
p

 if ( ) {ln , , }f x x x xκ ιτ∉ , 

 ( , ) ( ) ( )
( ) ( ) ( )

e u uf
u

α β
π γ δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p
p p p

 if ( ) {ln , }f x x xκ∈  and ( )θ η λ≡ , or 

 ( )f x xιτ= , or 

 ( , ) ( ) ( ( ), ) ( )
( ) ( ) ( ( ), ) ( )

e u w uf
w u

α η β
π γ η δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p p
p p p p

, if ( ) {ln , }f x x xκ∈  and ( ) 0θ η′ ≠ ; 

Rank 4 ( , ) ( ) ( )
( ) ( ) ( )

e u uf
u

α β
π γ δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p
p p p

, ( )θ η λ≡ , or  

 ( , ) ( ) ( ( ), ) ( )
( ) ( ) ( ( ), ) ( )

e u w uf
w u

α η β
π γ η δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p p
p p p p

, ( ) 0θ η′ ≠ , and 

 ( ) {ln , , }f x x x xκ ιτ∉  in both of these cases. 

Proof:  We first prove the representations for all nominal income systems and then for all 
deflated income systems. 

Nominal Income Systems 

Full rank one can always be written as ( , ) ( )e u uπ =p p , ( )π p  1° homogeneous. Adding 
up and ordinal utility imply that ( )f x x= , without loss of generality (WLOG). Full rank 
two is only slightly more involved. For the PIGL model, we have 

 1 2( , ) [ ( )] ( )v m mκ β β= −p p p , (A.15) 

with 1( )β p  and 2 ( )β p  κ  homogeneous. Rewrite this in terms of deflated expenditure, 

 ( , ) ( ),
( )

e u u
κ

β
π

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

p p
p

 (A.16) 

with 1
2( ) ( ) κπ β≡p p  1° homogeneous and 1 2( ) ( ) ( )β β β≡p p p  0° homogeneous. For 

the PIGLOG model, we have 
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 1 2( , ) [ln ( )] ( )v m m β β= −p p p , (A.17) 

where 1 1( ) ln ( )β β=p p , with 1( )β p  1° homogeneous, 2 ( )β p  0° homogeneous. Rewrite 
this in terms of deflated expenditure, 

 ( , )ln ( )
( )

e u uα
π

⎛ ⎞
=⎜ ⎟

⎝ ⎠

p p
p

, (A.18) 

where 1( ) ( )π β≡p p  is 1° homogeneous and 2( ) ( )α β≡p p  is 0° homogeneous. 
The van Daal and Merkies (1989) and Lewbel (1987, 1990) solution for full rank 

three nominal income systems with ( ) { , ln }f m m mκ∈ , κ ∈ , and 2( ( ))θ β λ≡p , is: 

 
[ ]3 1( ) ( ( , )) ( )

22 ( )
(1 )

f e u dw u
w

β β

β
λ

− −

= +
+

⌠
⎮
⌡

p p p

p . (A.19) 

We must put each of six cases in the form of a projective transformation group. 

Generalized PIGL 

For the generalized PIGL and 0λ > , we will use: 

 1
2

0
tan ( ).

(1 )

x ds x
s

−=
+

⌠
⎮
⌡

 (A.20) 

Let 2 0λ μ= >  and s wμ= , so that (A.19) becomes 

 
3 1( ) [ ( , ) ( )]

1 3
22

1

( )1 tan ( ) ( ).
(1 ) ( , ) ( )

e u dw c u
w e u

κβ β

κ
μβ β

μλ β

− −
− ⎧ ⎫−⎪ ⎪= = +⎨ ⎬

+ −⎪ ⎪⎩ ⎭

⌠
⎮
⌡

p p p p p
p p

 (A.21) 

The functions 1( )β p  and 3( )β p  are κ  homogeneous and 2 ( )β p  is 0° homogeneous. 
Define 1/

1 1( ) ( ) κβ β≡p p  and 3 3 1( ) ( ) ( )β β β≡p p p , so that 1( )β p  is 1° homogeneous, 
while 3( )β p  is 0° homogeneous. Rewrite (A.21) as  

 [ ] [ ]
[ ] [ ]

23

21

tan ( ) tan ( )( ) ,
1 tan ( ) tan ( )[ ( , ) ( )] 1

c u
c ue u κ

μ μβμβ
μβ μβ

+−
=

−−

pp
pp p

 (A.22) 

using the trigonometric rule for finding the tangent of the sum of two angles. Apply the 
normalization 1 1( ) tan ( )c u uμ− −=  with 1tan (0) 0− = , and rearrange terms to yield: 

 
[ ]{ } [ ]

[ ]
2 3 3 2

21

tan ( ) ( ) ( ) tan ( ) 1( , ) .
tan ( ) 1( )

ue u
u

κ μβ μβ μβ μβ

μββ

+ + −⎛ ⎞
=⎜ ⎟ −⎝ ⎠

p p p pp
pp

 (A.23) 

We have: 
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[ ] ( ) ( )

( )
2 3 3 2 2

2
3 2

tan ( ) ( ) ( ) tan ( ) 1 tan ( )

( ) cos ( ) .

μβ μβ μβ μβ μβ

μβ μβ

⎡ ⎤− − − −⎣ ⎦

= −

p p p p p

p p
 (A.24) 

Define: 

 

( )

( ) ( )

( ) ( )

( )

( )

1 22
1 3 2

2 3 2 3

3 2 2 3

2 3

2 3

( ) ( ) ( ) cos ( ) ;

( ) sin ( ) ( ) cos ( ) ( ) ;

( ) ( ) sin ( ) cos ( ) ( ) ;

( ) sin ( ) ( ) ;  and

( ) cos ( ) ( ) .

κ
π β μβ μβ

α μβ μβ μβ μβ

β μβ μβ μβ μβ

γ μβ μβ

δ μβ μβ

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

= −

= − −

p p p p

p p p p p

p p p p p

p p p

p p p

 (A.25) 

Because 1( )β p  is 1° homogeneous, while 2 ( )β p  and 3( )β p  are 0° homogeneous, 
( )π p  is 1° homogeneous, while ( )α p , ( )β p , ( )γ p , and ( )δ p  are 0° homogeneous. A 

direct calculation yields ( ) ( ) ( ) ( ) 1α δ β γ− ≡p p p p , as required. Hence, rewrite (A.23) as 

 ( , ) ( ) ( )
( ) ( ) ( )

e u u
u

κ
α β

π γ δ
⎛ ⎞ +

=⎜ ⎟ +⎝ ⎠

p p p
p p p

. (A.26) 

The case where 0λ =  is more straightforward, since 

 
[ ]3 1( ) ( , ) ( )3

2
1

( ) ( ) ( )
( , ) ( )

e u
dw c u

e u
β κ β

κ
β

β
β

− −−
= = +

− ∫
p p pp p

p p
. (A.27) 

Define 1( )β p  and 3( )β p  as before and rearrange terms to obtain: 

 3 2 3
1

( , ) 1 ( ) ( ) ( ) ( ).
( )

e u c u
κ

β β β
β

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

p p p p
p

 (A.28) 

The obvious normalization here is ( )c u u= − , so that  

 3 3 2
1

( , ) ( ) 1 ( ) ( ).
( )

e u u
κ

β β β
β

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

p p p p
p

 (A.29) 

Define:  

 

1 2
1 3 3

3 2 3

3

( ) ( ) ( ) ; ( ) ( );

( ) 1 ( ) ( ) ( ) ;

( ) 0; ( ) 1 ( ) .

κπ β β α β

β β β β

γ δ β

= ⋅ =

⎡ ⎤= −⎣ ⎦

= =

p p p P p

p p p p

p p p

 (A.30) 
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Then we again obtain the group representation (A.26).  
Next, let 2 0λ μ= − <  in (A.19), so that 

 

3 1 3 1( ) [ ( , ) ( )] ( ) [ ( , ) ( )]

2

1 3
2

1 3

(1 )(1 )(1 )

( , ) ( ) ( )1 ln ( ) ( ).
2 ( , ) ( ) ( )

e u e udw dw
w ww

e u c u
e u

κ κβ β β β

κ

κ

μ μλ

β μβ
β

μ β μβ

− − − −

=
+ −+

⎧ ⎫− −⎪ ⎪= = +⎨ ⎬
− +⎪ ⎪⎩ ⎭

⌠ ⌠
⎮⎮ ⌡⌡

p p p p p p

p p p p
p p p

 (A.31) 

Defining 1( )β p  and 3( )β p  as before, this can be rewritten as 

 [ ]{ }1 3
2

1 3

( , ) ( ) 1 ( )
exp 2 ( ) ( ) .

( , ) ( ) 1 ( )

e u
c u

e u

κ

κ

β μβ
μ β

β μβ

⎡ ⎤ − −⎣ ⎦ = +
⎡ ⎤ − +⎣ ⎦

p p p
p

p p p
 (A.32) 

In this case, the obvious normalization is ( ) (ln ) 2c u u μ= . Rearranging gives 

 
[ ] 2

2

2 ( )
3 3

2 ( )
1

1 ( ) e 1 ( )( , ) .
( ) e 1

ue u
u

κ μβ

μβ

μβ μβ

β

⎡ ⎤− ⋅ − +⎛ ⎞ ⎣ ⎦=⎜ ⎟
⋅ −⎝ ⎠

p

p

p pp
p

 (A.33) 

We have: 

 [ ] 2 2 22 ( ) 2 ( ) 2 ( )
3 3 31 ( ) e 1 ( ) e 2 ( )eμβ μβ μβμβ μβ μβ⎡ ⎤− − + + =⎣ ⎦

p p pp p p . (A.34) 

Define: 

 [ ]

3

2

3

1 22 ( )
1 3

( )
3 3

( )
3 3

( ) ( ) 2 ( )e ;

( ) 1 ( ) e 2 ( ) ;

( ) 1 ( ) 2 ( )e ;

κμβ

μβ

μβ

π β μβ

α μβ μβ

β μβ μβ

⎡ ⎤= ⋅ ⎣ ⎦

= −

⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎢ ⎥⎣ ⎦

p

p

p

p p p

P p p

p p p

 (A.35) 

 
2

3

( )
3

( )
3

( ) e 2 ( ) ;

( ) 1 2 ( )e .

μβ

μβ

γ μβ

δ μβ

=

⎡ ⎤= − ⎢ ⎥⎣ ⎦

p

p

p p

p p
 

Once again, we obtain the group representation (A.26). 

Generalized PIGLOG 

The same three cases apply here as for the generalized PIGL case, except that ln ( , )e up  
replaces mκ  everywhere, 1 1( ) ln )β β= (p P  for some 1° homogeneous function, 1( )β p , 
while both 2 ( )β p  and 3( )β p  are 0° homogeneous. That is, when 0λ > , equation (A.21) 
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becomes 

 
3 1( ) ln[ ( , ) ( )]

1 3
22

1

( )1 tan ( ) ( ).
ln[ ( , ) ( )](1 )

e u dw c u
e uw

β β μβ β
μ βλ

−
− ⎧ ⎫−

= = +⎨ ⎬
+ ⎩ ⎭

⌠
⎮
⌡

p p p p p
p p

 (A.36) 

Precisely the same steps as in the generalized PIGL case lead to 

 ( , ) ( ) ( )ln ,
( ) ( ) ( )

e u u
u

α β
π γ δ

⎛ ⎞ +
=⎜ ⎟ +⎝ ⎠

p p p
p p p

 (A.37) 

with the definitions for the price functions given in (A.25), except that 1( ) ( )π β≡p p  and 

3( )β p  replaces 3( )β p  throughout. Similarly, if 0,λ =  we obtain (A.37) for the price 
functions defined in (A.30) with 1( ) ( )π β≡p p  and 3( )β p  replacing 3( )β p  everywhere, 
while if 0λ < , we obtain (A.37) with the definitions (A.35), again with 1( ) ( )π β≡p p  
and 3( )β p  replacing 3( )β p  everywhere. 

For the generalized PIGL (including the QES) and PIGLOG cases with ( ( )) 0θ η′ ≠p , 
combine (A.1) and Lemma 1 to write 

 1

3

( ( , )) ( )( ( ), )
( )

f e uw u βη
β

−
=

p pp
p

. (38) 

The same steps as above for the two functional forms for f give the group representations. 

Trigonometric 

From Lewbel (1988, 1990) the indirect utility function is 

 
( )

( )
3 1

2
1

( ) cos ln ( )
( , ) ( )

1 sin ln ( )

m
v m

m

β τ β
β

τ β

⎡ ⎤⎣ ⎦= +
⎡ ⎤− ⎡ ⎤⎣ ⎦⎣ ⎦

p p
p p

p
. (A.39) 

Apply the definitions of and rules for calculating sums and differences of sine and cosine 
functions (e.g., Abramowitz and Stegun 1972, pp.71-74) to rewrite (A.39) as 

 [ ] [ ]
[ ]

3 2 1 2 3

1

( ) ( ) ( ) ( ) ( )
( , )

1 ( )

m
v m

m

ιτ

ιτ
β ιβ β β ιβ

ι β

− × + −
=

−

p p p p p
p

p
. (A.40) 

As before, to find the group representation, we need the appropriate transformation of 
deflated income. Setting ( , )v m u=p  and ( , )m e u= p  and inverting (A.40) yields: 

 [ ]
[ ]
2 3

1 2 3

( ) ( )( , ) .
( ) ( ) ( )

ue u
u

ιτ β ι β
β ι ι β ι β

− − ⋅⎛ ⎞
=⎜ ⎟ ⋅ − ⋅ + ⋅⎝ ⎠

p pp
p p p

 (A.41) 
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We have  

 [ ] [ ]2 3 2 3 3( ) ( ) ( ) ( ) 2 ( ).ι β ι β ι β ι β β− ⋅ + ⋅ + ⋅ − ⋅ =p p p p p  (A.42) 

Define: 

 

[ ]
[ ]

[ ]

1 (2 )
1 3 3

2 3 3

3

2 3 3

( ) ( ) 2 ( ) ; ( ) 1 2 ( ) ;

( ) ( ) ( ) 2 ( ) ;

( ) 2 ( ) ;  and

( ) ( ) ( ) 2 ( ) .

ιτπ β β α β

β β ι β β

γ ι β

δ ι β ι β β

= ⋅ =

= − − ⋅

=

= − ⋅ + ⋅

p p p p p

p p p p

p p

p p p p

 (A.43) 

This yields, 

 ( , ) ( ) ( ) .
( ) ( ) ( )

e u u
u

ιτ
α β

π γ δ
⎛ ⎞ +

=⎜ ⎟ +⎝ ⎠

p p p
p p p

 (A.44) 

Deflated Income Systems 

Deflated income Gorman systems can be written in the form 

 ( )
1

( ) ( )
K

k k
k

h m π
=

= ∑q p pα , (A.45) 

where : ,π → +P π ∞∈C , is 1º homogeneous. Adding up implies 

 ( )
1

( ) ( )
K

k k
k

m h m π
=

≡ ∑ p p pαT , (A.46) 

so that, by linear independence of 1{ ( ), , ( )}Kh x h x… , one (and only one) income function 
must be ( )m π p  and the associated vector of price functions must be ( )π∂ ∂p p . 
WLOG, let this be the first one, and bring that to the left-hand side of (A.45), so that 

 ( )
2

( ) ( ) ( )
( )

K

k k
k

m h mπ π
π =

∂
− =

∂ ∑pq p p
p p

α . (A.47) 

Note that  
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( )

( )

( )

2

2

2

( , ) ( ) ( , ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) .

K
k

k
k

K

k k
k

e u e u

h m

h m

π π
π π

π
π

π

=

=

∂ ∂
= −

∂ ∂

=

≡

∑

∑

p p q p p
p p pp

p p
p

p p

α

α

 (A.48) 

These steps reduce the number of income terms on the right-hand side of the system by 
one, maintaining the Gorman structure in deflated income. This also results in a system in 
which symmetry is the only issue, as homogeneity and adding up have been addressed. 
This completely identifies the mechanism in which rank can increase by one additional 
linearly independent vector of price functions and one linearly independent income func-
tion in a deflated income Gorman system. 

If K≥2, linear independence of 2{ ( ), , ( )}Kh x h x…  implies that at least one cannot 
vanish. WLOG, let it be 2 ( )h x  and define 

 ( )
( , ) ( )

2
( , ) ( , ) ( )

( )

e u dxy u f e u
h x

π

π= = ⌠⎮
⌡

p p

p p p . (A.49) 

By Leibnitz’ rule, we have 

 
( )

( )

2
2

2
23

2
3

( , ) 1 ( , ) ( )
( ( , ) ( )) ( ) ( )

( , ( )
( ) ( )

( ( , ) ( ))

( ) ( ) ( , ( ) .

K
k

k
k
K

k k
k

y u e u
h e u

h e u
h e u

h e u

π
π π π

π
π

π

=

=

⎡ ⎤∂ ∂
= −⎢ ⎥∂ ∂⎣ ⎦

= +

≡ +

∑

∑

p q p p
p p p p pp

p p
p p

p p

p p p p

α α

α α

 (A.50) 

These steps reduce the problem to one in which the first income term on the right-
hand side is identically one, while maintaining the Gorman structure. Since 2 ( ) 0h x ≠ , 

1( )f y−  exists, so that  

 ( )2
3

( , ) ˆ( ) ( ) ( , )
K

k k
k

y u h y u
=

∂
= +

∂ ∑p p p p
p

α α , (A.51) 

where ( ) ( )( )1ˆ ( , ) ( , )k kh y u h f y u−=p p , ˆ :kh → , ˆ , 3, ,kh k K∞∈ =C .  

We know from Gorman (1981) and Lewbel (1989) that K≤4. We solved K=1 to ob-
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tain (A.47). Hence, we must find all of the solutions to (A.51) for K=2,3,4. To simplify 
notation, rewrite (A.51) as 

 ( )2
3

( , ) ( ) ( ) ( , )
K

k k
k

y u h y u
=

∂
= +

∂ ∑p p p p
p

α α . (A.52) 

K=2: 2
( , ) ( )y u∂

=
∂
p p
p

α . (A.53) 

This implies 

 
2

2y ∂∂
=

∂ ∂ ∂p p p
α

T T
, (A.54) 

so that 2∂ ∂pα T  must be symmetric. This is necessary and sufficient for the existence of 
a function, :β →P , β ∞∈C , such that 2( ) ( )β∂ ∂ =p p pα . Integrating (A.53) yields  

 ( , ) ( )y u uβ= +p p , (A.55) 

with an obvious normalization. 

K=3: ( )2 3 3
( , ) ( ) ( ) ( , )y u h y u∂

= +
∂
p p p p
p

α α . (A.56) 

This implies 

 

2
32

3 3 2 3 3 3 3 3

32
3 2 3 3 3 3 3 3.

y h h h h

h h h h

∂∂∂ ′ ′= + + +
∂ ∂ ∂ ∂

∂∂ ′ ′= + + +
∂ ∂

p p p p

p p

αα α α α α

αα α α α α

T T

T T T

TT
T T

 (A.57) 

Subtracting the second line from the first implies, 

 ( ) 3 32 2
3 2 2 3 3 3h h

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂′− = − + −⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠p pp p
α αα αα α α α

TT
T T

T T
. (A.58) 

Since 2 3{ , }α α  are linearly independent, 3 2c≠α α  for any c∈ . Hence, 3 2α α T  is not 
symmetric. Since 3{1, ( )}h y  are linearly independent, 3 0h′ ≠ . Premultiply (A.58) by 3α

T , 
postmultiply by 2α , and divide by 2

3 3 2 2 3 2( ) 0− ≠α α α α α αT T T  to obtain 

 3 1 2 3( ) ( ),h y c c h y′ = +  (A.59) 

where 1c  and 2c  must be absolute constants since 3( )h y  and 3( )h y′  are independent of p.  
If c2≠0, then applying the integrating factor 2e c y−  implies that the general solution to 
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this linear, first-order, ordinary differential equation has the form  

 2
3 1 2 3( ) ( ) e ,c yh y c c c= − +  (A.60) 

where c3 is a constant of integration. Plugging this into (A.58) 

 ( ) 2 23 32 2
3 2 2 3 2 3 1 2 3e ( ) ec y c yc c c c c

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ⎡ ⎤− = − + − − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠p pp p
α αα αα α α α

TT
T T

T T
. (A.61) 

This implies c3=0, contradicting the linear independence of 3{1, ( )}h y . 
Therefore, it must be that c2=0, and the solution to (A.59) is 3 1( )h y c y= . This re-

duces the demand system to 

 2 3
( , ) ( ) ( ) ( , )y u y u∂

= +
∂
p p p p
p

α α . (A.62) 

Symmetry now reduces to  

 
2

3 32 2
3 2 3 3 2 3 3 3 .y y y

⎛ ⎞∂ ∂∂ ∂ ⎛ ⎞∂
= + + + = + + +⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂ ∂ ∂ ⎝ ⎠⎝ ⎠ p pp p p p

α αα αα α α α α α α α
TT

T T T T

T T T
 (A.63) 

Equating like powers in y, 3∂ ∂pα T  is symmetric. Hence, a 0º homogeneous function, 
:δ →P , δ ∞∈C , exists such that 3( ) ( )δ∂ ∂ =p p pα  and 2 2 δ∂ ∂ − ∂ ∂p pα αT T is 

symmetric. Applying the integrating factor e δ−  to  

 ( ) ( )( , ) )( , )e ( , ) ey uy u y uδ δδ− −⎡ ⎤∂ ∂ ∂ (
= −⎢ ⎥∂ ∂ ∂⎣ ⎦

p pp pp p
p p p

, (A.64) 

and ( ) ( )2
2 2

( ) ( )( )e ( ) eδ δδ− −∂⎡ ⎤∂ ∂⎡ ⎤ = −⎢ ⎥⎣ ⎦∂ ∂ ∂⎣ ⎦
p pp pp p

p p p
αα αT T T , (A.65) 

implies that there is a 0º homogeneous function, :γ →P , γ ∞∈C , such that 

 ( ) ( )( , ) e ( )e ( ) ( ),y u u uδ δγ α β= + ≡ +p pp p p p  (A.66) 

with u as the constant of integration.  

K=4: ( ) ( )2 3 3 4 4
( , ) ( ) ( ) ( , ) ( ) ( , )y u h y u h y u∂

= + +
∂
p p p p p p
p

α α α . (A.67) 

We have  



 31 

 

2 4 4 4
2

2
3 3 3

24 4 4
2

2
3 3 3

 

, .

i ik
k ik k j j

i j j jk k

j jk
k jk k i i

i i j ik k

y h h h
p p p p

yh h h i j
p p p p

α α α α α

α α
α α α

= = =

= = =

⎛ ⎞∂ ∂∂ ′= + + +⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠
∂ ∂ ⎛ ⎞ ∂′= + + + = ∀ ≠⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑
 (A.68) 

Rewrite this in terms of ½n(n–1) vanishing differences,  

 ( ) ( )

( )

2 3 42 3 4
3 4

3 2 2 3 3 4 2 2 4 4

4 4

3 3

0

, 2, , .

j j ji i i

j i j i j i

i j i j i j i j

ik j k k
k

h h
p p p p p p

h h

h h h h j i n

α α αα α α

α α α α α α α α

α α
= =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

′ ′+ − + −

′ ′+ − ∀ < =∑∑

 (A.69) 

If k =  in the double sum, then ik jkα α  is multiplied 0k k k kh h h h′ ′− = , while if k ≠ , 
then k kh h h h′ ′−  is multiplied once by ik jα α  and once by i jkα α− . Rewrite (A.69) as 

 ( ) ( )
( )

2 3 42 3 4
3 4

3 2 2 3 3 4 2 2 4 4

4 3 3 4 3 4 3 4

0

( ) , 2, , .

j j ji i i

j i j i j i

i j i j i j i j

i j i j

h h
p p p p p p

h h

h h h h j i n

α α αα α α

α α α α α α α α

α α α α

⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

′ ′+ − + −

′ ′+ − − ∀ < =

 (A.70) 

Define 

 

23 12 22 1 24 12 22 14 24 13 23 14

33 1 32 1 34 1 32 14 34 13 13 34

,3 1,2 ,2 1,3 ,4 1, ,2 1 ,4 1,3 1,3 ,4n n n n n n n n n n n n

α α α α α α α α α α α α
α α α α α α α α α α α α

α α α α α α α α α α α α

3

2 3 2

− − − 2 − 3 − −

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

B , (A.71) 

 

23 1322 12 24 14

2 1 2 1 2 1

,2 1,2 ,3 1,3 ,4 1,4

1 1 1

n n n n n n

n n n n n n

p p p p p p

p p p p p p

α αα α α α

α α α α α α− − −

− − −

∂ ∂∂ ∂ ∂ ∂⎡ ⎤
− − −⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥=
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥− − −
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

C , (A.72) 

[ ]3 41 h h=h T , and [ ]3 4 3 4 3 4h h h h h h′ ′ ′ ′= −h T . B is ½ ( 1) 3n n − × , C is ½ ( 1) 3n n − × , 
h is 3×1, and h  is 3×1. Full rank requires n≥3. 

This gives the symmetry equations as =Bh Ch . Premultiply both sides by BT  to ob-
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tain =B Bh B ChT T . The matrix B BT  is 3×3 and has rank 3, so that the solution for h  in 
terms of h is 

 1( )−= ≡h B B B Ch DhT T . (A.73) 

The vectors h  and h depend only on y and not on p. The matrix D depends only on p and 
not on y. It follows that the elements of D are absolute constants. 

The implications of symmetry on the income functions therefore can be written as 

 
3 11 12 3 13 4

4 21 22 3 23 4

3 4 3 4 31 32 3 34 4

( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ) ( ) ( ) ( ),

h y d d h y d h y
h y d d h y d h y
h y h y h y h y d d h y d h y

′ = + +
′ = + +

′ ′− = + +
 (A.74) 

where the {dij} are constants and cannot all be zero in any given equation. The first two 
equations form a complete system of linear, ordinary differential equations with constant 
coefficients. This system is constrained by the third equation, which restricts the values 
that the {dij} can assume in an integrable system.  

Differentiate the first differential equation and substitute out 3( )h y′  and 3( )h y , 

 
[ ]

[ ]

3 12 3 13 4

12 3 13 21 22 3 23 4

13 21 12 3 13 22 3 23 3 11 12 3

13 21 22 11 11 22 3 13 22 23 12 3

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ).

h y d h y d h y
d h y d d d h y d h y

d d d h y d d h y d h y d d h y
d d d d d d h y d d d d h y

′′ ′ ′= +

′= + + +

′ ′= + + + − −

′= − + + + −

 (A.75) 

The homogeneous differential equation is 

 3 11 22 3 13 22 23 12 3( ) ( ) ( ) ( ) ( ) 0h y d d h y d d d d h y′′ ′− + − − = , (A.76) 

with characteristic equation 

 2
11 22 13 22 23 12( ) ( ) 0d d d d d dλ λ− + − − = , (A.77) 

and characteristic roots 

 2
11 12 11 12 13 22 23 12½ 4( )( )d d d d d d d dλ ⎡ ⎤= + ± + + −⎢ ⎥⎣ ⎦

. (A.78) 

If 0λ =  is the only root, the complete solution has the form 

 
2

3 1 1 1
2

4 2 2 2

( ) ,

( ) .

h y a b y c y

h y a b y c y

= + +

= + +
 (A.79) 

We prove that this is the only possibility. With distinct roots, the complete solution to the 
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ordinary differential equations is 

 
1 2

1 2

3 1 1 1

4 2 2 2

( ) ,

( ) .

y y

y y

h y a b e c e

h y a b e c e

λ λ

λ λ

= + +

= + +
 (A.80) 

The first income function is unity, hence, set 1
3( ) yh y eλ=  and 2

4 ( ) yh y eλ= , WLOG. The 
equation for 3 4 3 4h h h h′ ′−  is 

 1 2 1 2( )
2 1 31 32 33( ) y y ye d d e d eλ λ λ λλ λ +− = + + , (A.81) 

with 2
2 1 11 12 13 22 23 124( ) 0( )d d d d d dλ λ− = + + − ≠  and 1 2 11 12 1 2d dλ λ λ λ+ = + ≠ ≠ , 

a contradiction for all 1 2( , ) (0,0)λ λ ≠ .  
Hence, the roots must be equal, 11 12½( )d dλ = + . The complete solution then is 

 3 1 1 1

4 2 2 2

( ) ,

( ) .

y y

y y

h y a b e c ye

h y a b e c ye

λ λ

λ λ

= + +

= + +
 (A.82) 

Again WLOG, set 3( ) yh y eλ=  and 4 ( ) yh y yeλ= . The equation for 3 4 3 4h h h h′ ′−  is 

 2
31 32 33

y y ye d d e d yeλ λ λ= + + , (A.83) 

a contradiction for all 0λ ≠ . Hence, only a repeated vanishing root is possible and 

 2
2 3 4

y y y∂
= + +

∂p
α α α . (A.84) 

This system has the same form and solutions as a nominal income full rank QES.  
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