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Abstract

The viscous Moore-Greitzer equation modeling the airflow through the com-
pression system in turbomachines, such as a jet engine, is derived using a scaled
Navier-Stokes equation. The method utilizes a separation of scales argument, based
on the different spatial scales in the engine and the different time scales in the flow.
The pitch and size of the rotor-stator pair of blades provides a small parameter,
which is the size of the local cell. The motion of the stator and rotor blades in the
compressor produces a very turbulent flow on a fast time scale. The leading order
equation, for the fast-time and local scale, describes this turbulent flow. The next
order equations, produce an axi-symmetric swirl and a flow-pattern analogous to
Rayleigh-Bénard convection rolls in Rayleigh-Bénard convection. On a much larger
spatial scale and a slower time scale, there exist modulations of the flow including
instabilities called surge and stall. A higher order equation, in the small parameter,
describes these global flow modulations, when averaged over the small (local) spatial
scales, the fast time scale and the time scale of the vortex rotations. Thus a more
general system of spatially global, slow-time equations is obtained. This system can
be solved numerically without any approximations. The viscous Moore- Greitzer
equation is obtained when small inertial terms are dropped from these slow-time,
spatially global equations, averaged once more in the axial direction. The new
equations are simulated with two different simplifying assumptions and the results
compared with simulations of the viscous Moore-Greitzer equations.
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1 Introduction

In recent years a lot of attention has been devoted to the study of air flow and combustion
in turbomachines. The main reason for this interest is that when a turbomachine, such
as a jet engine, operates close to its optimal operating parameter values, the flow can
become unstable. These instabilities put a large stress on the engine and in some cases
the engine needs to be turned off in order to recover the original operation conditions.
For this reason jet engines are currently operated away from their optimal operating
parameter values increasing both fuel consumption and the engine weight.

A jet engine can be thought of as a compressor, where the incoming air from the
inlet duct is compressed by alternating rings of rotating blades and stationary blades.
The mixture of fuel and compressed air then goes through the outlet duct to the plenum,
where it is ignited and the resulting combustion generates thrust that propels the aircraft.
Subsequently the air goes out of the plenum through the throttle where the process in
the compressor is reversed. The air turns rotor blades as it rushes out of the throttle and
these blades turn the rotors in the compressor.

Figure 1 shows a cartoon of the jet engine. The compressor has a cylindrical shape
with inner boundary being the hub and outer boundary being the casing. The flow of air
enters the engine through the inlet duct, then it enters the compressor where the pressure
rise takes place. The air exits the compressor through the outlet duct and subsequently
enters the plenum, where the combustion takes place. Then finally the mixture of air and
residual gases exit through the throttle.

Inlet duct Outlet duct
Rotors 

and 

Stators

Plenum

r

z

θ

Figure 1: The jet engine

There are primarily two types of instabilities that occur in the flow through the com-
pressor. They are called surge and stall. Surge is characterized by large oscillations of
the mean mass flow through the engine. During part of the cycle, the mean mass flow
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may become reversed, thrusting air out from the front of the engine. This puts a large
stress on the components of the engine and seriously impairs its performance. When stall
occurs, there are regions of relatively low air flow that form at isolated locations around
the rim of the compressor. Here too, the phenomenon can be so pronounced that the flow
in these isolated regions is reversed. Again this causes a large stress on the components
of the engine and reduces its performance.

Moore and Greitzer published in 1986 a PDE model describing the airflow through
the compression system in turbomachines, see [30], [31] and [13], and the earlier papers
[27], [28], [29]. Although relatively simple, this model has been surprisingly successful at
predicting experimental outcomes. Mezić [26] derived a model of the three dimensional
flow in jet engine compressors. His model reduces to that presented in [5] and [8] when one
assumes that the dependence of the flow on the radial direction is negligible. The viscous
term in that equation, first introduced by Adomaitis and Abed [1], has however a new
and better interpretation in Mezić’s treatment. The term is not due to the viscosity of
the air which is very small, but rather, it is a diffusion term due to the inviscid process of
turbulent momentum transport via Reynolds stresses. The difference is a several orders
of magnitude larger viscosity constant ν, which now represents the eddy viscosity. It is
this model with the additional assumption that the flow has no radial component that
will be compared to a homogenization limit of the Navier-Stoke equation below. In this
guise the model is called the viscous Moore-Greitzer equation (vMG):
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(1.1)

Here Φ is the mean flow (averaged over θ, in Figure 1) and ϕ is the deviation from the
mean flow, Ψ is the pressure rise in the plenum, the compressor characteristic ψc is a force
(pressure gradient) that is modeled as a cubic polynomial of Φ + ϕ, ψc is the θ mean
of ψc. To be more precise, the flow is the average over z of the velocity of air in the z
direction, lc is the total length of the inlet duct, the compressor and the outlet duct, B is
a parameter expressing the geometry of the compressor and γ is the throttle parameter
that is varied to open and close the throttle.

Thus the Moore-Greitzer model is a continuum actuator disk model for flow through
discrete blade passages in the compressor. This means that we imagine the whole com-
pressor cylinder being compressed into a disk, the actuator disk, that has the same effects
on the flow as the compressor.

Birnir and Hauksson [5] proved the well-posedness and the existence of a finite di-
mensional attractor for the viscous Moore-Greitzer turbomachine model. They proved
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that the Moore-Greitzer PDE model with viscosity has a unique solution in the Hilbert

space X = H
1 ×R2 where H

1
denotes the Sobolev space, with index one, of functions on

the unit circle with square integrable first derivative and zero mean. They also proved
that this solution is smooth in space and time variables. Finally they proved that this
dynamical system has a global attractor with finite Hausdorff and fractal dimensions and
presented explicit estimates for the dimensions.

Banaszuk et al. [2] also considered the full PDE model of Moore and Greitzer. Chung
and Titi [11] extended the analysis of Birnir and Hauksson [5] and proved that the viscous
Moore-Greitzer possesses an inertial manifold and the solutions are (Gevrey) analytic.
The estimates obtained in [5] on the dimensions of the attractor and the inertial manifolds
are very large and not observed in numerical simulations, see [30], [25], [24], [7], [6] and
[8]. Birnir and Hauksson [8] applied the theory of basic attractors [4] to get around
this difficulty. The requirement that every point (function) of an attractor attracts
a set of positive “infinite-dimensional” measure is much more restrictive than just to
require a point to be attracting. Accordingly the basic attractors, the cores of the global
attractors that possess this additional attractiveness, are low-dimensional whereas the
global attractors themselves can in general be very high-dimensional, see [3].

Experimental, numerical and analytical results indicate that the stable solutions of the
global attractor can be classified into the following groups: axisymmetric design flow (the
desired operating flow) surge and stall. Surge has been fully analyzed in [30] and [25].
Stall was originally only analyzed in finite Galerkin approximations [30], [25], [24]. Birnir
and Hauksson [7] gave a complete description of stall for a large parameter range. In this
paper they analyzed stall, which is a part of the basic attractor forming the stable core of
the global attractor. They showed that there can exist several stall solutions and analyzed
their stability. They showed that only a small number of these solutions can be stable
and belong to the basic attractor. This made it precise what qualitative information may
be captured by such a Galerkin truncation of the solutions to the viscous Moore-Greitzer
equations. Birnir and Hauksson [7] also provided the nonlinear stall modes that permit
one to capture quantitative information about the solution and Xiao and Basar [36] found
the center manifolds for the basic attractor components.

The final goal of all of the research discussed above was to understand the instabilities
better in the framework of the viscous Moore-Greitzer partial differential equation and
ultimately to produce control strategies for recovering design flow, after the system has
been thrown into stall or surge. Banaszuk et al. [2] gave the first result in this direction,
see also Humber and Krener [16], [17], and Xiao and Basar [35], but Birnir and Hauksson
[6] and [8] were able to use their qualitative analysis of the basic attractor to develop
optimal control of stall. This control strategy that has been implemented by Fontaine
[12] may eventually lead to jet engine design which is lighter and more fuel efficient.

It is somewhat surprising that not more work had been extended until recently to
justify the viscous Moore-Greitzer equations, given all the work that has been put into
analyzing and controlling their solutions. The jet engine flow is well described by the
Navier-Stokes equations, but a full three-dimensional analysis of this equation is out of
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reach of current technology. However, with more analysis one should be able to reduce
the full Navier-Stokes equations and justify the use of the viscous Moore-Greitzer system.
The main question is about the viscous term in the equations that was not included in
the original equations by Moore and Greitzer. There were three questions about that
term that people had puzzled over: Is is really there? Where did it come from? How
big is it? In this paper we will answer these questions. It is there. It is caused by eddy
viscosity and you can estimate its size. A lot of the mathematical analysis of the Moore-
Greitzer equations in the literature is based on the fact that the PDE in Moore-Greitzer
is a nonlinear parabolic equation. This is only the case is if the viscous term is there and
cannot be ignored. The second question concerning the Moore-Greitzer equations was
about the modeling of the forcing in the equations. It is modeled as a cubic equation
in the flow velocity but the question remained whether gradient term should be included
or not. We will show that because of the eddy viscosity small gradient terms should be
included and we compute the correction.

stator

ε

rotor

Figure 2: The local cell of rotor-stator pair as seen from the outside of the engine’s casing,
the arrows denote the movement of the blades viewed in the frame rotating with half the
speed of the rotors.

The derivation of the Moore-Greitzer equation, see [30] and [23], is based on a quasi-
steady flow approximation. The flow in the compressor is first assumed to be axisymmetric
and in a steady state and then terms are added to represent the time dependent and non-
axisymmetric flow effects. The flow instabilities surge and stall as well as non-uniformities
in the inlet flow are relatively large length scale and long time scale flow phenomena
compared to the length scale of the blade pitch and time scale of a blade passage (rotor-
stator pair) convection, see [23]. Thus the conventional Moore-Greitzer model represent
the effective performance of the blades when averaged over the short length and time
scales. Although this approach undoubtedly yields the qualitatively correct results it is
difficult to make mathematically rigorous. The main reason is that the flow through the
compressor is not steady. On the contrary the flow is very turbulent on the scale of the
blade passage, there are boundary layers, vortices peal of the ends of the blades and the
interpassage flow can be extremely complicated.
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In this paper we start with the Navier-Stokes equation and use stochastic homoge-
nization theory of fluids, see also Hou [15], to derive a modified version of the viscous
Moore-Greitzer equation (12.2). The homogenization is based on the small scale (ǫ) rep-
resented by the blade pitch or the length of a blade passage, consisting of a rotor-stator
pair, the fast time scale is given by the convection velocity through a rotor-stator cell,
see Figure 2. Our homogenization is not rigorous because it is not clearly understood yet
how the noise gets introduced into the fluid from the boundary of the rotor and stator
blades. For a recent approach to how noise can be introduced into turbulent flow see [10].
We will simply assume that the flow is turbulent and stochastic homogenization can be
used to get an averaged flow.

Compressibility of air is important in aeroengines and cannot be ignored in the com-
bustor and afterburners, see Section 13. Our starting point are the incompressible Navier-
Stokes equations so we are ignoring compressibility of air in the compressor. This is the
conventional approach, see [30, 31, 13], but can it be justified? The theoretical insight
gained by our approach is that the built-up pressure in the compressor is mostly due to
built-up in stagnation pressure. The blades in the compressor accelerate the air and this
acceleration increases the quantity 1

2
u2 + p/ρ, familiar from Bernoulli’s theorem, where u

is velocity of air, p the pressure and ρ the density. This is the stagnation pressure and it
increases from stage to stage in the compressor. Thus we can assume that the density is
constant at each stage and increases as a monotone function, at most, with the number
of stages. There may be small corrections to our equations if ρ(z) increases with distance
z into the compressors but these corrections can be computed by first order perturbation
theory.

The mathematical approach in this paper, is based on the fact that there is a clear
separation of scales. The details of the flow on the scale determined by the blade pitch
and cross-sectional length, and blade passage convection, are irrelevant for the large scale
flow as long as the cumulative effect on the large scale flow is captured. This is precisely
what the stochastic homogenization permits one to do. By separating the large and
small scale flow and then averaging over the small scale in the large scale equations one
gets the effective large scale flow. This then allows one to explain why the quasi-steady
approximation, see [30] and [23], did give good results for the spatially largest Fourier
components. It was because the approximation was good for the flow in these very largest
scales.

Most importantly for the general theory, we give a generalized model (9.18) that can
easily be solved numerically and analyzed. We do this by introducing three different time
scales: the fast time scale which describes the turbulent flow in the unit (rotor-stator)
cell; the normal time scale associated with the rotation time of the rotors; and the slow
time scale describing the large scale dynamics of the compressor. The asymmetric flow
patterns in the jet engine are expected to have length scales that are of the order of the
compressor diameter, see [30]. Therefore these patterns will change on a time scale that
is much longer than that associated with the change in flow through the rotor-stator cell
in Figure 2. This is the slow-time and large spatial scale that Moore and Greitzer [30]
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were concerned with and that they expressed the final equation in terms of. In particular
the evolution of the flow instabilities surge and stall involves these large spatial and slow
temporal scales.

We will explain below how the two-step procedure for the homogenization of fluids
discussed above, produced the Moore-Greitzer equations. To recap, these steps are the
derivation of two equations:

• A local equation for the small spatial scales and fast-time flow

• A global equation for the large spatial scales and slow-time flow, where the small
and fast scales have been averaged over

In addition to these equations we will find the equations for the flow on a time-scale
comparable to the rotation time. This is called the normal time flow and consists of vortex
tubes analogous to Rayleigh-Bénard convection rolls but in the complicated geometry of
moving rotors and stators.

In the end one obtains a solution of the Navier-Stokes equations in the form

uǫ(x, t) = ǫ1/2u0(x, y, tf , t, ts) + ǫ3/2u1(x, y, tf , t, ts) + · · ·

where u0 is determined by the local and global equations (and the normal time equations),
y is the vector of local coordinates, tf and ts are the fast and the slow time respectively,
and ǫ < 1 is not small. This raises the question how good an approximation ǫ1/2u0 is to
the real solution. The answer depends on u1 that can be computed by homogenizing to
a higher order. However, in many problems where there are fast oscillations present on
a small scale it turns out that the error averages to something very small or zero, even
for ǫ close to one. This is our explanation of why the Moore-Greitzer equation is a good
model for jet engine flow.

The outline of this paper is as follows: in Section 2, we start with the scaled Navier-
Stokes equations in cylindrical coordinates. The equations are made dimensionless in
Section 3. The two-scales asymptotic expansion is performed in Section 4 and global and
local equations are obtained. At the end of Section 4 we compute the normal time swirl
and vortex tubes aligned along the axis of the jet engine, as far as it can be done without
the geometric details. In Section 5, we analyze the mean velocity field of the global
equation. In Section 6, we eliminate the local derivatives from the mean velocity field
equations. In Section 7, we rewrite the mean velocity field equation to get an expression
of the eddy viscosity and forcing terms. The improved model for the large scale and slow-
time modulation of the flow in the jet engine is then spelled out at the end of Section
7. This result assumes that stochastic homogenization can be applied to the flow. In
Section 9 we average the equations over the normal time periodic rotation (swirl) of the
cylindrical vortex tubes. This yields our New Model for jet engine flow. In Section 10, we
split the uz equation into the mean flow and the deviation from it in order to compare
with the Moore-Greitzer equation. In Section 11, we introduce the dynamic equation
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for the pressure rise in the plenum and apply similar asymptotic expansion as above
to obtain equations of different orders. In Section 12, we gather the results obtained
from previous sections and write down the modified actuator disk model and compare it
with the original viscous Moore-Greitzer equation. Here the correct eddy viscosity terms
are discussed and the second main theorem, explaining what kind of approximation the
viscous Moore-Greitzer equations are, is stated and proved. In Section 13 we explain
how our analysis can be combined with analysis of the combustion in the plenum and
the afterburners to get a mathematical model describing the whole engine, combining
the compressor and the combustion. In Section 14 we simulate the New Model with two
different types of simplifying assumptions and compare the results with simulations of the
viscous Moore-Greitzer equations. Section 15 contains our conclusions.

2 The Navier-Stokes Equation

In this paper we study the jet engine flow through the compressor. This flow is gov-
erned by the Navier-Stokes equations. Our ultimate goal is to show that under certain
assumption the solution to the viscous Moore-Greitzer equation is the stochastically ho-
mogenized limit of the solution to the Navier-Stokes equation. On the way we will obtain
a generalization of the viscous Moore-Greitzer equation that describes the stability of
the desired flow in the whole compressor. We will also obtain averaged Navier-Stokes
equations that are numerically tractable.

We start with the scaled Navier-Stoke equations in Cartesian coordinates in the inertial
frame:






































































∂uǫ

∂t
+ (uǫ · ▽)uǫ − ǫ3/2ν △ uǫ = −1

ρ
▽ pǫ

▽ · uǫ = 0

uǫ |t=0= uǫ
0

n · ∇u = 0, boundary condition in the inlet and outlet ducts
and uǫ = −β(x0 sin(βt) − y0 cos(βt), x0 cos(βt) + y0 sin(βt), 0)

on the rotor blades and the hub, i.e. the fluid follows the blades,
no − slip, u = 0, boundary condition on the casing and the stator blades.

(2.1)
Here Ωǫ is the domain, uǫ is the velocity vector field, t is the normal time, pǫ is the
pressure, ρ is the density and ν is the kinematic viscosity of the air. The superscript
ǫ means that the variables depend on a parameter ǫ, which is the spatial period of the
stator-rotor pair, see Figure 2. We note that the domain Ωǫ depends on ǫ since the
solutions, uǫ, only exist in-between the blades and the casing and the hub, see Figure
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2. When ǫ is decreasing it corresponds to increased number of blades and a decreased
distance between the hub and the casing. See also Figure 1 for the domain of the above
equation. We are assuming that the rotors and the hub rotate in a clockwise direction.
The boundary conditions imply that the flow has no relative movement on the boundary.
For example, if we are in the inertial frame, then uǫ=0 on the casing as well as on the
stators and uǫ is the same as the velocity of the rotors on the rotors and on the hub.

Due to the incompressibility ρ = constant and we will take ρ = 1 below by a rescaling
of the pressure. Strict incompressibility is not satisfied in jet engine compressors. However,
it is likely that this will lead to quantitative rather than qualitative differences with the
theory presented below. We present the results in this paper as the first step towards a
fully compressible model for jet engine flow.

Assume initial conditions are given. Globally, we prescribe steady flow in the inlet
and outlet duct, uǫ = −β(x1 sin(βt)− y1 cos(βt), x1 cos(βt)+ y1 sin(βt), 0) on the hub and
no-slip on the casing as boundary conditions. Locally, we prescribe no-slip on the stators
and uǫ = −β(x0 sin(βt) − y0 cos(βt), x0 cos(βt) + y0 sin(βt), 0) on the rotors as boundary
conditions. We can extend the flow smoothly into the blades while obeying the boundary
condition. This problem is locally well-posed, see [19], and globally well-posed if the initial
data and the forcing are small, see for example [33] or [9].

The choice of scaling here, together with the choice of power in the asymptotic ex-
pansion later, is the unique choice that makes every term in the Navier-Stokes equation
reappear in the leading order equation, after the asymptotic expansion, so that the struc-
ture is preserved on the small scale. The derivation of this choice can be found in [9],
it was originally suggested by J. L. Lions in [22]. In [9] it is also shown that a priori
estimates work for this scaling, again verifying its correctness.

We now rewrite the above equation in cylindrical coordinates in a rotating frame with
half the speed of the rotors as follows:
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θ are the 3 components of the velocity field of the flow in cylindrical
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coordinates and β is the angular velocity of the rotors. Due to the rotating frame with
half the speed of the rotors, the Coriolis acceleration terms βuǫ

θ, −βuǫ
r (written as a cross

product in vector form in [26]) and the centrifugal acceleration term β2

4
r appear.

3 The dimensionless system

In order to compare the size of the various terms in the above equations we next
non-dimensionalize the problem. We define dimensionless variables, denoted by the
superscript ˜ as follows: uǫ

z = Uũǫ
z, u

ǫ
r = Uũǫ

r, u
ǫ
θ = Uũǫ

θ, r = Rr̃, z = Lz̃, pǫ = Qp̃ǫ,
t = 1

β
t̃, where U = Rβ, Q = U2, R = r1+r2

2
, (r1 and r2 are the inner and outer radius

of the compressor, see Figure 1), L = z1 − z0 (z0 and z1 are the z-coordinates of the
beginning and the end of the compressor respectively). The notations here are the same
as in [26] and [14].

Suppressing the superscripts we get the dimensionless Navier-Stokes system
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(3.1)

where the coefficients are now unitless. We will use these equations below to obtain
equations for various orders of the small parameter ǫ. We remind the reader that these
equations are written from the vantage point of an observer who is rotating in the −θ
(clockwise) direction with half the speed of the rotor blades. Thus both the rotors and the
stators are moving in this reference frame with the same speed but in opposite directions,
see Figure 2.
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4 Two-scales asymptotic expansions

We will now apply stochastic homogenization to the equations (3.1). Define the local
variables ζ = z

ǫ
, α = r

ǫ
, κ = θ

ǫ
, the fast time τf = t√

ǫ
and the slow time τs =

√
ǫt. We

concentrate on a unit cell (ζ, α, κ) ∈ (0, 1) × (1
2
, 3

2
) × (0, 1) and apply periodic boundary

condition on local variables. Also consider τf ∈ (0, 1) and assume that this fast time is
also periodic with period 1. The reason why we get the local cell (1

2
, 3

2
) for the radial

variable, instead of the standard local cell (0, 1) is that the inner and outer radius for the
compressor approach the mean radius R = r1+r2

2
1, r1 being the radius of the hub and r2

that of the casing, as ǫ→ 0, which is then rescaled to one. If r̃1, r̃2 are the rescaled inner
and outer radii, then r̃2 − r̃1 = ǫ and r̃1+r̃2

2
= 1 for every ǫ > 0, and on the unit cell

r̃2 − r̃1 = 1 which implies that the unit cell is (1
2
, 3

2
). Another way of saying this is that

when ǫ = 1 then we have an engine where the distance between the hub and the casing
is the same as the mean radius R. The angular and axial directions are easily rescaled to
give the unit cell.

Note that having three different time scales is crucial: the fast time scale describes
the turbulent flow in the unit cell, the normal time scale describes the rotation of the
rotors, and the slow time scale describes the overall large scale dynamics of the flow in
the compressor. In hot wire experiments [21] these time-scales appear well separated.
That is to say, the small and fast turbulent scales are well separated from design flow and
independent of large variations in the design flow. This is the fundamental separation of
scales in the problem. The modulational instabilities are presented by a few (one, two
or three) modes well separated from the turbulence although their appearance increases
significantly the turbulent activity. These instabilities are not so well separated from
design flow that they serve to make unstable. However, one can still justify the separation
of the slow and the normal time scales by viewing the instabilities as a slow modulation
acting on the scale of the whole compressor. This is analogous to averaging in ODEs, see
[34].

1We recall that the domain Ωǫ depends on ǫ, and so do the radii of the hub and casing, even if this is
not spelled out in the notation. A more consistent but cumbersome notation would be r

ǫ

1
and r̃

ǫ

1
.
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We make the following asymptotic expansion:



















































































uǫ
z(z, r, θ, t) =

√
ǫ

∞
∑

i=0

ǫiui
z(z,

z

ǫ
, r,

r

ǫ
, θ,

θ

ǫ
,
√
ǫt, t,

t√
ǫ
),

uǫ
r(z, r, θ, t) =

√
ǫ

∞
∑

i=0

ǫiui
r(z,

z

ǫ
, r,

r

ǫ
, θ,

θ

ǫ
,
√
ǫt, t,

t√
ǫ
),

uǫ
θ(z, r, θ, t) =

√
ǫ

∞
∑

i=0

ǫiui
θ(z,

z

ǫ
, r,

r

ǫ
, θ,

θ

ǫ
,
√
ǫt, t,

t√
ǫ
),

pǫ(z, r, θ, t) =
∞
∑

i=0

ǫipi(z,
z

ǫ
, r,

r

ǫ
, θ,

θ

ǫ
,
√
ǫt, t,

t√
ǫ
),

(4.1)

The scaling here is the same as in [9], except for the introduction of the slow time,
√
ǫt.

As we mentioned before, this is the unique scaling that preserves the structure of the
Navier-Stokes equation in the leading order equation. However this scaling does break
the invariance of the Navier-Stokes equation. This must be done in problems that have
separation of scales: what is happening on the small scale is independent of what is
happening on the large scale. Thus the problem is not scale invariant.

Substituting these expansions into the non-dimensional Navier-Stokes equations (3.1)
and applying the chain rule:

∂
∂z

= ∂
∂z

+ 1
ǫ

∂
∂ζ

, ∂
∂r

= ∂
∂r

+ 1
ǫ

∂
∂α

, ∂
∂θ

= 1
r

∂
∂θ

+ 1
rǫ

∂
∂κ

, ∂
∂t

=
√
ǫ ∂

∂τs
+ ∂

∂t
+ 1√

ǫ
∂

∂τf
,

we obtain the following equations by gathering terms of the same order:

ǫ−1 terms:






































∂p0

∂ζ
= 0, z − equation,

∂p0

∂α
= 0, r − equation,

∂p0

∂κ
= 0, θ − equation.

(4.2)

This simply says that we have ▽yp0 = 0, i.e. p0 does not depend on the local scale,
where the vector y = (ζ, α, κ) denotes the local scale.

The ǫ0 terms give us the local equation, containing the fast time scale, of the Navier-
Stokes equation:
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The Local Equations






















































































































∂u0
z

∂τf
+ u0

r

∂u0
z

∂α
+

1

r
u0

θ

∂u0
z

∂κ
+
R

L
u0

z

∂u0
z

∂ζ

− ν

βR2

(

∂2u0
z

∂α2
+

1

r2

∂2u0
z

∂κ2

)

− ν

βL2

∂2u0
z

∂ζ2
= −R

L

(

∂p0

∂z
+
∂p1

∂ζ

)

,

∂u0
r

∂τf
+ u0

r

∂u0
r

∂α
+

1

r
u0

θ

∂u0
r

∂κ
+
R

L
u0

z

∂u0
r

∂ζ

− ν

βR2

(

∂2u0
r

∂α2
+

1

r2

∂2u0
r

∂κ2

)

− ν

βL2

∂2u0
r

∂ζ2
= −

(

∂p0

∂r
+

∂p1

∂α

)

+
r

4
,

∂u0
θ

∂τf
+

(

u0
r

∂u0
θ

∂α
+

1

r
u0

θ

∂u0
θ

∂κ

)

+
R

L
u0

z

∂u0
θ

∂ζ

− ν

βR2

(

∂2u0
θ

∂α2
+

1

r2

∂2u0
θ

∂κ2

)

− ν

βL2

∂2u0
θ

∂ζ2
= −1

r

(

∂p0

∂θ
+
∂p1

∂κ

)

.

(4.3)

This system describes the turbulent flow in the small scales. The boundary conditions
for this system are u = 0 on the hub and the casing and on the blades, and n · ∇u = 0 in
the inlet and the outlet ducts. The blades are stationary in the local equations but the
velocity is extended to be constant inside the blades. We clearly need to know the detailed
geometry of the blades to get an exact solution. However, since we have separation of
scales in the jet engine flow, what is happening in the large scales is independent of these
details as long as the cumulative effect, appearing later as eddy viscosity, on the large
scales is captured. This will prompt us to average over the local scales in the next section.

The ǫ1/2 terms give us the normal time information in the Navier-Stokes equation:










































∂u0
z

∂t
= 0,

∂u0
r

∂t
= u0

θ,

∂u0
θ

∂t
= −u0

r .

(4.4)

This normal time flow takes place in the geometry of moving rotors and stators, with
the flow velocity being equal to the velocity of the rotors and the stators at the boundary.
The boundary conditions on the hub become

uθ =
1

2
, ur = 0 = uz,
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and at the casing

uθ = −1

2
, ur = 0 = uz.

These are the velocities of the hub and the casing with respect to an observer moving at
half the velocity of the rotors.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: The normal time periodic rotation cells in the annulus between the hub and the
casings.

The normal time equations describe the flow due to the Coriolis force stemming from
the acceleration. The equations are most easily solved in Cartesian coordinates where
they give clockwise rotation of the flow about some center with angular velocity 1. In
Cartesian coordinates the normal time equations become











































∂u0
z

∂t
= 0,

∂u0
x

∂t
= u0

y,

∂u0
y

∂t
= −u0

x ,

(4.5)

and are easily solved. The Cartesian velocity vectors have the form : u0
x = a cos(t) +

b sin(t), u0
y = −a sin(t) + b cos(t), uz = c. If the coefficients a, b and c are constant, these
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equations are easily solved for the streamlines

x(t) = r cos(θ) + x0 = (a sin(t) − b cos(t)) + x0

y(t) = r sin(θ) + y0 = (a cos(t) + b sin(t)) + y0 (4.6)

z(t) = z0 + ct,

These streamlines are analogous to the flow lines of cylindrical Rayleigh-Bénard convection
rolls in Rayleigh-Bénard flow, see [20], but with constant flow in the z direction. The
simplest solution is a circular flow (x0, y0) = (0, 0) and r > 1/2 around the hub that
modifies the normal time flow rotation. This solution is responsible for fluctuation in the
normal time swirling flow. The rest of the solutions consist of vortex tubes of periodic
( in the radial and angular components of the velocity) flow in the annulus between the
hub and casing, see Figure 3. These solutions can be expected to play a role in the
instabilities of the swirling flow. The period of the flow is 2π as stipulated by normalized
angular velocity β = 1. However, in order to satisfy the boundary conditions in a realistic
geometry, the coefficients a, b and c are functions of the variables x, y and z in addition
to the local variables and fast and slow times and then the streamlines become more
complex. The general form is an axial vortex tube similar to flow spiraling around a
Rayleigh-Bénard rotation roll. The difference between the Rayleigh-Bénard convection
rolls and ours is that the Rayleigh-Bénard rolls alternate their direction of rotation but
our rolls all rotate in the same clockwise direction along the clockwise direction of the
rotors and the hub. In fact they do satisfy the boundary conditions on the hub and the
casing, instead on the hub their velocity is

uθ =
1

2
, ur = 0 = uz,

whereas at the casing

uθ = −1

2
, ur = 0 = uz.

This means that the rolls inside the annulus, see Figure 3, are unstable.
Notice that when t = 2nπ, we get u0

x = a and u0
y = b. The Poincaré map of the normal

time is defined to be value of u at times t = nT where T determines a fixed normal time
interval. Since we take very small time steps in the slow time τs for every time step of
size T in normal time, we can consider the average over the local scale and fast time,
where these averages are a good approximation to the (normal-time) Poincaré map of u.
This is the point of view in the remainder of the paper. In other words by averaging out
the fast motion and local scales and considering the slow and large-scale modulation of
the normal time periodic motion, given above, we get a good flow approximation to the
normal-time Poincaré map. This is analogous to the averaging method for ODEs, see for
example [34].

The Global Equations
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The ǫ1 terms give us the global slow time Navier-Stokes equation. These equations
fill a whole page and have been placed in the Appendix A. The system of equations
describes the velocity field in the large scales. In the following sections, we will derive the
Moore-Greitzer equation from this system.

5 The mean velocity field

The next step in the standard homogenization procedure is to average out the local
variables from the global equation while applying the periodic boundary condition. The
goal of this step is to average out what is happening in the small scales and see what the
large scale outcome is, including the cumulative influence of the small scales.

Taking the average over the local variables ζ , α, κ and fast time τf in (A.9) and using
the periodicity in the local spacial variables and fast time yields:







































































































































∂u0
z

∂τs
+ u0

r

∂u0
z

∂r
+ u0

r

∂u1
z

∂α
+ u1

r

∂u0
z

∂α
+

1

r

(

u0
θ

∂u0
z

∂θ
+ u0

θ

∂u1
z

∂κ
+ u1

θ

∂u0
z

∂κ

)

+
R

L
u0

z

∂u0
z

∂z
= −R

L

∂p1

∂z
,

∂u0
r

∂τs
+ u0

r

∂u0
r

∂r
+

1

r

(

u0
θ

∂u0
r

∂θ
+ u0

θ

∂u1
r

∂κ
+ u1

θ

∂u0
r

∂κ

)

+
R

L

(

u0
z

∂u0
r

∂z
+ u0

z

∂u1
r

∂ζ
+ u1

z

∂u0
r

∂ζ

)

− 1

r
(u0

θ)
2

= −∂p1

∂r
,

∂u0
θ

∂τs
+ u0

r

∂u0
θ

∂r
+ u0

r

∂u1
θ

∂α
+ u1

r

∂u0
θ

∂α
+

1

r
u0

θ

∂u0
θ

∂θ
+

1

r
u0

ru
0
θ

+
R

L

(

u0
z

∂u0
θ

∂z
+ u0

z

∂u1
θ

∂ζ
+ u1

z

∂u0
θ

∂ζ

)

= −1

r

∂p1

∂θ
,

(5.1)

where

u0
z(z, r, θ, τs, t) =

∫ 1

0

∫ 3

2

1

2

∫ 1

0

∫ 1

0

u0
z dζdκdαdτf

denotes the average over the local variables and fast time, and similarly for the other
components. The equations are much simpler than the global equations in Appendix A,
due to the cancellations that take place. The interior boundary (the blades) in the fluid
are removed by the averaging but we are left with vanish boundary condition on the hub
and the casing and n · ∇u = 0 in the inlet and outlet ducts.
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6 The derivatives of the local variable eliminated

The mean velocity field equations contain both global and local variable derivatives. We
want to eliminate the local variable derivatives by using incompressability and integration
by parts. This dramatically simplifies our equations.

The non-dimensionalized continuity equation in cylindrical coordinates is:

∂uǫ
r

∂r
+

1

r

∂uǫ
θ

∂θ
+
R

L

∂uǫ
z

∂z
+
uǫ

r

r
= 0 (6.1)

The coefficient R
L

is introduced by the non-dimensionalization procedure in Section 3.
We perform the same two-scale asymptotic expansion as before and get the following

equations:
ǫ−1/2 equation:

∂u0
r

∂α
+

1

r

∂u0
θ

∂κ
+
R

L

∂u0
z

∂ζ
= 0 (6.2)

ǫ1/2 equation:

∂u0
r

∂r
+

1

r

∂u0
θ

∂θ
+
R

L

∂u0
z

∂z
+
u0

r

r
+
∂u1

r

∂α
+

1

r

∂u1
θ

∂κ
+
R

L

∂u1
z

∂ζ
= 0 (6.3)

We substitute in these two equations and integrate by parts in the mean velocity field
equations (5.1) to eliminate the local variable derivatives and reduce (5.1) to:















































∂u0
z

∂τs
+

1

r

∂

∂r

(

ru0
ru

0
z

)

+
1

r

∂

∂θ

(

u0
θu

0
z

)

+
R

L

∂

∂z
(u0

z)
2 = −R

L

∂p1

∂z
,

∂u0
r

∂τs
+

1

r

∂

∂r

(

r(u0
r)

2
)

+
1

r

∂

∂θ

(

u0
ru

0
θ

)

+
R

L

∂

∂z

(

u0
ru

0
z

)

− 1

r
(u0

θ)
2

= −∂p1

∂r
,

∂u0
θ

∂τs
+

1

r2

∂

∂r

(

r2u0
θu

0
r

)

+
1

r

∂

∂θ
(u0

θ)
2
+
R

L

∂

∂z

(

u0
θu

0
z

)

+
1

r
u0

ru
0
θ = −1

r

∂p1

∂θ
.

(6.4)

The large global equations in the Section 4 consuming one page in Appendix A
are now reduced to three lines after averaging over the local scales and elimination by
incompressability.

7 Eddy viscosity, forcing and the new model

The uz equation in (6.4) must now be rewritten to compare with the Moore-Greitzer
equation (1.1). Recall that in the Moore-Greitzer equation, we have an eddy viscosity
term [18] which is the second derivative of θ, a transport term which is the first derivative
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of θ, and a forcing term which is modeled by a cubic polynomial. Since we use a rotating
frame with half the speed of the rotor and the original Moore-Greitzer equation is in the
inertial frame, we will not have the transport term as in the Moore-Greitzer equation.
Our goal is to rewrite the uz equation to explicitly express the eddy viscosity term and
the forcing term as follows:

∂u0
z

∂τs
= ▽ ·

(

A▽ u0
z

)

+ Fz (7.1)

where A is a 3 by 3 eddy viscosity matrix coefficient and Fz is the forcing term. We are
going to find formulas for A and Fz.

Firstly, we rewrite the eddy viscosity term in the component form as follows:

▽ ·
(

A▽ u0
z

)

=
∂

∂z

(

a11
∂u0

z

∂z

)

+
1

r

∂

∂z

(

a12
∂u0

z

∂θ

)

+
∂

∂z

(

a13
∂u0

z

∂r

)

+
1

r

∂

∂θ

(

a21
∂u0

z

∂z

)

+
1

r2

∂

∂θ

(

a22
∂u0

z

∂θ

)

+
1

r

∂

∂θ

(

a23
∂u0

z

∂r

)

+
∂

∂r

(

a31
∂u0

z

∂z

)

+
1

r

∂

∂r

(

a32
∂u0

z

∂θ

)

+
∂

∂r

(

a33
∂u0

z

∂r

)

+
1

r
a31

∂u0
z

∂z
+

1

r
a33

∂u0
z

∂r
,

(7.2)

where the coefficients aij are listed in Appendix B. Due to the cylindrical coordinates
there are some first derivative terms present.

We will now look for solutions with the deviation of the velocity from the mean an
inner product of the gradient of global variables with a vector depending on the local
variables and fast time only:























u0
z = u0

z + ▽u0
z · χz (ζ, κ, α, τf)

u0
r = u0

r + ▽u0
r · χr (ζ, κ, α, τf)

u0
θ = u0

θ + ▽u0
θ · χθ (ζ, κ, α, τf) .

(7.3)

Note that χz = χr = χθ = 0.

The equations for the components of the eddy viscosity tensor χ are obtained by
substituting (7.3) into the local equation (4.3). This is called the cell problem,

∂χ

∂τf
= ∆yχ, (7.4)
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with periodic boundary conditions on the local cell. It is accompanied by a nonlinear
version of Darcy’s Law

(u0 + χz (y, τf) · ∇xu0)∇yχ
z (y, τf)∇xu0 = −(∇xp0 + ∇yp1), (7.5)

determining the pressure gradient ∇yp1 up to terms coming from the boundary.

We now write each term in the u equation of (6.4) in terms of u0
z, u

0
θ, u

0
r, χ

z, χθ and
χr, denoting the 3 components of χz as χz

z, χ
z
θ and χz

r and similarly for χθ and χr, and
then compare the coefficient of each derivative term with the matrix coefficient. After
some calculation we write down the equations and the forcing terms as follows. The
coefficients of the eddy viscosity matrices A,B and C are placed in the appendix B.

The z equations is:
∂u0

z

∂τs
= ▽ ·

(

A▽ u0
z

)

+ Fz, (7.6)

where

Fz = −R
L
u0

z

∂u0
z

∂z
− 1

r
u0

θ

∂u0
z

∂θ
− u0

r

∂u0
z

∂r
− R

L

∂p1

∂z
. (7.7)

Similarly, we rewrite the r equation as follows:

∂u0
r

∂τs
= ▽ ·

(

B ▽ u0
r

)

+ Fr, (7.8)

where

Fr = −R
L
u0

z

∂u0
r

∂z
− 1

r
u0

θ

∂u0
r

∂θ
− u0

r

∂u0
r

∂r
+

1

r
u0

θ

2 − ∂p1

∂r
+

1

r
∇u0

θ · χθ ⊗ χθ · ∇u0
θ. (7.9)

Also for θ equation, we rewrite it as:

∂u0
θ

∂τs
= ▽ ·

(

C ▽ u0
θ

)

+ Fθ, (7.10)

where

Fθ = −R
L
u0

z

∂u0
θ

∂z
− 1

r
u0

θ

∂u0
θ

∂θ
− u0

r

∂u0
θ

∂r
− 1

r
u0

ru
0
θ −

1

r
∇u0

r · χr ⊗ χθ · ∇u0
θ −

1

r

∂p1

∂θ
. (7.11)

The three global averaged equations with eddy viscosity can now be written as














∂u

∂τs
+ u · ∇u−∇ · (A∇ u) = −∇p1 + g

∇ · u = 0

(7.12)

where A is the eddy viscosity tensor, A∇u denotes the 3×3 matrix (A∇u0
z, B∇u0

r, C∇u0
θ),

and we have split the force F = (Fz, Fr, Fθ) into inertial terms and the pressure gradient
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∇p1 = (∂p1

∂z
, ∂p1

∂r
, 1

r
∂p1

∂θ
), where all the z derivative are interpreted to be R

L
∂
∂z

. In addition

there is a term g = (0, (1
r
)u0

θ

2
+ (1

r
)∇u0

θ · χθ ⊗ χθ · ∇u0
θ,−1

r
u0

ru
0
θ − 1

r
∇u0

r · χr ⊗ χθ · ∇u0
θ)

due to the Coriolis forces and the cylindrical coordinates and the associated viscosity.
Notice that the local geometry (rotors and stators) has been averaged out so there is no
longer an internal boundary in the fluid.

The equation (7.12) can be solved numerically on a coarse grid. However, we still need
an equation for the pressure p1.

The pressure equation is derived by taking divergence on both sides of the Navier-
Stokes equations and performing the same asymptotic expansion as before. The details
are similar to the derivation in Section 4 and therefore omitted. We obtain the following
Poisson equation for p1.

△yp1 =
8

r
csc2(2θ)

(

∂u0
r

∂α

∂u0
θ

∂κ
− ∂u0

θ

∂α

∂u0
r

∂κ

)

+ 4
L

R

(

∂u0
r

∂α

∂u0
z

∂ζ
− ∂u0

z

∂α

∂u0
r

∂ζ

)

+
4

r

L

R

(

∂u0
θ

∂κ

∂u0
z

∂ζ
− ∂u0

z

∂κ

∂u0
θ

∂ζ

)

+ 4 cot(2θ)
L

R

(

∂u0
θ

∂α

∂u0
z

∂ζ
− ∂u0

z

∂α

∂u0
θ

∂ζ

)

+
4

r
cot(2θ)

L

R

(

∂u0
z

∂κ

∂u0
r

∂ζ
− ∂u0

r

∂κ

∂u0
z

∂ζ

)

(7.13)

where △y is the scaled Laplacian operator for the local variables, i.e., there is a coefficient
L
R

in front of the ζ derivative. The scaling is the same as in Section 3.
Detailed local geometry is required to solve this equation for all the local cells. We

refer to Figure 2 for the geometry and the boundary condition of the local cells. The
boundary conditions on the pressure are that ∇p = 0 in the inlet and outlet of the cell,
see Figure 2, and ∇p is given on the rotor and stator blades. The solution becomes

p1 =

∫

Y

G(z, y)f(z)dz −
∫

blades

G(z, y)∇p(z) · ndσ(z), (7.14)

where f denotes the right hand side of the Poisson equation (7.13), G is the Green’s
function for the local cell Y = T 3, p is the boundary pressure on the blades and σ denotes
the surface measure on the blades. The pressure gradient on the blades is simply the
acceleration (divided by density = 1) that the fluid experiences as it enters the local cell.
Averaging over the local scale we get

p1(x) = −
∫

blades

Gx(z, y)∇p(z) · ndσ(z), (7.15)

because f = 0 by the equation (7.13) and Gx depends on x only through the local
geometry. Notice that consistently the local average over the left hand side of (7.5) is
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also zero. Thus the average of the pressure p1 is solely determined by the forcing by the
blades.

The Improved Model

The two equations (7.12) and (7.15) give the numerically solvable model for the jet
engine flow. The point is that Gx(z, y) can be found numerically once the local geometry
is known and then we can solve (7.16) on a coarse grid because all the fine structure in the
flow has been averaged out. This computation can be performed with current computer
technology.

Model 1:

The solution u of the improved model for jet engine flow































































∂u

∂τs
+ u · ∇u−∇ · (A∇ u) = −∇p1 + g(u,∇u)

u |t=0= u0

∇ · u = 0,

n · ∇u = 0, in the inlet and the outlet ducts

and u = 0, on the hub and casing,

(7.16)

is the formal limit as ǫ→ 0, of the solution to the Navier-Stokes equations (2.1), averaged
(stochastically homogenized) over the local coordinates y and fast time tf .

Recall that when the equations are written in polar coordinates then

g = (0,
1

r
u0

θ

2
+

1

r
∇u0

θ · χθ ⊗ χθ · ∇u0
θ, −

1

r
u0

ru
0
θ −

1

r
∇u0

r · χr ⊗ χθ · ∇u0
θ).

A is the eddy viscosity tensor whose coordinates are given in Appendix B.

Remark 7.1 Model 1 is our assumption and we state it as a stochastically homogenized
average. However, the average could also be taken to be a Reynolds Averaged Navier-
Stokes (RANS) or Large Eddy Simulation (LES) model where a subgrid model is used to
finds A. Thus Model 1 can be interpreted to be a RANS or LES model and this taken as
a starting point instead of a stochastic homogenization.
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8 The Stochastic Homogenization

We will now recap briefly how the equations of the different order fit together in the
stochastic homogenization theory. The ǫ of order −1 equation (4.2) give the independence
of the global pressure p0 of the local variable y. The ǫ of order 0 equation (4.3) is the Local
Equation, it is nonlinear and cannot be solved explicitly but we can show that solutions
exist. Its solvability condition

∇xp0 = −(pout
1 − pin

1 ) + fcent,

where fcent = (0, r/4, 0), implies that the global pressure gradient balances the local
pressure increase over the local cell. The ǫ of order 1/2 equation (4.4) can be solved
explicitly and produces the axial vortex tubes. Its solvability condition is trivial. The ǫ of
order 1 equation (A.9) is in Appendix A. Its solvability condition is the Global Equation
(6.4). That equation reduces to the Improved Model (7.16) after the introduction of the
eddy viscosity tensor. Finally components of the eddy viscosity tensor satisfy the heat
equation (7.4) with positive boundary data.

9 The average over normal time

The averaging over the normal-time periodic motion in Section 4 effects a tremendous
simplification of the global equations describing the slow-time jet engine flow. This av-
eraging amounts to an approximation of the Poincaré map associated with the periodic
normal-time flow and is analogous to the averaging method for ODEs, see [34]. It is sim-
plest to carry this averaging out in Cartesian coordinates so now we express the equations
(7.1)-(7.10) is Cartesian coordinates.

We recall from Section 4 that the u0
x and the u0

y components of the (normal time)
velocity (in the rotation frame) can be written in the form u0

x = a cos(t) + b sin(t) and
u0

y = −a sin(t) + b cos(t), whereas u0
z does not depend on the normal time. We multiply

the u0
x and u0

y equations (considered to be a two-vector) on the right by,

(

cos(t) sin(t)
− sin(t) cos(t)

)

and average the three velocity equations (7.1)-(7.10) over the normal time period π. Recall
that we have defined the derivative with respect to z to mean R

L
∂
∂z

.
This give the equations for the three velocity components in Theorem 9.1 and amounts

to finding a slow modulation of the normal-time periodic orbit.
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The New Model

Let the normal-time cylindrical rotation be

(

u0
x

u0
y

)

=

(

cos(t) sin(t)
− sin(t) cos(t)

)(

a

b

)

, (9.17)

where a and b are still functions of the global variables and slow time.

Theorem 9.1 The time average, of the u0
z flow along the axis and the amplitude of the

normal-time cylindrical rotation in the jet engine, is determined by the slow-time equations















































∂u0
z

∂τs
+ u0

z

∂u0
z

∂z
+

∂

∂z
(∇u0

z · χz ⊗ χz · ∇u0
z) = −∂p1

∂z

∂a

∂τs
+
∂(u0

za)

∂z
+

∂

∂z

(

χza · ∇u0
z

)

= 0

∂b

∂τs
+
∂(u0

z b)

∂z
+

∂

∂z

(

χzb · ∇u0
z

)

= 0.

(9.18)

Their solutions are the averaged formal limit limǫ→0 ǫ
−1/2uǫ of the solutions to the Navier-

Stokes equations (2.1), averaged once more over the period of the rotation of the normal
time vortex tubes (4.6).

Proof: The proof follows immediately from Model 1, using the normal-time averaging
computation in this section. QED

The equations (9.18) determine the slow modulations of the cylindrical rotation rolls
that are aligned with the (z) axis of the jet engine. They give more information than the
Moore-Greitzer equations (1.1) but are much simpler to analyze than the improved model
(7.1)-(7.10).

Remark 9.1 Notice that the flow in the z-direction (u0
z) is a slow addition to the

constant normal time flow (design flow) in Section 4, whereas the flow in the r and θ
directions is normal-time rotation with a slow modulation, given by the a and b equations
above. It must be kept in mind, although we have not proven this, that we are in (9.18)
approximating a Poincaré map by a flow and maps are different from a flow. However,
this approximation gives the correct information about the map, see [34], including the
stability of the solutions and their bifurcations.

We are actually done at this point. We have succeeded in deriving a model (9.18)
for the jet engine flow that promises to be significantly better that the Moore-Greitzer
equation. (Assuming of course that it tests well against experimental data.) Not only
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does it have an equation (for u0
z) describing the flow in the z directions, this new model

also contains two more equations (for a and b) describing the stability of the vortex tubes,
analogous to Rayleigh-Bénard convection, that can be expected to play a major role in
the flow. This is the model that one should simulate and analyze to get a better picture
of the flow in the jet engine. However, we are not done if we also want to investigate how
the conventional Moore-Greitzer equations fit into the new model and this is the topic for
the next three sections.

10 The mean flow and the deviation

In this section, we are going to split the uz equation into the mean flow and the
deviation in order to compare with the Moore-Greitzer equation.

Consider the first two equations in (9.18). We integrate both of these equations with
respect to the z variable imagining the compressor to be equivalent to an actuator disk.
This was suggested by Moore and Greitzer, see [30]. Since we want to compare with the
original Moore-Greitzer equation, we implement this idea by integration in z. The result
is:















































∂u0
z

∂τs
= −(∇û0

z · χz ⊗ χz · ∇û0
z)|z1

z0
− (û0

z)
2

2
|z1

z0
− p̂1|z1

z0

∂a

∂τs
= −û0

zâ|z1

z0
−
(

χza · ∇u0
z

)

|z1

z0

∂b

∂τs
= −û0

z b̂|z1

z0
−
(

χza · ∇u0
z

)

|z1

z0
,

(10.1)

where z0 marks the entrance and z1 the exit of the compressor scaled by L
R
.

We have redefined the meaning of the overlines to simplify notation. It is now redefined
to be the mean over z, ζ , κ, α, τf and t wheras hat indicates the old overline that was
the mean over ζ , κ, α, τf and t only. Moreover z has been rescaled by L

R
.

Note that ∂u2
z

∂z
and ∂p1

∂z
are the same as the difference of the average of u2

z and p1

respectively over local variables, fast and normal times evaluated at the two ends of the
compressor. If we switch to the old definition of the overline, i.e., only the average over
local variables, fast and normal times, we could rewrite these terms as u2

z(z1)−u2
z(z0) and

p1(z1) − p1(z0), where z1 is the back end of the compressor and z0 is the front end.
We next make a closure ansatz analogous to the one in Section 7. We express the
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previous average of the velocity û0
z and amplitudes as,























û0
z = u0

z + ξz (z) · ∇u0
z

â = a+ ξa (z) · ∇a

b̂ = b+ ξb (z) · ∇b.

(10.2)

A substitution of the expressions (10.2) into the equations (10.1) gives the new equa-
tion

∂u0
z

∂τs
= −2∇û0

z · χz ⊗ χz · ∇
(

E · ∇u0
z

)

−∇ (E · ∇u0
z) · χz ⊗ χz · ∇ (D · ∇u0

z) (10.3)

− (û0
z)2

2
|z1

z0
− p̂1|z1

z0
, (10.4)

where E = ξz(z1)− ξz(z0) and D = ξz(z1) + ξz(z0) and ∇ denotes the two-dimensional (r
and θ) gradient. The amplitude equations can similarly be found but they are probably
not physically relevant for the actuator disk model. We are going to use the equation
(10.3) to compare with the Moore-Greitzer equation but whereas the first term of the
right is a viscous term, we have to discuss the role of the last three terms.
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Figure 4: The Pressure Characteristic and the Throttle Curve (passing through the ori-
gin), the vertical axis is the pressure rise Ψ, and the horizontal axis is the mean flow Φ.

Let Ψ be the pressure rise from the plenum to the throttle, which is independent of θ
(This will be discussed below). Then motivated by the equation (10.3) we can define the
total pressure rise in the compressor as well as in the plenum.
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Definition 10.1 The pressure characteristic is defined to be

ψc =
R

L
(p1(z0) − p1(z1))+

R

2L

(

u2
z(z1) − u2

z(z0)
)

−∇
(

E · ∇u0
z

)

·χz ⊗ χz ·∇
(

D · ∇u0
z

)

+Ψ,

where the bar on u0
z denotes the average over the local variables, fast time and z. Notice

that we have reverted back to the unscaled z variable in the definition. The conventional
model for the pressure characteristic is exhibited in Figure 4.

We now take the θ average and split the u0
z equation into the mean flow Φ over θ and

the deviation ϕ from the mean:

∂ϕ

∂τs
= −2(χzχz

r

∂Φ

∂r
+ χz ⊗ χz · ▽ϕ) · ▽ (E · ▽ϕ) +

1

lc

(

ψc −
1

2π

∫ 2π

0

ψcdθ

)

∂Φ

∂τs
= −2((χz

r)
2∂Φ

∂r
+ χzχz

r · ▽ϕ)
1

r

∂

∂r

(

rEr
∂Φ

∂r

)

+
1

lc

(

1

2π

∫ 2π

0

ψcdθ − Ψ

)

(10.5)

The two equations (10.5) give the equations for the deviation from the mean flow and
mean flow respectively. Then we need just one more equation for the pressure rise Ψ to
be able to compare with the viscous Moore-Greitzer system (1.1).

11 The equation for the pressure rise

In this section, we are going to discuss the equation for the pressure rise in the Moore-
Greitzer equation.

The conservation of mass in the plenum gives the dynamic equation, see Moore and
Greitzer [30], for the pressure rise from the plenum to the throttle:

∂Ψε

∂t
=

1

4lc(Bǫ)2
[Φε − γF−1

T (Ψε)] (11.1)

where lc = L
R
, Bǫ = U

2as

√

Vp

Aǫ
cL

, Vp is the volume of the plenum, Aǫ
c = ǫ2πR is the cross-

sectional area of the compressor, γ is the throttle parameter, F−1
T (Ψǫ) = sgn(Ψǫ)

√

| Ψǫ |
and Ψε is the pressure rise from the plenum to the throttle.

The mean flow Φε in the compressor is proportional to the rate of mass coming into
the plenum from the outlet duct. The throttle flow γF−1

T (Ψε) (where FT is the parabolic
throttle characteristic) is proportional to the rate of mass going out of the plenum through
the throttle. The difference of these two rates will result in a change of density in the
plenum. On the other hand, the isentropic relation between density and pressure provides
that the rate of density change in the plenum is proportional to the rate of change of
pressure rise in the plenum. The gas in the plenum acts as a dynamics spring and must
therefore be taken to be compressible in distinction to the air in the compressor. For more
details on how the above equation is derived, see [30].
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We now make the following asymptotic expansion for the pressure rise:

Ψε(r, θ, t) =

∞
∑

i=1

ǫiΨi

(

r, θ,
√
εt, t,

t√
ε

)

. (11.2)

Note that the expansion starts at i = 1 since the 0th order pressure is the ambient pres-
sure which does not change from the inlet duct to the throttle and thus the 0th order
pressure rise is zero. Applying the chain rule ∂

∂t
=

√
ε ∂

∂τs
+ ∂

∂t
+ 1√

ǫ
∂

∂τf
and gathering

terms of the same order gives for

ε1/2:
∂Ψ1

∂τf
= 0, (11.3)

ε1:
∂Ψ1

∂t
= 0, (11.4)

ε3/2:
∂Ψ1

∂τs
+
∂Ψ2

∂τf
=

1

4lcB2
(Φ0 − γ sgn(Ψ1)

√

| Ψ1 |), (11.5)

where B =
√
ǫBǫ = U

2as

√

Vp

πR2L
. Averaging over the fast time gives

∂Ψ

∂τs
=

1

4lcB2
(Φ − γ sgn(Ψ)

√

| Ψ |) (11.6)

where Φ is the averaged Φ0 and Ψ = Ψ1, since (11.3) and (11.4) imply that the pressure
rise is constant with respect to the fast and normal time.

In the paper [5] it was proven that the solutions of the ODEs for Φ and Ψ are bounded.
This permits us to apply the formal stochastic homogenization to Ψǫ along with its ap-
plication to the air velocity uǫ.

12 The modified Moore-Greitzer equation

Combining the equations in the previous two sections, we have the following system:
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(Φ − γ sgn(Ψ)
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| Ψ |)

(12.1)
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where the coefficients of the eddy viscosity matrix are listed in Appendix B. This is the
modified Moore-Greitzer we derived from the Navier-Stokes equations using stochastic
homogenization. Compared with the original Moore-Greitzer equation, the difference is
as follows:

First, the form of the eddy viscosity term is generalized. We showed that it is not just
the second derivative with respect to θ as in the original Moore-Greitzer equation, it does
have radial derivatives as well, only when there is negligible flow in the r direction in the
compressor will the simple eddy viscosity term in the Moore-Greitzer equation be a good
model.

Secondly, the forcing term ψc is given explicitly in Definition 10.1, while the original
assumption was to model it using a cubic polynomial of the velocity in z direction. p1

could be found by solving the Poisson equation for the pressure as explained in Section 7,
u2

z(z1) = g0
out and u2

z(z0) = g0
in are given by the boundary conditions in the outlet and

inlet ducts.
Recall that if we used the frame rotating with the speed of the rotors instead of half

the speed of the rotors, we will have a first θ-derivative term in the deviation equation. If
we transfer from our frame moving with half the speed of the rotors, to the inertial frame
of reference, where ∂ϕ

∂τ
= ∂ϕ

∂τs
+ 1

2
∂ϕ
∂θ

, then the (slightly) improved Moore-Greitzer system
becomes:

The Modified Viscous Moore-Greitzer Equation
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1

4lcB2
(Φ − γ sgn(Ψ)

√

| Ψ |)
(12.2)

Finally, we prove the second part of our main result:

Theorem 12.1 The mean flow Φ plus the deviation ϕ, in the solution to the modified
viscous Moore-Greitzer equation (12.2), is the z and normal-time t average of the formal
homogenized 2 limit

∫ z1

z0

û0
zdz = Φ + ϕ,

of (the z component of) the solution ǫ−1/2 · uǫ, to the Navier-Stokes equation (2.1), as
ǫ→ 0.

2averaged over the fast time and spatially local variables
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Proof: We obtain from Theorem 9.1 that formally ǫ−1/2 · uǫ → u0, where u0 solves the
global homogenized Navier-Stokes equation (9.18). It follows that u0

z is the stochastically
homogenized formal limit of ǫ−1/2 ·uǫ

z. After we have integrated with respect to z from z0
to z1, and averaged over the normal time as in Equation (9.18), where hat now denotes
the average over normal time, we obtain

û0
z =

1

2π

∫ 2π

0

u0
zdt.

Then we split
∫ z1

z0

u0
zdz = Φ + ϕ as in Section 10, see Equation (10.5) and add Equation

(11.6) from Section 11 to get the modified viscous Moore-Greitzer equation (12.2). QED

Corollary 12.1 If the radial components of the eddy viscosity are small, then the original
viscous Moore-Greitzer equation (1.1) is an excellent approximation to the modified viscous
Moore-Greitzer equation (12.2).

Proof: Assume that the r derivatives of ϕ and Φ are small. Then neglecting those terms
in Equation (12.2) we get
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√

| Ψ |),

(12.3)

This is the viscous Moore-Greitzer equation with the viscosity coefficient,

−2χz
θχ

z
r

r3
Eθ > 0.

Recall that here χz
θχ

z
rEθ are averaged over the small spatial scales, fast and normal time,

so the product is a constant. Thus if the r derivatives of ϕ and Φ are small we recover
the viscous Moore-Greitzer equation (1.1) with the viscous term

−2χz
θχ

z
r

r3

∂ϕ

∂θ

∂

∂θ

(

Eθ
∂ϕ

∂θ

)

as suggested in [1] and [26]. QED

Remark 12.1 The explicit form of the pressure characteristic in Definition 10.1 shows
that it is probably not enough to model the pressure characteristic as a function of u0

z

only. Even if the first two terms can be modeled in this way the third term is a function
of the gradient ∇u0

z.
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13 Coupling to a Combustion Model

In this section we discuss how the above results and in particular the improved model
(9.18) can be coupled to a detailed combustion model for the combuster and afterburner
in a jet engine.

In flows with density changes as occur in combustion one introduces a density-weighted
average u, called the Favre average, thus splitting the fluid velocity into the average and
the deviation

u(x, t) = u(x, t) + û(x, t).

The averaged continuity and momentum equations become
The Favre averaged continuity equation

∂ρ

∂t
+ ▽ · (ρu) = 0, (13.4)

and
The Favre averaged momentum equation

∂(ρu)

∂t
+ ▽ · (ρu⊗ u) −▽ · τ + ▽ · (ρû⊗ û) = −▽ p+ ρg, (13.5)

where the term (ρû⊗ û) is called the Reynolds stress tensor. These equations are used to
derive equations for the Favre averaged turbulent kinetic energy k, and the Favre averaged
turbulent dissipation ǫ. The resulting equations depend on the model of the Reynolds
stress tensor and are referred to as k-ǫ models, see [32]. In addition, one needs an equation
for the Favre averaged mixture fraction

The mixture fraction equation

ρ
∂z

∂t
+ ρu · ▽z = ▽ · (ρD▽ z), (13.6)

where D is the diffusion coefficient and

z =
ηYF − YO2

+ YO2A

ηYF1
− YO2,A

is the mixture fraction of fuel and oxygen O2, YF being the mass of the fuel and YO2
that of

the oxygen, at any give time, and YF1
being the mass of the fuel and YO2,A

the mass of the
oxygen, in the fuel and oxidizer stream respectively and η is the stoichiometric oxygen-
to-fuel mass ratio. One also needs equations for the mass fractions Yi of all the chemical
species involved in the reaction. There remains one equation the enthalpy equation, but
with some simplifying assumptions, [32], it becomes the same as the mixture fraction
equation (13.6).

One can use the same approach as we used to get the effective equations for the
compressor, in this paper, to get the effective equations for the combustion in the plenum
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and the afterburners. The full system of equations is too complicated to be analyzed
by current technology but there is a well developed theory of one-dimensional thermal
shocks propagating trough a fuel mixture. One can now hope to make the connection
between the effective equations and this theory and perhaps bring the latter to bear on
the observed longitudinal and azimuthal thermoacoustic instabilities in the combustor and
afterburners. If these phenomena cannot be reduced to one-dimensional shock waves the
resulting equations may still have to be solved numerically. Finally, the flow determined
by (9.18) can be fed into these equations and the effective combustion studied. One does
not expect the spatial structure of the disturbances, surge and stall, to be important.
These details will be washed out in the overwhelming mass of the plenum. However, the
flow disturbances will show up in fluctuation in the mean flow and swirl and these will
affect the combustion and possibly the shock formation.

14 A Numerical Comparison of the Viscous Moore-

Greitzer Equation and the New Model
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Figure 5: The deviation from the mean flow and the pressure as a function of mean flow
during the initiation and propogation of a stall cell

We can now simulate the new equations and compare the results with the solutions of
the viscous Moore-Greitzer equations (1.1). First we will simulate the equations (12.3),
in the following form that we will call the New Model 1:
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These equations are the same as the viscous Moore-Greitzer equations (1.1) except for

the derivative ∂ϕ
∂θ

multiplying the viscous term ∂2ϕ
∂θ2 . In Figures 5 to 7, we simulate the

initiation and propagation of stall, first without and then with control, and then a surge
cycle, without and with control (in Figure 7). The parameter values are the same as in
[6]. A comparison between these simulations and those in [7] and [6] show that there is
now difference between the solutions of the New Model 1 and the viscous Moore-Greitzer
equations with or without basic control, see [6] and [8]. In these figures the stall cell is
seen in the plot of the deviation from the mean flow plotted as a function of angle and
time, and the pressure is plotted against the mean flow on a separate plot. The conclusion
of this simulation is that the term ∂ϕ

∂θ
makes only a slight quantitative and no qualitative

difference.
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Figure 6: The deviation from the mean flow and the pressure as a function of mean flow
when the initiation of a stall cell is quenched by control.

Next we will simulate a more general form of the new model (9.18), in a modified form
of the equations (12.2) that we will call the New Model 2:
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Figure 7: The pressure as a function of mean flow during a surge cycle and (on right) the
control of the surge.
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In this model we have ignored the radial derivative of the deviation ϕ assuming that it
is small compared to the radial derivative of the mean flow Φ. The parameter values are
the same as in [6], except for the new parameters a = 0.001, b = 0.5. The solutions of
these equations are more complicated that the solutions of the viscous Moore-Greitzer
equations (1.1). Firstly, they depend on the radial direction in the compressor as shown
in Figure 8. This figure shows the mean flow as a function of radius and time (left) and
then a stall cell as a function of angle and radius for a fixed time (right). We see that
the mean flow has radial dependance increasing at the outer boundary and the stall cell,
while being reasonably uniform in the radial directions develops spatial oscillations in its
angular wings. In comparison the wings of the Moore-Greitzer stall cell are uniform. The
viscous Moore-Greitzer stall cell (left) is compared with a cut of the stall cell of New
Model 2 (right) at r = 1 in Figure 9. Secondly, it is clear from Figure 9 that the stall cell
of the New Model 2 is a much more complicated and higher dimensional phenomenon than
the stall cell of the viscous Moore-Greitzer equations (or New Model 1). Not surprisingly
it is also much harder to control.
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Figure 8: The mean flow as a function of time and radius and the deviation from the
mean flow, at a fixed time during the stall cycle, for the New Model 2.
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Figure 9: The viscous Moore-Greitzer stall cell (left) compared with a section of the stall
cell of the New Model 2 (right).
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A complete numerical analysis of the new model (9.18) is more complicated and will be
done in another publication. In particular one has to include the equations determining
the fluctuations in the swirl and its instabilities.

15 Conclusion

A homogenization of the incompressible Navier-Stokes equations assuming a stochastic
homogenization theorem gives a derivation of the viscous Moore-Greitzer equations. A
more general system of equations was obtained containing the viscous Moore-Greitzer
equations as a special case. This more general system of the equations called the New
Model (9.18) give a much better description of the flow through the compressor and the
instabilities surge and stall in that flow. In addition equations are obtained describing the
swirl of the flow that is the only spatial structure of the flow that persists in the plenum.

A full numerical analysis of the New Model (9.18) remains to be done but special
cases that arise when the swirl is ignored and certain approximations implemented give
respectively agreement with the viscous Moore-Greitzer model (New Model 1 (14.7)) and
a generalization of it (New Model 2 (14.8)), revealing more complicated structure of stall
and implying that stall is harder to control than previously known. The New Model (9.18)
opens the prospect of a complete controllability of instabilities in the compressor and the
extension of active control of flow and combustion in whole jet engine, including control
of thermoacoustic instabilities in the plenum and afterburners.

The New Model 2 (14.8) seems to be a better description of what actually goes on
in the compressor than the viscous Moore-Greitzer equations (1.1) and more useful in
designing controls that can be implemented in real time. It is likely that the full New
Model (9.18) will give even more information and more effective control methods.
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A The Global Equations

The ǫ1 terms in the asymptotic expansion (4.1) give us the global slow time Navier-Stokes
equation:
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(A.9)

This system describes the velocity field in both the large and the small scales.
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B The Eddy Viscosity Tensor

The eddy viscosity coefficients for the equations (7.6),(7.8) and (7.10) in Section 7 are:
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