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Abstract 
Drift diffusion models are used to model evidence 
accumulation in two-choice forced-tasks. The traditional 
approach to fitting Ratcliff’s standard drift diffusion model 
(where the drift and diffusion are constant) usually involves 
explicit modeling of the first passage time distributions of the 
upper and lower boundaries or likelihood approximations. We 
present the very first technique, to the best of our knowledge, 
that foregoes use of explicit modeling of the first passage time 
distributions with a random forest regressor. A random forest 
regression model that takes the first five moments of the 
response time distribution, and the upper boundary termination 
proportion, is used to predict the drift and diffusion parameters 
from response time data. A training set of response time 
samples of size 2500 from 121 distinct drift-diffusion pairs is 
used to train the random forest regressor. On a testing set of 
10,000 distinct drift-diffusion combinations with response time 
sample sizes of 40, we find that our model surpasses techniques 
that make use of some form of analytical modeling of the first 
passage time distributions of the boundaries for prediction of 
the diffusion rate, but not the drift rate. We conclude that the 
application of machine learning to drift-diffusion modeling of 
empirical data is a topic worth further investigation. 

Keywords: drift-diffusion models; two-alternative forced-
tasks; mathematical psychology; machine learning 

Introduction 
Drift-diffusion models, originally introduced by Ratcliff (see 
Ratcliff, 1978), typically apply to two-alternative forced-
choice tasks, in which a decision maker must choose between 
two alternatives, typically within seconds. Drift-diffusion 
models have been influential in the fields of neuroscience and 
psychology. Drift-diffusion models have neurological 
correlates in brain regions including the Subthalamic  
Nucleus (Herz et al., 2008), correlate to Dopaminergic 
activity in perceptual decision making (Beste et al., 2018), 
and potentially segregate individuals with mental health 
disorders such as Schizophrenia, OCD and Social Anxiety 
Disorder from healthy controls (Dillon et al., 2022; Gupta et 
al., 2022). Drift diffusion models assume that in the decision 
making process, the decision maker accumulates information 
according to a diffusion process (Fig. 1). When the 
information level (to be loosely interpreted as a surrogate for 
the relative information needed to make a decision) first 
reaches either an upper or lower boundary, the process 

terminates, and a decision is made, with each boundary 
corresponding to a different decision.  
   Extensions to the drift diffusion model exist, such as 
allowing for prior distributions on the drift and diffusion 
parameters (Wiecki, T. V., Sofer, I., & Frank, 2013) and 
allowing for decisions between more than two options 
(Roxin, 2019). 

 
Figure 1. Illustration of a sample path (in dotted lines) from the 

drift- diffusion model. The sample path reaches the upper 
boundary (+1), after which the process terminates.  

 
In this paper, we consider Ratcliff’s model, where the drift 

and diffusion parameters are constant in a two-choice task, 
and the goal is to learn the drift and diffusion parameters from 
response time data (Ratcliff, 1978). The challenge here is that 
decision times and decisions are observed (Ratcliff & 
Tuerlinckx, 2002), rather than a continuous or well-
represented signal of the information accumulation process. 
Therefore, the data for the information values cannot contain 
more than two values, each corresponding to the decisions at 
the decision boundaries. This implies that numerical 
techniques for solving stochastic differential equations are of 
less value, as they are suited to continuous signals, rather than 
first passage time statistics.  

In the literature, drift-diffusion models are typically fit to 
data by techniques that involve analytical modeling of the 
first passage-time distributions of each boundary. 
Specifically, the drift and diffusion parameters are varied to 
minimize a distance metric between the empirical 
distribution and the analytical distribution. Some 
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implementations in the literature include the weighted least 
squares method, maximum likelihood estimation and the chi-
squared method (Ratcliff & Tuerlinckx, 2002). Likelihood 
approximation algorithms have also been established in 
cognitive science and applied to drift diffusion models 
(Turner & Sederberg, 2014; Turner & Van Zandt, 2012; 
Turner & Van Zandt, 2018), as well as machine learning 
techniques such as the use of deep neural networks in 
implementation, where more generally, the drift and 
diffusion rate are not constant (Wiecki, T. V., Sofer, I., & 
Frank, 2013). 
   In this paper, we make use of random forest regression to 
explore if it is possible to recover drift and diffusion 
parameters from empirical data. To the best of our 
knowledge, this is the first paper to do so. 
 

Methods 

Table 1: List of symbols. 
 

Symbol Meaning Unit 
µ Drift Rate Seconds-1 

s2 Diffusion Rate Seconds-2 
t Time  Seconds 

dt Time-step for Diffusion 
Model Simulation  Seconds 

t Time at Process 
Termination  Seconds 

m Mean Time of Process 
Termination  Seconds 

d Boundary at Process 
Termination (1 or -1) NA 

X(t) Information Level at 
Time t NA 

W(t) Standard Wiener Process 
at Time t NA 

µi 
The i’th Drift Rate in the 

Training Set Seconds-1 

si 
The i’th Drift Rate in the 

Training Set Seconds-2 

Ti 
The i’th set of response 

times in the Training Set  Seconds 

di 
The i’th Set of Decisions 

in the Training Set NA 

µ’i The i’th Drift Rate in the 
Testing Set Seconds-1 

s’i 
The i’th Drift Rate in the 

Testing Set Seconds-2 

T’i 
The i’th Set of Response 

Times in the Testing Set  Seconds 

d’i 
The i’th Set of Decisions 

in the Testing Set NA 

 

Simulating the Drift-Diffusion Process 
The diffusion process was simulated in Python as follows. 

The process initially started at the offset, which was fixed to 
zero for all simulations. The process was updated according 
to the standard diffusion equation (1), where dt = 0.01 
seconds and W(t) is a standard Wiener process (i.e., dW(t) is 
normally distributed with mean zero and variance dt) 

 
X(t + dt) = X(t) 	+ 	µ	dt + 	σ	dW(t)	        (1) 

 
The run-time of the process was fixed to be a maximum of 

20 seconds, after which the process terminated if it had not 
reached the upper or lower boundary (+1 and -1, 
respectively). If the process terminated before a decision 
boundary was reached, the decision variable (d) was chosen 
to be the boundary that is closest to the final information level 
(i.e., X(20), see Table 1 for a summary of symbols). 

Training and Testing Datasets 
The training dataset was generated by selecting drift and 

diffusion values from a grid, where the drift varied from -0.5 
to +0.5 with spacing 0.1, and the diffusion varied from 0 to 
+1 with spacing 0.1. This resulted in 11 unique values for the 
drift parameter and 11 unique values for the diffusion 
parameter, yielding a total of 121 unique drift and diffusion 
combinations. For each of these drift diffusion combinations, 
a sample size of 2500 was drawn for reaction times and 
terminal boundaries of the process through simulations in 
python.  

The testing dataset was generated similarly, where the drift 
varied from -0.5 to +0.5 with a spacing of 0.01, and the 
diffusion varied from 0 to +1 with a spacing of 0.01, yielding 
10,000 unique drift diffusion pairs. For each pair, a sample of 
size 40 was drawn for reaction times and the corresponding 
termination boundaries, which falls in the smaller end of the  
range of the typical sample size for behavioral experiments 
in the literature (Mueller et al., 2017; Mulder et al., 2013; 
Ratcliff, Gomez & McKoon, 2004, Van Der Groen et al., 
2019; Winkel et al., 2012). 

Random Forest Regressor 
The inputs to the random forest regressor were the first five 

moments of the reaction time data, as well as the proportion 
of times the decision corresponded to the upper boundary in 
the data (Fig. 2). The outputs were the drift and diffusion 
parameters. The random forest was trained in Python using 
the package Sklearn (Pedregosa et al., 2018), with a forest 
depth of 1,000,000.  

We note that the decision to use the first five moments of 
the reaction time data was arbitrarily chosen with the 
intention of having a small feature set for input to the random 
forest regressor, while still capturing key components of the 
sampling distributions. We justify using a small number of 
moments by noting that the inverse gaussian distribution 
(which may be used to model first passage time distributions 
of drift diffusion models with a single boundary), only has 
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two parameters, which could be solved for by knowledge of 
the first two moments of the distribution. 

Evaluating Model Performance 
The mean squared errors of the drift and diffusion 

coefficients (denoted MSE(µ) and MSE(s) respectively) 
were used to evaluate model performance on the testing data 
(Fig. 3) for the trained random forest regressor. 

 

 
Figure 2. Training of the random forest classifier.  

 

 
Fig. 3 Evaluating model performance of the random forest 

classifier. 
 
Additionally, to compare performance of the random forest 

classifier to standard techniques, MSE(µ) and MSE(s) were 
also obtained by using the following methods: maximum 
likelihood estimation and MSE minimization using the 
package Pyddm (Shinn et al., 2020), a popular python toolbox 
for drift-diffusion modeling, with the recommended 
optimizer (differential evolution). Finally, the backward 
Euler algorithm was also implemented in Pyddm to fit the 
drift-diffusion data, although this technique is typically not 
used in the literature, because it designed for fitting 
continuous signals. 

Results and Discussion 
The random forest regression resulted in a larger mean  

squared error for estimation of the drift parameter (table 2) 
when compared to maximum likelihood estimation and MSE 
minimization, whose errors are roughly 15% and 66% of the 
random forest regression error respectively.       

Table 2: Performance on testing dataset. 
 

Method MSE(µ) MSE(s) 
Random Forest 
Regression 0.00194 0.0611 

Maximum Likelihood 
Estimation 0.000290 0.267 

MSE Minimization 0.00128 0.273 
Backward Euler 0.038 0.275 

 
    On the other hand, the random forest regression produced 
the smallest MSE for estimation of the diffusion coefficient. 
The MSE of the diffusion parameter for the random forest 
regression are roughly 23% the size of the other approaches. 
    Although the error of the drift parameter for the random 
forest regression is considerably larger than errors produced 
by the MSE minimization and maximum likelihood 
estimation, evaluation of the drift error is application 
dependent. For example, the error may be acceptable in 
specific aging effects, as a meta-analysis reports a wide range 
of effect sizes of the diffusion parameter (Theisen et al., 
2021). In general, if the measurement error is small compared 
to the sampling variation of the drift and diffusion errors, the 
measurement error may be acceptable. 
  We also note that the MSE of the backward Euler method 
uncured the largest errors for the drift and diffusion 
parameters. This is a relatively expected result because 
numerical techniques for solving stochastic differential 
equations are not designed for fitting first passage time data. 
   We mention a few limitations. Firstly, our approach 
compares point estimates of the models, but does not 
compare error estimates of our model to other approaches. 
Such a process would be necessary to completely understand 
the relationships between the two approaches. Secondly, note 
that recovery of drift diffusion parameters is implemented 
through a fixed sample size of 40 reaction times and 
decisions, but it remains to compare performance of the 
approaches as the sample size increases. Thirdly, a systematic 
means of feature selection (for example, evaluating the 
number of moments in the input to the random forest 
regressor or evaluating the use of quantiles as features) is not 
performed in this paper. Fourthly, the offset and bias are fixed 
to zero in this study. Finally, we consider the case where the 
drift and diffusion are constants and non-variable. 

Conclusion 
The findings of this paper suggest that random forest 

regression may be a viable technique for fitting response time 
data to drift-diffusion models. We highlight that our model, 
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trained only on 121 unique drift-diffusion pairs, produced 
more accurate results for estimation of the diffusion 
parameter than standard approaches that use some degree of 
analytical modeling of the first passage time distributions of 
the upper and lower boundary. Our results suggest that 
random forest regression may provide better estimations of 
the diffusion parameter when compared to other techniques 
in the literature. It is therefore of interest to investigate 
various machine learning techniques and larger training 
datasets for drift-diffusion modeling, as well as feature 
selection (such as the number of quantiles or moments to be 
inputted into the model). 
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